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Abstract: Due to the widespread application of neural networks (NNs), and considering the respective
advantages of fractional calculus (FC), inertial neural networks (INNs), cellular neural networks
(CNNs), and fuzzy neural networks (FNNs), this paper investigates the fixed-time synchronization
(FDTS) issues for a particular category of fractional-order cellular-inertial fuzzy neural networks
(FCIFNNs) that involve mixed time-varying delays (MTDs), including both discrete and distributed
delays. Firstly, we establish an appropriate transformation variable to reformulate FCIFNNs with
MTD into a differential first-order system. Then, utilizing the finite-time stability (FETS) theory
and Lyapunov functionals (LFs), we establish some new effective criteria for achieving FDTS of the
response system (RS) and drive system (DS). Eventually, we offer two numerical examples to display
the effectiveness of our proposed synchronization strategies. Moreover, we also demonstrate the
benefits of our approach through an application in image encryption.

Keywords: FDTS; FCIFNNs; LF; MTD

1. Introduction

In recent years, the CNNs conceptualized by Chua and Yang [1] have been widely
used in many scientific and technological frontier fields, for example, associative memory,
machine learning, pattern recognition, image processing, and combination optimization
(see [2–5]). On the other hand, uncertainty or fuzziness cannot be ignored in the implemen-
tation of neural networks. Considering the existence of uncertainty or fuzziness, Yang and
Yang [6] introduced a novel cellular neural network model known as the CFNN, which
builds upon the foundation of traditional CNN models. The CFNN model differs from the
conventional cellular neural network in that it incorporates both the product sum operation
and the fuzzy logic operation between inputs and/or outputs. It was found that the fuzzy
cellular neural network provides an effective example for pattern recognition and image
processing. To date, the CFNN is still a hot research topic (see [7–10]).

In 1986, Babcock and Westervelt incorporated inductance into the Hopfield NNs
to create INNs [11]. This modification was made to simulate the inertial characteristics
of practical problems and phenomena. As we know, adding inertial terms may cause
instability, bifurcation, chaos, and other complex dynamic behaviors. The introduction of
inertial terms into the standard neural system has an obvious biological background. For
example, the semicircular canal of mammals, the surface layer of hair cells, and the axons
of squid can be simulated by equivalent circuits with inductance (see [12–14]). Therefore,
the study of the dynamic behavior and synchronization control of INNs has an extensive
practical background and significant application value.

As an extension and promotion of integral calculus (IC), FC can be traced back hun-
dreds of years. Recently, FC has been widely used in mathematical modeling of economics,
biology, physics, and other disciplines. Resulting from the infinite memory characteristics
and genetic characteristics of fractional-order systems, an increasing number of scholars
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have introduced fractional-order differential operators into neural network models; these
models are commonly known as fractional-order neural network models (see [15–20]).

Because it takes time for neurons to process signals and transmit signals between
them, time delay is inevitable, and time delay may directly lead to the oscillation or even
instability of the NN system. On the other hand, because the mixed delay (MD) is more
effective than single delay (SD) in complex network modeling, we usually consider the
mixed delay in neural network system modeling [21].

Synchronization is a kind of dynamic behavior involving coupling neural network
systems in order for them to reach the same state. Because of the wide application of
synchronization in information science, security communication, and image processing,
it has attracted the attention of many scholars [22–24]. At present, the synchronization of
neural network systems can be primarily categorized into two types: infinite-time synchro-
nization (IETS) and finite-time synchronization (FETS). IFES mainly includes exponential
synchronization, quasi-synchronization, and asymptotic synchronization. FETS exhibits
superior performance to IETS, thus enabling the system to achieve synchronization in a
limited time. In practical applications, finite time synchronization is always desired, so
it is imperative to investigate the FETS of NNs. Currently, research on delayed inertial
neural networks primarily encompasses the following areas. Li et al. [25] focused on the
asymptotic synchronization of INNs with a constant delay. Gu et al. [26] conducted a study
on the asymptotic synchronization of Riemann–Liouville-type delayed IFNNs. Based on
the pinning control method, Feng et al. [27] studied the exponential synchronization of
hybrid delay INNs. Based on the intermittent control method, Tang et al. [28] studied the
exponential synchronization of time-varying discrete and finite distribution delay inertial
neural networks. Liang et al. [29] conducted an investigation into the exponential syn-
chronization of Cohen–Grossberg NNs, taking into account inertial delays. Shi et al. [30]
investigated the lag synchronization control and global exponential stability of inertial
delay neural networks, employing the adaptive control theory as a foundational framework.
Cui et al. [31] studied the FETS of INNs. Guo et al. [32] studied the FETS of delayed inertial
memristor neural networks. Wei et al. [33] studied the finite time synchronization and
fixed-time synchronization of time-varying delay inertial memristor neural networks. Chen
et al. [34] discussed the FDTS control of discrete delay memristor NNs. Alimi et al. [35]
studied the FETS and FDTS of INNs with multiple proportional delays. However, research
on the FDTS control of delayed FCIFNNs is still rare, and it is important and meaningful to
fill this gap.

To the best of our current knowledge, there is insufficient research on the FDTS control
of FCIFNNs with MTD. This gap necessitates further investigation into this area. We
primarily focus on the FDTS control issue for a class of FCIFNNs with MTD. The main
innovation of this paper is shown in the following aspects.

• The FDTS problem of FCIFNNs with MTD is investigated for the first time. In practical
applications, the performance of FDTS is better than asymptotic synchronization
and FETS.

• By designing appropriate nonlinear controllers and selecting appropriate LF, some
sufficient conditions are obtained to ensure that the RS and DS achieve FDTS.

• The cellular-inertial NN model proposed in this paper is more practical and general
than the traditional neural network model because it contains four obvious character-
istics, namely discontinuous activation function, mixed time-varying delay, fractional
order, and fuzzy logic.

• New sufficient conditions are given by means of algebraic inequalities. Compared
with matrix inequalities, algebraic inequalities are easy to realize and can avoid some
complex calculations. The estimation of settlement time is straightforward. In addition,
the estimated range of settlement time presented in this paper is more accurate and
effective when compared to classical results.
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• The efficacy of the proposed methods is demonstrated through numerical simulations.
In addition, the developed fixed-time synchronization results are applied to the image
encryption issue.

The remainder of this article is structured as follows. In Section 2, we present a
network system model for FCIFNNs with mixed time-varying delays, establish relevant
assumptions, provide lemmas, and define FDTS. The FDTS of the FCIFNNs is analyzed
in Section 3. Section 4 presents two numerical examples that illustrate the effectiveness
of the proposed control strategies. An application to image encryption is proposed to
demonstrate the advantage of the obtained synchronization results in Section 5. In Section 6,
the conclusion is revealed.

Notations: The symbols employed in this paper are as follows: R and R+ are used
to denote the set of real numbers and positive real numbers, respectively. Rn is employed
to denote an n-dimensional vector space. Cm[a, b] is employed to represent the set of
continuous functions with m derivatives on the closed interval [a, b]. C([−τ, t0], Rn) is used
to denote the continuous functions mapping from [−τ, t0] to Rn. co is used to denote the
convex closure of the set.

2. Problem Formulation and Preliminaries

Some related mathematical concepts are covered in this section, including the defini-
tion of fractional calculus, the solution of the fractional differential equation in Filippov’s
sense [36,37], and the theory of fractional differential equations.

Definition 1 ([38]). The fractional integral of order α is defined as follows

I−αz(x) =
1

Γ(α)

∫ x

x0

(x − s)α−1z(s)ds,

where α ∈ R+, x > x0, and Γ(·) is the Gamma function.

Definition 2 ([38]). The Caputo fractional derivative of order α is defined as follows

Dαz(x) =
1

Γ(m − α)

∫ x

x0

(x − s)m−α−1z(m)(s)ds,

where m ∈ R+ and m − 1 ≤ α < m.

Remark 1. Several definitions of fractional order α > 0, for example, Caputo fractional derivatives,
Riemann–Liouville fractional derivatives, Caputo–Febrizio fractional derivative are given. The
Caputo definition is widely employed in engineering applications. This is because the Caputo
definition takes into account the initial conditions for f (t) and its integer order derivatives, which
are physically meaningful in a conventional sense [39,40].

In the paper, we investigate FCIFNNs with mixed delays as follows.

Dαxi(t) = −aiDβxi(t)− bixi(t) +
M

∑
w=1

ciwhw(xw(t)) +
M

∑
w=1

diw

∫ t

t−τ0(t)
hw(xw(s))ds

+
M

∑
w=1

giwvw +
M∧

w=1

Tiwνw +
M∧

w=1

αiwhw(xw(t − τw(t))) +
M∨

w=1

Siwνw

+
M∨

w=1

βiwhw(xw(t − τw(t))) + Ii, i = 1, · · · , M,

(1)

where β ∈ [0, 1], α ∈ (β, β + 1); xi(t) represents the state of the ith unit; ai, bi represent the
passive decay rate of ith unit; ciw, diw represent elements of feedback template, giw denotes
the feedforward template; αiw, βiw are the elements of the fuzzy feedback MIN and MAX
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template, respectively; Tiw, Siw denote the element of the fuzzy feedforward MIN and MAX
template, respectively;

∧
and

∨
are the fuzzy AND and OR operations, respectively; vi and

Ii are input and bias of the ith neuron, respectively; hi denotes discontinuous activation
functions; and τ0(t) and τw(t) represent the transmission delay.
The initial conditions of system (1) are given by

xi(t) = φi(t), Dβxi(t) = ψi(t), t ∈ [−τ, t0], (2)

where τ = max0≤w≤M{supt∈R+ τw(t)}, φi(s), ψi(s) are initial functions.

Remark 2. If α = β, system (1) degenerates into a general fractional system described as

Dαxi(t) = − bi
ai + 1

xi(t) +
1

ai + 1

M

∑
w=1

ciwhw(xw(t)) +
1

ai + 1

M

∑
w=1

diw

∫ t

t−τ0(t)
hw(xw(s))ds

+
1

ai + 1

M

∑
w=1

giwvw +
1

ai + 1

M∧
w=1

Tiwνw +
1

ai + 1

M∧
w=1

αiwhw(xw(t − τw(t)))

+
1

ai + 1

M∨
w=1

Siwνw +
1

ai + 1

M∨
w=1

βiwhw(xw(t − τw(t))) +
1

ai + 1
Ii, i = 1, · · · , M

(3)

In this paper, we will be utilizing the following lemma and assumptions.

Assumption 1. There exist non-negative constants Lw and Qw of the following.

|λw − ζw| ≤ Lw|xw − yw|+ Qw, ∀xw, yw ∈ R, w = 1, 2, . . . , M,

where λw ∈ co[hw(xw)] and ζw ∈ co[hw(yw)].

Assumption 2. The activation function hi : R → R is continuous except on a countable set
{ϱi

w}. Moreover, hi(ϱ
i−
w ) and hi(ϱ

i+
w ) exist. In addition, hi exhibits at most a finite number of jump

discontinuities.

To obtain the main results, we utilize the concept of Filippov solution, which originates
from Filippov’s work on discontinuous systems (1).

Definition 3. The function z = (z1, z2, . . . , zM)T is said to be a solution of mathematical model
(1) on [−τ, T) if
(i) z = (z1, z2, . . . , zM)T is continuous in [−τ, T) and absolutely continuous in [0, T) and
(ii) there is a measurable function λ = (λ1, λ2, . . . , λM)T such that

Dαxi(t) = −aiDβxi(t)− bixi(t) +
M

∑
w=1

ciwλw(t) +
M

∑
w=1

diw

∫ t

t−τ0(t)
λw(s)ds

+
M

∑
w=1

giwvw +
M∧

w=1

Tiwνw +
M∧

w=1

αiwλw(t − τw(t)) +
M∨

w=1

Siwνw

+
M∨

w=1

βiwλw(t − τw(t)) + Ii, i = 1, · · · , M

(4)

where λw(t) ∈ co[hw(xw(t))] for t ∈ [−τ, T].

Next , we perform the variable transformation as follows.

yi(t) = Dβxi(t) + ξixi(t)
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Then, system (4) is re-described as follows.

Dβxi(t) = −ξixi(t) + yi(t)

Dα−βyi(t) = −θiyi(t) + δixi(t) +
M

∑
w=1

ciwλw(t) +
M

∑
w=1

diw

∫ t

t−τ0(t)
λw(s)ds

+
M

∑
w=1

giwvw +
M∧

w=1

Tiwνw +
M∧

w=1

αiwλw(t − τw(t)) +
M∨

w=1

Siwνw

+
M∨

w=1

βiwλw(t − τw(t)) + ξiDα−βxi(t) + Ii, i = 1, 2, . . . , M,

(5)

where θi = ai, δi = ξiθi − bi, and the initial values are re-expressed as follows.{
xi(t) = φi(t)

yi(t) = ξi φi(t) + φi(t) = ϕi(t), t ∈ [−τ, t0].
(6)

Now, we focus on system (5) as DS, and the corresponding RS is described below.

Dβ pi(t) = −ξi pi(t) + qi(t) + ui(t)

Dα−βqi(t) = −θiqi(t) + δi pi(t) +
M

∑
w=1

ciwζw(t) +
M

∑
w=1

diw

∫ t

t−τ0(t)
ζw(s)ds

+
M

∑
w=1

giwvw +
M∧

w=1

Tiwνw +
M∧

w=1

αiwζw(t − τw(t)) +
M∨

w=1

Siwνw

+
M∨

w=1

βiwζw(t − τw(t)) + ξiDα−β pi(t) + Ii + ũi(t), i = 1, 2, . . . , M,

(7)

where pi(t), qi(t) represent the state variable, and ui(t), ũi(t) are control input. The syn-
chronization error is defined as follows{

∆i(t) = pi(t)− xi(t)

∆̃i(t) = qi(t)− yi(t)

The following error system is obtained.

Dβ∆i(t) = −ξi∆i(t) + ∆̃i(t) + ui(t)

Dα−β∆̃i(t) = −θi∆̃i(t) + δi∆i(t) +
M

∑
w=1

ciwζw(t)−
M

∑
w=1

ciwλw(t)

+
M

∑
w=1

diw

∫ t

t−τ0(t)
ζw(s)ds −

M

∑
w=1

diw

∫ t

t−τ0(t)
λw(s)ds

+
M∧

w=1

αiwζw(t − τw(t))−
M∧

w=1

αiwλw(t − τw(t))

+
M∨

w=1

βiwζw(t − τw(t))−
M∨

w=1

βiwλw(t − τw(t))

+ ξiDα−βei(t) + ũi(t), i = 1, 2, . . . , M.

(8)
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Definition 4. The DS (5) and RS (7) are said to be synchronized within a fixed time Tmax if, with
the controllers uw(t), ũw(t), there exists a settling time function T(∆0(t)) > t0 such that

lim
t→T(∆0(t))

∥pw(t)− xw(t)∥ = lim
t→T(∆0(t))

∥qw(t)− yw(t)∥ = 0

∥pw(t)− xw(t)∥ = ∥qw(t)− yw(t)∥ = 0, ∀t > T(∆0(t))

T(∆0(t)) ≤ Tmax, ∀∆0(t) ∈ Cm[−τ, t0],

where w = 1, 2, . . . , M, and ∥ · ∥ indicates the Euclidean norm.

Next, let us introduce some lemmas, which will be utilized in the following proof.

Lemma 1 ([41]). Let xw, yw, αiw, βiw ∈ R, hw : R → R be a continuous function for i, w = 1, 2, . . . , M.
Then, we have∣∣∣∣ M∧

w=1

αiwhw(xw)−
M∧

w=1

αiwhw(yw)

∣∣∣∣ ≤ M

∑
w=1

|αiw||hw(xw)− hw(yw)|

∣∣∣∣ M∨
w=1

βiwhw(xw)−
M∨

w=1

βiwhw(yw)

∣∣∣∣ ≤ M

∑
w=1

|βiw||hw(xw)− hw(yw)|

Lemma 2 ([41]). If a1, a2, . . . , aM ≥ 0, µ > 1, 0 < ν ≤ 1, then

M

∑
w=1

aµ
w ≥ M1−µ

( n

∑
w=1

aw

)µ

,
M

∑
w=1

aν
w ≥

( M

∑
w=1

aM

)ν

Lemma 3 ([42]). Suppose that there exist constants a, b, µ, q > 0, µq > 1 and a positive unbounded
function V(x(t)) : Rn → R+ ∪ {0} such that

V̇(x(t)) ≤ −
(

aVµ(x(t)) + b
)q

, ∀x(t) ∈ Rn\{0}

Then, we have V(x(t)) = 0, t ≥ T(x(t0)) with the settling time bounded by

T(x(t0)) ≤ Tmax =
1
bq

(
b
a

) 1
µ
(

1 +
1

µq − 1

)
Lemma 4 ([43]). Suppose that x(t) ∈ C1[0, T]. Then,

Dβ1 Dβ2 x(t) = Dβ1+β2 x(t),

where β1, β2 > 0 and β1 + β2 ≤ 1; T is a positive constant.

3. FDTS of the Drive FCIFNNs and Response FCIFNNs

In this section, we propose novel criteria for achieving FDTS between DS and RS.
According to Definition 4, the fixed time synchronization problem between the driving
system (5) and the response system (7) can be equivalent to the fixed time stability problem
of the error system (8). To achieve this goal, the designed controller is as follows.
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ui(t) = −ki∆i(t)− sign
(

∆i(t)
)(

γi + c
(

Dβ−1∣∣∆i(t)
∣∣)µ

+ ωi
∣∣∆i(t − τi(t))

∣∣)
ũi(t) = −ηi1∆̃i(t)− sign

(
∆̃i(t)

)(
ηi2 + c

(
Dα−β−1∣∣∆̃i(t)

∣∣)µ)
−

M

∑
w=1

diw

∫ t

t−τ0(t)
ζw(s)ds +

M

∑
w=1

diw

∫ t

t−τ0(t)
λw(s)ds

− ξiDα−β∆i(t), i = 1, 2, . . . , M,

(9)

where 0 < µ < 1, c > 0, andki, γi, ωi, ηi1, andηi2 are the control parameters.

Theorem 1. Under Assumptions 1 and 2 and with controller (9), the DS (5) and RS (7) can achieve
FDTS if the following conditions are met.

ηi1 ≥ 1 − θi

ηi2 ≥
M

∑
w=1

(
|αiw|+ |βiw|+ |ciw|

)
Qw

ki ≥
M

∑
w=1

|cwi|Li + δi + ξi

ωi ≥
M

∑
w=1

(
|αiw|+ |βiw|

)
Li

(10)

for i = 1, 2, . . . , M. Furthermore, the Tmax can be calculated using Equation (11).

Tmax =
1
ϖ

(
ϖ

ρ

) 1
µ
(

1 +
1

µ − 1

)
, (11)

where ρ = cM1−µ and ϖ = ∑M
i=1 γi.

Proof. The LF is selected as follows:

V(t) =
M

∑
i=1

Dβ−1∣∣∆i(t)
∣∣+ M

∑
i=1

Dα−β−1∣∣∆̃i(t)
∣∣ (12)

Based on Lemma 4, we derive the following results.

V̇(t) =

(
M

∑
i=1

Dβ−1∣∣∆i(t)
∣∣)′

+

(
M

∑
i=1

Dα−β−1∣∣∆̃i(t)
∣∣)′

= DβD1−β

(
M

∑
i=1

Dβ−1∣∣∆i(t)
∣∣)+ Dα−βD1−β+β

(
M

∑
i=1

Dα−β−1∣∣∆̃i(t)
∣∣)

= Dβ

(
M

∑
i=1

D1−βDβ−1∣∣∆i(t)
∣∣)+ Dα−β

(
M

∑
i=1

D1−β+βDα−β−1∣∣∆̃i(t)
∣∣)

=
M

∑
i=1

Dβ
∣∣∆i(t)

∣∣+ M

∑
i=1

Dα−β
∣∣∆̃i(t)

∣∣
≤

M

∑
i=1

sign
(
∆i(t)

)
Dβ∆i(t) +

M

∑
i=1

sign
(
∆̃i(t)

)
Dα−β∆̃i(t)
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which yields that

V̇(t) ≤
M

∑
i=1

sign
(
∆i(t)

)(
− ξi∆i(t) + ∆̃i(t) + ui(t)

)
+

M

∑
i=1

sign
(
∆̃i(t)

)(
− θi∆̃i(t) + δi∆i(t)

+
M

∑
w=1

ciwζw(t)−
M

∑
w=1

ciwλw(t) +
M

∑
w=1

diw

∫ t

t−τ0(t)
ζw(s)ds −

M

∑
w=1

diw

∫ t

t−τ0(t)
λw(s)ds

+
M∧

w=1

αiwζw(t − τw(t))−
M∧

w=1

αiwλw(t − τw(t))

+
M∨

w=1

βiwζw(t − τw(t))−
M∨

w=1

βiwλw(t − τw(t))

+ ξiDα−β∆i(t) + ũi(t)
)

Substituting (9) into above formula, we obtain

V̇(t) ≤
M

∑
i=1

sign
(
∆i(t)

)(
− ξi∆i(t) + ∆̃i(t)− ki∆i(t)− sign

(
∆i(t)

)(
γi + c

(
Dβ−1∣∣∆i(t)

∣∣)µ

+ ωi
∣∣∆i(t − τi(t))

∣∣))+
M

∑
i=1

sign
(
∆̃i(t)

)(
− θi∆̃i(t) + δi∆i(t) +

M

∑
w=1

ciwζw(t)

−
M

∑
w=1

ciwλw(t) +
M

∑
w=1

diw

∫ t

t−τ0(t)
ζw(s)ds −

M

∑
w=1

diw

∫ t

t−τ0(t)
λw(s)ds

+
M∧

w=1

αiwζw(t − τw(t))−
M∧

w=1

αiwλw(t − τw(t))

+
M∨

w=1

βiwζw(t − τw(t))−
M∨

w=1

βiwλw(t − τw(t))

+ ξiDα−β∆i(t)− ηi1∆̃i(t)− sign
(
∆̃i(t)

)(
ηi2

+ c
(

Dα−β−1∣∣∆̃i(t)
∣∣)µ)− M

∑
w=1

diw

∫ t

t−τ0(t)
ζw(s)ds

+
M

∑
w=1

diw

∫ t

t−τ0(t)
λw(s)ds − ξiDα−β∆i(t)

)
which yields that

V̇(t) ≤
M

∑
i=1

[
− ξi − ki + δi

]∣∣∆i(t)
∣∣+ M

∑
i=1

[
1 + θi − ηi1

]∣∣∆̃i(t)
∣∣− M

∑
i=1

ωi
∣∣∆i(t − τi(t))

∣∣
−

M

∑
i=1

c
(

Dβ−1∣∣∆i(t)
∣∣)µ −

M

∑
i=1

(
ηi2 + c

(
Dα−β−1∣∣∆̃i(t)

∣∣)µ)
+

M

∑
i=1

∣∣ M∧
w=1

αiwζw(t − τw(t))−
M∧

w=1

αiwλw(t − τw(t))
∣∣

+
M

∑
i=1

∣∣ M∨
w=1

βiwζw(t − τw(t))−
M∨

w=1

βiwλw(t − τw(t))
∣∣

+
M

∑
i=1

M

∑
w=1

∣∣ciw
∣∣∣∣ζw(t)− λw(t)

∣∣− M

∑
i=1

γi
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Based on Assumption 1, we have

M

∑
i=1

M

∑
w=1

∣∣ciw
∣∣∣∣ζw(t)− λw(t)

∣∣ ≤ M

∑
i=1

M

∑
w=1

∣∣ciw
∣∣(Li

∣∣∆w(t)
∣∣+ Qi

)
=

M

∑
i=1

M

∑
w=1

∣∣cwi
∣∣(Li

∣∣∆i(t)
∣∣+ Qi

)
Using Assumption 1 and Lemma 1, we can easily obtain the desired result.

∣∣∣∣ M∧
w=1

αiwζw(t − τw(t))−
M∧

w=1

αiwλw(t − τw(t))
∣∣∣∣ ≤ M

∑
w=1

∣∣αiw
∣∣∣∣ζw(t − τw(t))− λw(t − τw(t))

∣∣
≤

M

∑
w=1

∣∣αwi
∣∣(Li

∣∣∆w(t − τw(t))
∣∣+ Qi

)
Similarly,

∣∣∣∣ M∨
w=1

βiwζw(t − τw(t))−
M∨

w=1

βiwλw(t − τw(t))
∣∣∣∣ ≤ M

∑
w=1

∣∣βiw
∣∣∣∣ζw(t − τw(t))− λw(t − τw(t))

∣∣
≤

M

∑
w=1

∣∣βwi
∣∣(Li

∣∣∆w(t − τw(t))
∣∣+ Qi

)
Utilizing the aforementioned inequality, we can derive

V̇(t) ≤
M

∑
i=1

[
− ξi − ki + δi +

M

∑
w=1

∣∣cwiLi
∣∣]∣∣∆i(t)

∣∣+ M

∑
i=1

[
1 + θi − ηi1

]∣∣∆̃i(t)
∣∣

+
M

∑
i=1

( M

∑
w=1

(∣∣αwi
∣∣+ ∣∣βwi

∣∣)Li − ωi

)∣∣∆i(t − τi(t))
∣∣

+
M

∑
i=1

( M

∑
w=1

(∣∣αiw
∣∣+ ∣∣βiw

∣∣+ ∣∣ciw
∣∣)Qi − ηi2

)
−

M

∑
i=1

γi

−
M

∑
i=1

c
(

Dβ−1∣∣∆i(t)
∣∣)µ

−
M

∑
i=1

c
(

Dα−β−1∣∣∆̃i(t)
∣∣)µ

From (10) and Lemma 2, we obtain

V̇(t) ≤ −
M

∑
i=1

c
(

Dβ−1∣∣∆i(t)
∣∣)µ

−
M

∑
i=1

c
(

Dα−β−1∣∣∆̃i(t)
∣∣)µ

−
M

∑
i=1

γi

≤ −cM1−µ

( M

∑
i=1

Dβ−1∣∣∆i(t)
∣∣+ M

∑
i=1

Dα−β−1∣∣∆̃i(t)
∣∣)µ

−
M

∑
i=1

γi

= −ρVµ(t)− ϖ,

where ρ = cM1−µ and ϖ = ∑M
i=1 γi. Therefore, the FDTS between the DS (5) and RS (7) can

be achieved by Lemma 3. In addition, the settling time Tmaxcan be calculated by (11).

Remark 3. In Theorem 1, the FDTS of FCIFNNs with MTD is achieved by designing an appropriate
controller. However, ui(t) and ũi(t) are difficult to adapt. The two distributed time-delay terms in
ũi(t) satisfy some special conditions. In order to enhance the feasibility of our results, we will refine
the applicable laws ũi(t).
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The state feedback controller is designed as follows.

ui(t) = −ki∆i(t)− sign
(

∆i(t)
)(

γi + c
(

Dβ−1∣∣∆i(t)
∣∣)µ

+ ωi
∣∣∆i(t − τi(t))

∣∣)
ũi(t) = −ηi1∆̃i(t)− sign

(
∆̃i(t)

)(
ηi2 + c

(
Dα−β−1∣∣∆̃i(t)

∣∣)µ)
− sign

(
∆̃i(t)

) M

∑
w=1

Li
∣∣diw

∣∣ ∫ t

t−τ0(t)

∣∣∆w(s)
∣∣ds − ξiDα−β∆i(t), i = 1, 2, . . . , M,

(13)

where 0 < µ < 1, c > 0. The control parameters are denoted by ki, γi, ωi, ηi1, ηi2. Conse-
quently, we establish the following theorem.

Theorem 2. Under Assumptions 1 and 2 and with controller (9), (5) and (7) can achieve fixed-time
synchronization if the aforementioned conditions are met.

ηi1 ≥ 1 − θi

ηi2 ≥
M

∑
w=1

(
|αiw|+ |βiw|+ |ciw|+ τ|diw|

)
Qi

ki ≥
M

∑
w=1

|cwi|Li + δi + ξi

ωi ≥
M

∑
w=1

(
|αiw|+ |βiw|

)
Li

(14)

for i = 1, 2, . . . , M. Furthermore, the settling time Tmax can be calculated by the following formula

Tmax =
1
ϖ

(
ϖ

ρ

) 1
µ
(

1 +
1

µ − 1

)
, (15)

where ρ = cM1−µ and ϖ = ∑M
i=1 γi.

Proof. The proof follows a similar process as Theorem 1, so we will not provide a detailed
proof here.

4. Numerical Simulations

In this section, two numerical examples are presented to validate the effectiveness of
Theorems 1 and 2.

Example 1. Considering the following FCIFNNs with the drive system

Dβxi(t) = −ξixi(t) + yi(t)

Dα−βyi(t) = −θiyi(t) + δixi(t) +
2

∑
w=1

ciwλw(t) +
2

∑
w=1

diw

∫ t

t−τ0(t)
λw(s)ds

+
2

∑
w=1

giwvw +
2∧

w=1

Tiwνw +
2∧

w=1

αiwλw(t − τw(t)) +
2∨

w=1

Siwνw

+
m∨

w=1

βiwλw(t − τw(t)) + ξiDα−βxi(t) + Ii, i = 1, 2,

(16)
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The following is a description of the response system.

Dβ pi(t) = −ξi pi(t) + qi(t) + ui(t)

Dα−βqi(t) = −θiqi(t) + δi pi(t) +
2

∑
w=1

ciwζw(t) +
2

∑
w=1

diw

∫ t

t−τ0(t)
ζw(s)ds

+
2

∑
w=1

giwvw +
2∧

w=1

Tiwνw +
2∧

w=1

αiwζw(t − τw(t)) +
2∨

w=1

Siwνw

+
2∨

w=1

βiwζw(t − τw(t)) + ξiDα−β pi(t) + Ii + ũi(t), i = 1, 2,

(17)

where

hi( f ) =

{
tanh( f ) + 0.8, f ≥ 0,

tanh( f )− 0.8, f ≤ 0,
i = 1, 2.

It is not difficult to verify that the activation functions meet Assumptions 1 and 2 with
Li = 4, Qi = 5, i = 1, 2. The system parameters are given as follows.

α = 0.95, β = 0.85;

a1 = 3, a2 = 2, b1 = b2 = 1, ξ1 = 0.2, ξ2 = 0.1;

c11 = c21 = −0.1, c12 = 0.3, c22 = 0.2

α11 = α12 = α21 = α22 = −0.01;

β11 = β12 = β21 = β22 = 0.1;

d11 = d12 = d21 = d22 = 0;

I1 = I2 = 0, τi(t) = 0.7 + 0.3 cos(2t), i = 0, 1, 2.

The following controller is suggested

ui(t) = −ki∆i(t)− sign
(

∆i(t)
)(

γi + c
(

Dβ−1∣∣∆i(t)
∣∣)µ

+ ωi
∣∣∆i(t − τi(t))

∣∣)
ũi(t) = −ηi1∆̃i(t)− sign

(
∆̃i(t)

)(
ηi2 + c

(
Dα−β−1∣∣∆̃i(t)

∣∣)µ)
−

2

∑
w=1

diw

∫ t

t−τ0(t)
ζw(s)ds +

2

∑
w=1

diw

∫ t

t−τ0(t)
λw(s)ds

− ξiDα−β∆i(t), i = 1, 2,

(18)

The controller parameter values chosen are as follows.{
k1 = k2 = 2, ω1 = ω2 = 1, c = 4;

η11 = η21 = 2, γ1 = γ2 = 2, µ = 1.5.

The initial values are chosen as{
x1(t) = 2, x2(t) = 3, p1(t) = 4, p2(t) = 1;

y1(t) = 4, y2(t) = 1, q1(t) = 2, q2(t) = 4.

It is straightforward to confirm that all the conditions of Theorem 1 are met. Thus, RS (17)
can synchronize with the DS (16) in a fixed time. In addition, according to Theorem 1, Tmax
can be computed using the following formula.

Tmax =
1
ϖ

(
ϖ

ρ

) 1
µ
(

1 +
1

µ − 1

)
= 0.9449
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The simulation results are depicted in Figures 1–5. The simulation results confirm the
validity of the main findings regarding fixed-time synchronization established in this paper.
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Figure 1. State trajectories of x1(t) and p1(t).
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Figure 2. State trajectories of x2(t) and p2(t).

Example 2. Considering the following FCIFNNs with the drive system

Dβxi(t) = −ξixi(t) + yi(t)

Dα−βyi(t) = −θiyi(t) + δixi(t) +
2

∑
w=1

ciwλw(t) +
2

∑
w=1

diw

∫ t

t−τ0(t)
λw(s)ds

+
2

∑
w=1

giwvw +
2∧

w=1
Tiwνw +

2∧
w=1

αiwλw(t − τw(t)) +
2∨

w=1
Siwνw

+
2∨

w=1
βiwλw(t − τw(t)) + ξiDα−βxi(t) + Ii, i = 1, 2,

(19)

and the corresponding response system described as
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Dβ pi(t) = −ξi pi(t) + qi(t) + ui(t)

Dα−βqi(t) = −θiqi(t) + δi pi(t) +
2

∑
w=1

ciwζw(t) +
2

∑
w=1

diw

∫ t

t−τ0(t)
ζw(s)ds

+
2

∑
w=1

giwvw +
2∧

w=1
Tiwνw +

2∧
w=1

αiwζw(t − τw(t)) +
2∨

w=1
Siwνw

+
2∨

w=1
βiwζw(t − τw(t)) + ξiDα−β pi(t) + Ii + ũi(t), i = 1, 2,

(20)

where

hi( f ) =

{
tanh( f ) + 0.5, f ≥ 0,

tanh( f )− 0.5, f ≤ 0,
i = 1, 2.
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Figure 3. State trajectories of y1(t) and q1(t).

0 0.5 1 1.5 2
1

2

3

4

5

6

7

Time(Second)

 

 

y
2
(t)

q
2
(t)

Figure 4. State trajectories of y2(t) and q2(t).
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Figure 5. Synchronization errors of ∆1(t), ∆2(t), ∆̃1(t), ∆̃2(t) between systems (16) and (17).

It is not difficult to verify that the activation functions meet Assumptions 1 and 2 with
Li = Qi = 1, i = 1, 2. The system parameters are chosen as follows.

α = 0.90, β = 0.45;

a1 = a2 = 3, b1 = b2 = 1, ξ1 = −0.1, ξ2 = −0.2;

c11 = c21 = −0.2, c12 = c22 = 0.2

α11 = α12 = α21 = α22 = −0.1;

β11 = β12 = β21 = β22 = 0.5;

d11 = d21 = −1, d12 = d22 = 1;

I1 = I2 = 0, τi(t) = 0.7 + 0.3 cos(2t), i = 0, 1, 2.

The following controller is suggested

ui(t) = −ki∆i(t)− sign
(

∆i(t)
)(

γi + c
(

Dβ−1∣∣∆i(t)
∣∣)µ

+ ωi
∣∣∆i(t − τi(t))

∣∣)
ũi(t) = −ηi1∆̃i(t)− sign

(
∆̃i(t)

)(
ηi2 + c

(
Dα−β−1∣∣∆̃i(t)

∣∣)µ)
− sign

(
∆̃i(t)

) 2

∑
w=1

Lw
∣∣diw

∣∣ ∫ t

t−τ0(t)

∣∣∆w(s)
∣∣ds − ξiDα−β∆i(t), i = 1, 2.

(21)

where {
k1 = 2, k2 = 2, ω1 = 1.2, ω2 = 0.8, c = 16;

η11 = 2, η21 = 3, γ1 = 2, γ2 = 3, µ = 1.5.

The initial values are chosen as{
x1(t) = 5, x2(t) = 3, p1(t) = −5, p2(t) = −2;

y1(t) = −4, y2(t) = 3, q1(t) = 2, q2(t) = 6.

It is easy to verify that all the conditions of Theorem 2 are satisfied. Thus, RS (20) can
synchronize with the DS (19) in a fixed time. Furthermore, according to Theorem 2, Tmax
can be computed using the following formula.

Tmax =
1
ϖ

(
ϖ

ρ

) 1
µ
(

1 +
1

µ − 1

)
= 0.3481

The simulation results are shown in Figures 6–10. The simulation implies that the main
result of FDTS established in the present paper is correct.
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Figure 6. State trajectories of x1(t) and p1(t).
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Figure 7. State trajectories of x2(t) and p2(t).
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Figure 8. State trajectories of y1(t) and q1(t).
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Figure 9. State trajectories of y2(t) and q2(t).

The theoretical results are consistent with the simulation results, indicating that the
proposed method is effective.
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Figure 10. Synchronization errors of ∆1(t), ∆2(t), ∆̃1(t), ∆̃2(t) between systems (19) and (20).

5. Application to Image Encryption

In this section, the developed fixed-time synchronization result of FCIFNNs with MTD
derived from Theorem 1 is applied to the image encryption issue. The same parameters in
Example 1 are chosen. For a color picture Pic of size m × n × 3, the encryption algorithms
proposed in [44,45] are used. To demonstrate the effectiveness of the encryption algorithm,
a color picture named Lina is applied to show the validity of the presented encryption
algorithm; see Figure 11.

The histograms of red, green, and blue channels for the original Lena image and
the encrypted Lena image are illustrated in Figure 12. From Figure 11, it can be seen
that through the proposed encryption algorithm, the encrypted image can be successfully
decrypted after the system reaches synchronization. In addition, the histogram of the
encrypted image in Figure 12 shows almost uniform distribution. The results indicate that
encryption algorithms enhance the randomness of the color distribution in the original
image, thereby improving the security of the encryption algorithm.
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(a) Original image (b) encrypted image (c) decrypted image

Figure 11. Original, encrypted, and decrypted images of Lena with the encryption algorithm.
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Figure 12. Histograms of the original Lena and the encrypted Lena.

6. Conclusions

This paper investigates the FDTS problem for a class of FCIFNNs with MTD. Using
the theory of finite-time stability and Lyapunov functional analysis techniques, we have
derived some new sufficient conditions for FDTS in drive–response systems. Finally,
we present two simulation examples and their practical application in image encryption,
demonstrating the effectiveness of the proposed approach. In the future, we plan to extend
the results of this paper to more general neural networks and design more effective control
strategies. This is a challenging topic.
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