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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for
coronavirus disease-19 (COVID-19). This virus has caused a global pandemic, marked by several mu-
tations leading to multiple waves of infection. This paper proposes a comprehensive and integrative
mathematical approach to the third wave of COVID-19 (Omicron) in the Kingdom of Saudi Arabia
(KSA) for the period between 16 December 2022 and 8 February 2023. It may help to implement a
better response in the next waves. For this purpose, in this article, we generate a new mathematical
transmission model for coronavirus, particularly during the third wave in the KSA caused by the
Omicron variant, factoring in the impact of vaccination. We developed this model using a fractal-
fractional derivative approach. It categorizes the total population into six segments: susceptible,
vaccinated, exposed, asymptomatic infected, symptomatic infected, and recovered individuals. The
conventional least-squares method is used for estimating the model parameters. The Perov fixed
point theorem is utilized to demonstrate the solution’s uniqueness and existence. Moreover, we in-
vestigate the Ulam–Hyers stability of this fractal–fractional model. Our numerical approach involves
a two-step Newton polynomial approximation. We present simulation results that vary according to
the fractional orders (γ) and fractal dimensions (θ), providing detailed analysis and discussion. Our
graphical analysis shows that the fractal-fractional derivative model offers more biologically realistic
results than traditional integer-order and other fractional models.

Keywords: COVID-19; real data; fractal–fractional derivative; stability analysis; simulations

1. Introduction

The onset of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
in late 2019 marked the beginning of a global pandemic that profoundly impacted all aspects
of human society. Coronavirus disease-19 (COVID-19) has caused widespread illness, loss
of life, economic disruptions, and a significant strain on healthcare systems worldwide.
Typical symptoms include fever, cough, fatigue, and difficulty breathing, with the disease
being more severe for the elderly and those with underlying chronic conditions.

Mathematical modeling has been instrumental in understanding and combating the
pandemic. Among the various models, fractal–fractional modeling stands out, shedding
light on the intricate transmission patterns of COVID-19. Rooted in fractal geometry and
fractional calculus, this approach captures the self-similar patterns in the virus’s spread. It
provides a mathematical framework mirroring the nonlinearity and variability observed in
actual epidemic data [1–3]. Multiple mathematical frameworks have been developed and
scrutinized to understand COVID-19 transmission globally. For instance, Ref. [4] proposed
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a model incorporating lock-down measures for COVID-19. Additionally, the impact of
unidentified cases was examined in [5] through a distinct mathematical framework. Specific
preventive strategies’ influence on the trajectory and management of COVID-19 in Pakistan
was detailed in [6]. Furthermore, Ref. [7] considered the environmental dissemination
of the virus in a transmission model focused on a Saudi Arabian case study. Notably,
the majority of COVID-19 models rely on integer-order derivatives, which may sometimes
inadequately represent certain realistic features.

To overcome these challenges, fractional-order derivatives serve as a valuable tool
for understanding disease dynamics, providing additional crucial insights. Models using
fractional-order mathematics inherently possess memory properties, offering a more suitable
approach to characterize epidemic models. The application of fractional-order derivatives
in disease dynamics has been explored in works such as [8,9] and related studies.

In recent times, a surge in the development of fractional-order mathematical models
aimed at unraveling the dynamic behaviors of the emerging COVID-19 pandemic has been
observed. For instance, Ref. [10] presented a COVID-19 model utilizing Caputo fractional
operators, focusing on pandemic data from China. Additionally, a model centered on the
fractional Atangana–Baleanu operator was introduced to depict the spread of COVID-19.
The analysis prompted a discussion on the represented transmission dynamics and their
implications for societal infection patterns [11].

In [12], a model based on the SEIR compartment, utilizing non-singular derivatives,
examined the progression of COVID-19 in India. The q-Homotopy analysis transform
method was employed for solution derivation. Additionally, Ref. [13] introduced dynamic
and numerical approximations for an arbitrary-order COVID-19 system, considering three
specific derivative operators. Furthermore, Ref. [14] advanced a fractional model within
the Atangana–Baleanu–Caputo context, emphasizing the advantages of non-integer orders
over integer orders.

This paper aims to explore the transmission dynamics of COVID-19 in Saudi Ara-
bia by employing a compartmental model grounded in Caputo fractional-order deriva-
tives. The progression of infectious individuals is categorized into reported cases (iden-
tified through COVID-19 testing) and unreported cases (those who have not undergone
testing). As a result, the initial SAIR (Susceptible-Exposed-Infected-Recovered) model
with vaccination evolves into SVAIuIrR (Susceptible-Vaccinated-Exposed-Asymptomatic
infected-Symptomatic infected-Recovered) (refer to Figure 1 for the virus’s dynamics in
each compartment). Utilizing actual data from Saudi Arabia, we estimate the parameter
values for the suggested mathematical model of COVID-19.

Figure 1. Flow diagram showing the transmission between different compartments.
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The paper’s structure is outlined as follows: Section 2 presents preliminary findings
utilized throughout the paper. Section 3 details the Caputo fractional-order model and
the estimation methodology. Section 4 delves into fundamental model analysis, including
solution existence and uniqueness, the basic reproduction number indicating disease
transmissibility, and the stability of model equilibria. Section 5 introduces the numerical
scheme for the FF model. Numerical simulations and model discussions are covered in
Section 6, and Section 7 concludes with final observations.

2. Preliminary Results

This section gives some basic definitions and fundamental concepts related to frac-
tional and fractal–fractional calculus and generalized Banach spaces; for more details, we
suggest Refs. [1,15–17].

Definition 1. Recall that the Riemann–Louiville fractional integral of order γ of a function
f : R+ −→ R is defined by

Iγ
0,t f (t) =

1
Γ(γ)

∫ t

0
(t − s)γ−1 f (s)ds, (1)

where γ ∈ R+ is the order of integration, and Γ(γ) =
∫ +∞

0 e−ttγ−1dt is the Gamma function.

Definition 2. The Caputo fractional derivatives of order γ ∈ R+ of a function
f : R+ −→ R are defined as

C
0 Dγ

t f (t) =
1

Γ(n − γ)

∫ t

0
(t − s)n−γ−1 f (n)(s)ds (2)

Here, n = [γ] + 1, where [γ] denotes the integer part of γ from the set of positive real
numbers R+.
The Caputo derivative and the Riemann–Liouville integral adhere to the subsequent properties:

1. C
0 Dγ

t (I
γ
0,t f (t)) = f (t);

2. For C
0 Dγ

t (C), where C is an element of the real numbers R, the result is zero;

3. Iγ
0,t(

C
0 Dγ

t f (t)) = f (t)−
n−1

∑
k=0

f (k)(0)
k!

tk;

4. Provided that γ satisfies 0 < γ < 1, it follows that Iγ
0,t(

C
0 Dγ

t f (t)) = f (t)− f (0).

Definition 3 ([15]). Consider a function ϱ that is differentiable within the open interval (a, b).
Assuming ϱ possesses fractal differentiability of order θ over this interval, we can then define its
fractal–fractional derivative (abbreviated as FF derivative) of order γ following the Caputo approach,
characterized by a power law.

C
a Dγ,θ

t ϱ(t) =
1

Γ(n − γ)

∫ t

a
(t − τ)n−γ−1 dnϱ(τ)

dtθ
dτ n − 1 < γ, θ ≤ n, n ∈ N. (3)

where
dϱ(t)
dtθ

= lim
s→t

ϱ(s)− ϱ(t)
sθ − tθ

.

Lemma 1. Equation (3) can be expressed in the following manner:

C
0 Dγ,θ

t ϱ(t) = C
0 Dγ

t ϱ(t)
1

θtθ−1 , where, n = 1, a = 0.

The Perov fixed point theorem is used to demonstrate the existence and the uniqueness.
To proceed, we shall explore several key topics from generalized Banach spaces that are
linked to this theorem.
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Definition 4. Let E be a vector space over K = R or C. A generalized norm on E is a map:

∥ · ∥G : E −→ [0,+∞)n

℘ 7→ ∥℘∥G =


∥℘∥1

...

∥℘∥n

,

with the following characteristics:
(i) For all ℘ ∈ E , if ∥℘∥G = 0Rn

+
, then ℘ = 0E ;

(ii) ∥a℘∥G = |a|∥℘∥G for all ℘ ∈ E and a ∈ K;
(iii) ∥℘+ ω∥G ≼ ∥℘∥G + ∥ω∥G for all ℘, ω ∈ E .
The pair (E , ∥ · ∥G) is called a generalized normed space. Moreover, (E , ∥ · ∥G) is called a generalized
Banach space (in short, GBS) if the vector-valued metric space generated by its vector-valued metric
δG(℘1,℘2) = ∥℘1 − ℘2∥G is complete.

Definition 5. A matrix Υ belonging to the set Mn×n(R+) is described as converging to zero if

Υm −→ On, as m −→ ∞,

where On is denoted for the zero n × n matrix.

Definition 6. Given a generalized metric space (E , δG) and an operator N mapping E onto
itself, the operator N is defined as a Υ-contraction. This is characterized by a matrix Υ in the set
Mn×n(R+), which converges to the zero matrix On. It holds that for any elements ϱ, v in E ,
the following inequality is satisfied:

δG(N(ϱ), N(v)) ≼ ΥδG(ϱ, v).

The Perov fixed point theorem, which is an extension of the Banach contraction
principle, follows.

Theorem 1 ([17]). Let E be a complete generalized metric space and let N : E −→ E be an
Υ-contraction operator. Then, N has a unique fixed point in E .

3. Mathematical Model Description

To formulate a mathematical model for the spread of coronavirus, considering the
impact of vaccination, we divide the total population N(t) into six subclasses: susceptible
S(t), vaccinated V(t), exposed A(t), asymptomatic infected Iu(t), symptomatic infected
Ir(t), and recovered R(t). The susceptible class is generated by newborn babies at a rate
of Λ. The number of susceptible individuals is decreased on the one hand by transmission
to the exposed class at the rate ς(Iu+ϵIr)

N , where ς is the effective contact rate with infected
people and ϵ is the coefficient of symptomatic individuals, and on the other hand by
vaccination at the rate ωV and natural mortality m, while it increases through the migration
of both vaccinated and recovered people who lose immunity at the rates ωS and ω2,
respectively. The group of exposed people grows by acquiring susceptible and vaccinated
humans who have been in contact with infected individuals, while it decays by losing
exposed people to the symptomatic and asymptomatic infected subclasses at the rates of
ρσ and ρ(1 − σ), respectively. People displaying clear signs of illness are transmitted to the
recovery group at a rate vu, while they die naturally or due to the coronavirus illness at
the rates m and d1, respectively. Conversely, asymptomatic people become recovered at
the rate vr and die due to the disease at the rate d2. Based on the above discussions and
diagram (Figure 1):
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Thus, the mathematical model is represented by the following system of differen-
tial equations:

dS
dt

= Λ + ω2R− ς(Iu + ϵIr)

N
S − (ωV + m)S + ωSV ,

dV
dt

= ωVS − κς(Iu + ϵIr)

N
V − (ωS + m)V ,

dA
dt

=
ς(Iu + ϵIr)

N
S +

ςκ(Iu + ϵIr)

N
V − (ρ + m)A,

dIu

dt
= ρ(1 − σ)A− (νu + d1 + m)Iu,

dIr

dt
= ρσA− (νr + d2 + m)Ir,

dR
dt

= νuIu + νrIr − (ω2 + m)R.

(4)

Furthermore, the initial conditions considered are as follows:

S(0) = S0 ≥ 0, V(0) = V0 ≥ 0, A(0) = A0 ≥ 0, Iu(0) = Iu0 ≥ 0, Ir(0) = Ir0 ≥ 0, (5)

R(0) = R0 ≥ 0.

Parameter Estimation Procedure

The method for estimating the model parameters is detailed in this section of the
article. The conventional least-squares method is used for this objective. This method has
been used in several recent publications and is employed to determine the optimal fit for
a collection of data points by reducing the total of the offsets or residuals of points from
the contoured curve [6,9,18]. Sources cited in [19] were used to determine the birth rate
Λ and the natural mortality rate m. Figure 2 illustrates the curve of the model fit to the
actual data points, while Table 1 enumerates the estimated and fitted parameters. The most
crucial threshold parameter, the basic reproduction number, has an estimated numerical
value of 1.20.

Table 1. Definitions of parameters used in model (4) and their values in numerical simulations.

Symbol Definition Value Reference

Λ Birth rate in susceptible class 1273.94 Estimated [19]
ω2 Natural immunity loss of the recovered individuals 0.0458 Fitted
ωV Vaccine rate of healthy individuals 0.0428 Fitted
ωS Dwindling vaccination immunity rate 0.0100 Fitted
ς Effective contact rate 0.8900 Fitted
ϵ Coefficient of symptomatic individuals 0.0020 Fitted
m Natural mortality rate 0.7989 Estimated [19]
k Vaccination efficacy 0.2851 Fitted
ρ Incubation time period 0.8000 Fitted
σ Proportion joining the class symptomatically infected 0.4240 Fitted
vu Recovery rate of asymptomatic people 0.3380 Fitted
vr Recovery of symptomatic people 0.3032 Fitted
d1 Death rate due to coronavirus in the asymptomatic class 1.1140 × 10−4 Fitted
d2 Death rate due to coronavirus in the symptomatic class 0.0011 Fitted



Fractal Fract. 2024, 8, 95 6 of 28

                                         Days

0

0.5

1

1.5

2

2.5

C
o

ro
rn

a
  

In
c
id

e
n

c
e

 D
a

ta
 i
n

 S
a

u
d

i 
A

ra
b

ia

105

 Incidence Data

Model fit

16/12/2022 21/01/2023 08/02/2023

Figure 2. Curve fitted (solid blue line) to the confirmed infected cases in the KSA in the period
between 16 December 2022 and 8 February 2023.

4. Mathematical Model Description by Fractal–Fractional Derivative

C
0 Dγ,θ

t S = Λ + ω2R− ς(Iu + ϵIr)

N
S − (ωV + m)S + ωSV ,

C
0 Dγ,θ

t V = ωVS − κς(Iu + ϵIr)

N
V − (m + ωS )V ,

C
0 Dγ,θ

t A =
ς(Iu + ϵIr)

N
S +

ςκ(Iu + ϵIr)

N
V − (ρ + m)A,

C
0 Dγ,θ

t Iu = ρ(1 − σ)A− (νu + d1 + m)Iu,

C
0 Dγ,θ

t Ir = ρσA− (νr + d2 + m)Ir,

C
0 Dγ,θ

t R = νuIu + νrIr − (ω2 + m)R.

(6)

The following initial conditions apply:
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S(0) = S0 ≥ 0, V(0) = V0 ≥ 0, A(0) = A0 ≥ 0, Iu(0) = Iu0 ≥ 0, Ir(0) = Ir0 ≥ 0, (7)

R(0) = R0 ≥ 0.

The system (6) and (7) can be rewritten in the following form:{
C
0 Dγ,θ

t Y(t) = F (Y(t)),
Y(0) = Y0,

0 < t < T < ∞, (8)

Here, the vector Y(t) = (S(t),V(t),A(t), Iu(t), Ir(t),R(t))T , and the operator F is
defined as follows:

F (Y(t)) =



F1(Y(t))

F2(Y(t))

F3(Y(t))

F4(Y(t))

F5(Y(t))

F6(Y(t))



=



Λ + ω2R− ς(Iu + ϵIr)

N
S − (ωV + m)S + ωSV

ωVS − κς(Iu + ϵIr)

N
V − (m + ωS )V

ς(Iu + ϵIr)

N
S +

κς(Iu + ϵIr)

N
V − (ρ + m)A

ρ(1 − σ)A− (m + νu + d1)Iu

ρσA− (νr + m + d2)Ir

νuIu + νrIr − (ω2 + m)R


, (9)

The initial condition is

Y(0) = (S(0),V(0),A(0), Iu(0), Ir(0),R(0)). (10)

4.1. Existence and Uniqueness Results

Next, we convert the system (6) into the following integral equation by using initial
conditions (10) and Lemma 1:

Y(t) = Y(0) +
θ

Γ(γ)

∫ t

0

(t − s)γ−1

s1−θ
×F (Y(s))ds. (11)

The existence and uniqueness of the solution of systems (6) and (7) are discussed in the
generalized Banach space E = ∏6

i=1 C([0, T],R) endowed with the vector-valued norm
∥.∥G defined by

∥.∥G :E −→ R6
+

Y 7→ ∥Y∥G =



∥S∥∞

∥V∥∞

∥A∥∞

∥Iu∥∞

∥Ir∥∞

∥R∥∞


.

Theorem 2. Assume the existence of a vector, each of whose components is positive, that satisfies
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Υ =



Υ1

Υ2

Υ3

Υ4

Υ5

Υ6



≽
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)



∣∣Λ + ω2Υ6 −
ς(Υ4 + ϵΥ5)

N
Υ1 − (ωV + m)Υ1 + ωSΥ2

∣∣
∣∣ωVΥ1 −

κς(Υ4 + ϵΥ5)

N
Υ2 − (m + ωS )Υ2

∣∣
∣∣ ς(Υ4 + ϵΥ5)

N
Υ1 +

ςκ(Υ4 + ϵΥ5)

N
Υ2 − (ρ + m)Υ3

∣∣
∣∣ρ(1 − σ)Υ3 − (νu + d1 + m)Υ4

∣∣
∣∣ρσΥ3 − (νr + d2 + m)Υ5

∣∣
∣∣νuΥ4 + νrΥ5 − (ω2 + m)Υ6

∣∣



, (12)

In addition, if the matrix
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
℧ converges to O6, where

℧ =



ς(Υ4 + ϵΥ5)

N
+ ωV + m ωS 0

ϵςΥ1
N

ςΥ1
N

ω2

ωV
κς(Υ4 + ϵΥ5)

N
+ m + ωS 0

κςΥ2
N

ϵκςΥ2
N

0

ς(Υ4 + ϵΥ5)

N
κς(Υ4 + ϵΥ5)

N
ρ + m

(ςΥ1 + κςΥ2)

N
ϵ(ςΥ1 + κςΥ2)

N
0

0 0 ρ(1 − σ) (νr + d2 + m) 0 0

0 0 ρ 0 (νr + d2 + m) 0

0 0 0 νu νr (ω2 + m)



,

and given that H(γ, θ) represents the beta function for γ and θ, the system outlined in (6) and
(7) possesses a unique solution within the specified space ∏6

1 C([0, T]), and the solution holds
for all t > 0 in B̄(Y0, Υ). Here, B̄(Y0, Υ) is the closed ball in the generalized Banach space
∏6

i=1 C([0, T],R).

Proof. It is clear that Y is a solution to the systems (6) and (7) if and only if it satisfies the
following equation:

Y(t) = M(Y(t)), (13)

where M is the operator defined by M : ∏6
i=1 C([0, T],R) →: ∏6

i=1 C([0, T],R),

M(ℜ(t)) = Y(0) +
θ

Γ(γ)

∫ t

0

(t − s)γ−1

s1−θ
×F (ℜ(s))ds. (14)

We begin by proving that the operator defined above satisfies the following inequality:

∥M(ℜ)−Y(0)∥G ≼ Υ ∈ R6. for any ℜ ∈ B̄(Y0, Υ).
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To this end, let ℜ ∈ B̄(Y0, Υ), and we have

∥M(ℜ)−Y(0)∥G = ∥ θ

Γ(γ)

∫ t

0

(t − s)γ−1

s1−θ
×F (ℜ(s))ds∥G

≼
θ

Γ(γ)

∫ t

0

(t − s)γ−1

s1−θ
× ∥F (ℜ)∥Gds

≼

(
θ

Γ(γ)

∫ t

0

(t − s)γ−1

s1−θ

)
LF

≼
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
LF

≼
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
LF

where

LF = sup
ℜ∈B̄(Y0,Υ)

∥F (ℜ)∥G ≼



∣∣Λ + ω2Υ6 −
ς(Υ4 + ϵΥ5)

N
Υ1 − (ωV + m)Υ1 + ωSΥ2

∣∣
∣∣ωVΥ1 −

κς(Υ4 + ϵΥ5)

N
Υ2 − (m + ωS )Υ2

∣∣
∣∣ ς(Υ4 + ϵΥ5)

N
Υ1 +

ςκ(Υ4 + ϵΥ5)

N
Υ2 − (ρ + m)Υ3

∣∣
∣∣ρ(1 − σ)Υ3 − (νu + d1 + m)Υ4

∣∣
∣∣ρσΥ3 − (νr + d2 + m)Υ5

∣∣
∣∣νuΥ4 + νrΥ5 − (ω2 + m)Υ6

∣∣



.

Then, the operator M maps B̄(Y0, Υ) onto itself. Further, let Y = (S ,V ,A, Iu, Ir,R),
Ȳ = (S̄ , V̄ , Ā, Īu, Īr, R̄) ∈ B̄(Y0, Υ), and when t falls within the interval [0, T], we observe

F1(Y(t))−F1(Ȳ(t)) = ω2(R− R̄)−
(

ς(Iu + ϵIr)

N
S − ς(Īu + ϵĪr)

N
S̄
)

− (ωV + m)(S − S̄) + ωS (V − V̄).

Then,

|F1(Y(t))−F1(Ȳ(t))| ≤ ω2|R − R̄|+ ς

N
|(Iu + ϵIr)S − (Īu + ϵĪr)S̄ |

+ (ωV + m)|S − S̄|+ ωS |V − V̄|

≤ ω2|R − R̄|+ ς

N
|IuS − ĪuS̄ |+

ϵς

N
|IrS − ĪrS̄ |

+ (ωV + m − ωS )|S − S̄|.

Also, we have for all ℘1, ℘2, υ1, υ2 ∈ R

|℘1υ1 − ℘2υ2| =
1
2

[
(℘1 − ℘2)(υ1 + υ2) + (℘1 + ℘2)(υ1 − υ2)

]
,

Then,
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|F1(Y(t))−F1(Ȳ(t))| ≤ ω2|R − R̄|+ ς

2N
|(Iu − Īu)(S + S̄) + (Iu + Īu)(S − S̄)|

+
ϵς

2N
|(Ir − Īr)(S + S̄) + (Ir + Īr)(S − S̄)|+ (ωV + m)|S − S̄|

+ ωS |V − V̄|

≤ ω2|R − R̄|+ ςΥ1

N
|Iu − Īu|+

ςΥ5

N
|S − S̄|

+
ϵςΥ1

N
|Ir − Īr|+

ϵςΥ4

N
|S − S̄|+ (ωV + m)|S − S̄|+ ωS |V − V̄|

≤ ω2|R − R̄|+ ςΥ1

N
|Iu − Īu|+

ϵςΥ1

N
|Ir − Īr|

+
( ςΥ5 + ϵςΥ4

N
+ ωV + m

)
|S − S̄|+ ωS |V − V̄|.

By determining the supremum across t, we derive

∥F1(Y)−F1(Ȳ)∥∞ ≤ ω2∥R− R̄∥∞ +
ςΥ1

N
∥Iu − Īu∥∞ +

ϵςΥ1

N
∥Ir − Īr∥∞

+
( ς(Υ5 + ϵΥ4)

N
+ ωV + m

)
∥S − S̄∥∞ + ωS∥V − V̄∥∞.

(15)

In the same manner, we have

|F2(Y(t))−F2(Ȳ(t))| ≤ ωV |S − S̄|+
∣∣∣∣∣κς(Iu + ϵIr)

N
V − κς(Īu + ϵĪr)

N
V̄
∣∣∣∣∣

+ (m + ωS )|V − V̄|

≤ ωV |S − S̄|+ κςΥ2

N
|Iu − Īu|+

ϵκςΥ2

N
|Ir − Īr|

+
(κςΥ5 + κςϵΥ4

N
+ m + ωS

)
|V − V̄|,

Hence,

∥F2(Y)−F2(Ȳ)∥∞ ≤ ωV∥S − S̄∥∞ +
κςΥ2

N
∥Iu − Īu∥∞ +

ϵκςΥ2

N
∥Ir − Īr∥∞

+
(κς(Υ5 + ϵΥ4)

N
+ m + ωS

)
∥V − V̄∥∞,

(16)

|F3(Y(t))−F3(Ȳ(t))| ≤ (ρ + m)|A − Ā|+
∣∣∣∣∣ ς(Iu + ϵIr)

N
S − ς(Īu + ϵĪr)

N
S̄
∣∣∣∣∣

+

∣∣∣∣∣κς(Iu + ϵIr)

N
V − κς(Īu + ϵĪr)

N
V̄
∣∣∣∣∣

≤ (ρ + m)|A − Ā|+ ςΥ1 + κςΥ2

N
|Iu − Īu|

+
ϵ(ςΥ1 + κςΥ2)

N
|Ir − Īr|

+
( ς(Υ5 + ϵΥ4)

N

)
|S − S̄|

+
(κς(Υ5 + ϵΥ4)

N

)
|V − V̄|,
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Then,

∥F3(Y)−F3(Ȳ)∥∞ ≤ (ρ + m)∥A− Ā∥∞ +
ςΥ1 + κςΥ2

N
∥Iu − Īu∥∞

+
ϵ(ςΥ1 + κςΥ2)

N
∥Ir − Īr∥∞

+
( ς(Υ5 + ϵΥ4)

N

)
∥S − S̄∥∞

+
(κς(Υ5 + ϵΥ4)

N

)
∥V − V̄∥∞.

(17)

By the linearity of F4,F5,F6 we can directly find

∥F4(Y)−F4(Ȳ)∥∞ ≤ ρ(1 − σ)∥A− Ā∥∞ + (νu + d1 + m)∥Iu − Īu∥∞, (18)

∥F5(Y)−F5(Ȳ)∥∞ ≤ ρσ∥A− Ā∥∞ + (νr + d2 + m)∥Ir − Īr∥∞, (19)

∥F6(Y)−F6(Ȳ)∥∞ ≤ νu∥Iu − Īu∥∞ + νr∥Ir − Īr∥∞ + (ω2 + m)∥R− R̄∥∞. (20)

By rewriting Equations (15)–(20) in matrix form, we find

∥F (Y)−F (Ȳ)∥G =



∥F1(Y)−F1(Ȳ)∥∞

∥F2(Y)−F2(Ȳ)∥∞

∥F3(Y)−F3(Ȳ)∥∞

∥F4(Y)−F4(Ȳ)∥∞

∥F5(Y)−F5(Ȳ)∥∞

∥F6(Y)−F6(Ȳ)∥∞


≼ ℧



∥S − S̄∥∞

∥V − V̄∥∞

∥A− Ā∥∞

∥Iu − Īu∥∞

∥Ir − Īr∥∞

∥R− R̄∥∞


,

where ℧ is defined in (2). Then, F is a G-Lipschitz operator. By using this fact, we conclude
that for any Y , Ȳ ∈ B̄(Y0, Υ):

∥M(Y)−M(Ȳ)∥G ≼
θ

Γ(γ)

∫ t

0

(t − s)γ−1

s1−θ
× ∥F (Y)−F (Ȳ)∥Gds

≼

(
θ

Γ(γ)

∫ t

0

(t − s)γ−1

s1−θ

)
℧∥Y − Ȳ∥G

≼
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
℧∥Y − Ȳ∥G.

Since the matrix
θTγ+θ−1

Γ(γ)
H(γ, θ)℧ converges to zero, the operator M is a G-contraction;

hence, by applying the Perov fixed point theorem 1, the systems (6) and (7) have a unique
solution.
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4.2. Stability Analysis of the Fractal–Fractional COVID-19 Model in the Ulam–Hyers Context

In this subsection, we aim to establish the Ulam–Hyers stability for our suggested
model, drawing on definitions from [20].

Definition 7. Let (X, dG) be a generalized metric space and F : X → X be an operator. Then,
the fixed point equation

X = F(X) (21)

is said to be generalized Ulam–Hyers stable (GUHS) if there exists an increasing function ψ :
Rm
+ → Rm

+, continuous in 0Rm with ψ(0) = 0, such that, for any ε := (ε1, . . . , εm) with εi > 0
for i ∈ {1, . . . , m} and any solution Y∗ ∈ X of the inequalities

dG(Y∗, F(Y∗)) ≼ ε,

there exists a solution X∗ of (21) such that

dG(X∗, Y∗) ≼ ψ(ε).

Consider a small perturbation Φ := (Φ1, Φ2, Φ3, Φ4, Φ5, Φ6) ∈ C([0, T])6 such that
Φ(0R3) = 0R3 . Let the following hold:

• For each i = 1, . . . , 3, it holds that |Φi(t)| does not exceed εi, with εi being a positive
constant.

• The absolute value of Φi(t) is bounded by εi, where εi > 0 for each i = 1, . . . , 3.
• |Φi(t)| ≤ εi, for εi > 0 i = 1, . . . , 3.
• 

C
0 Dγ,θ

t S = Λ + ω2R− ς(Iu + ϵIr)

N
S − (ωV + m)S + ωSV + Φ1,

C
0 Dγ,θ

t V = ωVS − κς(Iu + ϵIr)

N
V − (m + ωS )V + Φ2,

C
0 Dγ,θ

t A =
ς(Iu + ϵIr)

N
S +

κς(Iu + ϵIr)

N
V − (ρ + m)A+ Φ3,

C
0 Dγ,θ

t Iu = ρ(1 − σ)A− (νu + d1 + m)Iu + Φ4,

C
0 Dγ,θ

t Ir = ρσA− (νr + d2 + m)Ir + Φ5,

C
0 Dγ,θ

t R = νuIu + νrIr − (ω2 + m)R+ Φ6.

(22)

Lemma 2. The solution of the perturbed model
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C
0 Dγ

t S = θtθ−1

[
Λ + ω2R− ς(Iu + ϵIr)

N
S − (ωV + m)S + ωSV + Φ1

]
,

C
0 Dγ

t V = θtθ−1

[
ωVS − κς(Iu + ϵIr)

N
V − (m + ωS )V + Φ2

]
,

C
0 Dγ

t A = θtθ−1

[
ς(Iu + ϵIr)

N
S +

κς(Iu + ϵIr)

N
V − (ρ + m)A+ Φ3

]
,

C
0 Dγ

t Iu = θtθ−1

[
ρ(1 − σ)A− (νu + d1 + m)Iu + Φ4

]
,

C
0 Dγ

t Ir = θtθ−1

[
ρσA− (νr + d2 + m)Ir + Φ5

]
,

C
0 Dγ

t R = θtθ−1

[
νuIu + νrIr − (ω2 + m)R+ Φ6

]
.

(23)

fulfills the relation given below:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



S(t)−
(
S(0) + θ

Γ(γ)

∫ t
0 sθ−1(t − s)γ−1F1(X)(s)ds

)
V(t)−

(
V(0) + θ

Γ(γ)

∫ t
0 sθ−1(t − s)γ−1F2(X)(t)ds

)
A(t)−

(
A(0) + θ

Γ(γ)

∫ t
0 sθ−1(t − s)γ−1F3(X)(s)ds

)
Iu(t)−

(
Iu(0) + θ

Γ(γ)

∫ t
0 sθ−1(t − s)γ−1F4(X)(s)ds

)
Ir(t)−

(
Ir(0) + θ

Γ(γ)

∫ t
0 sθ−1(t − s)γ−1F5(X)(s)ds

)
R(t)−

(
R(0) + θ

Γ(γ)

∫ t
0 sθ−1(t − s)γ−1F6(X)(s)ds

)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
G

≼
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)


ε1
ε2
ε3
ε4
ε5
ε6

. (24)

Proof. The resolution of (23) is expressed as

S(t) = S(0) + θ
Γ(γ)

∫ t
0 sθ−1(t − s)γ−1(F1(X)(s) + Φ1)ds,

V(t) = V(0) + θ
Γ(γ)

∫ t
0 sθ−1(t − s)γ−1(F2(X)(s) + Φ2)ds,

A(t) = A(0) + θ
Γ(γ)

∫ t
0 sθ−1(t − s)γ−1(F3(X)(s) + Φ3)ds.

Iu(t) = Iu(0) + θ
Γ(γ)

∫ t
0 sθ−1(t − s)γ−1(F4(X)(s) + Φ4)ds,

Ir(t) = Ir(0) + θ
Γ(γ)

∫ t
0 sθ−1(t − s)γ−1(F5(X)(s) + Φ5)ds,

R(t) = R(0) + θ
Γ(γ)

∫ t
0 sθ−1(t − s)γ−1(F6(X)(s) + Φ6)ds.

(25)
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Then, we have

sup
t∈[0 T]

∣∣∣S(t)−(S0 +
θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F1(X)(s)ds

)∣∣∣ = sup
t∈[0 T]

∣∣∣S0 +
θ

Γ(γ)
×

∫ t

0

(t − s)γ−1

s1−θ

(
F1(X)(s) + Φ1(s)

)
ds

−
(
S0 +

θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F1(X)(s)ds

)∣∣∣
= sup

t∈[0 T]

∣∣∣ θ

Γ(γ)

∫ t

0

(t − s)γ−1

s1−θ
Φ1(s)

∣∣∣
≤
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε1.

Repeating the same procedure as the rest of the equations of system (23), we have

sup
t∈[0 T]

∣∣∣V(t)−(V0 +
θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F2(X)(s)ds

)∣∣∣ ≤ ( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε2.

sup
t∈[0 T]

∣∣∣A(t)−
(
A0 +

θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F3(X)(s)ds

)∣∣∣ ≤ ( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε3.

sup
t∈[0 T]

∣∣∣Iu(t)−
(
Iu0 +

θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F4(X)(s)ds

)∣∣∣ ≤ ( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε4.

sup
t∈[0 T]

∣∣∣Ir(t)−
(
Ir0 +

θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F5(X)(s)ds

)∣∣∣ ≤ ( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε5.

sup
t∈[0 T]

∣∣∣R(t)−
(
R0 +

θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F6(X)(s)ds

)∣∣∣ ≤ ( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε6.

Hence, the proof is completed.

Theorem 3. If the matrix
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
℧ (2) converges to O6, then (6) is generalized

Ulam–Hyers stable (GUHS).

Proof. Assuming X = (S ,V ,A, Iu, Ir,R) represents a possible resolution of the inequal-
ity (24), and X∗ = (S∗,V∗,A∗, I∗

u , I∗
r ,R∗) is the distinct solution of (6), then

∥S − S∗∥∞ = sup
t∈[0 T]

∣∣∣∣S(t)−(S∗
0 +

θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F1(X∗)(s)ds

)∣∣∣∣
≤ sup

t∈[0 T]

∣∣∣∣S(t)−(S0 +
θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F1(X)(s)ds

)∣∣∣∣
+ sup

t∈[0 T]

∣∣∣∣(S0 +
θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F1(X)(s)ds

)
−
(
S∗

0 +
θ

Γ(γ)

∫ t

0
sθ−1(t − s)γ−1F1(X∗)(s)ds

)∣∣∣∣
≤
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε1 +

( θTγ+θ−1

Γ(γ)
H(γ, θ)

)(
ω2∥R−R∗∥∞ +

ςΥ1

N
∥Iu − Iu

∗∥∞

+
ϵςΥ1

N
∥Ir − Ir

∗∥∞ +
( ς(Υ4 + ϵΥ5)

N
+ ωV + m

)
∥S − S∗∥∞ + ωS∥V − V∗∥∞

)
.

In the same manner, we find
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∥V − V∗∥∞ ≤
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε2 +

( θTγ+θ−1

Γ(γ)
H(γ, θ)

)(
ωV∥S − S∗∥∞

+
κςΥ2

N
∥Iu − Iu

∗∥∞ +
ϵκςΥ2

N
∥Ir − Ir

∗∥∞ +
(κς(Υ4 + ϵΥ5)

N
+ m + ωS

)
∥V − V∗∥∞

)
,

and

∥A−A∗∥∞ ≤
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε3 +

( θTγ+θ−1

Γ(γ)
H(γ, θ)

)(
(ρ + m)∥A−A∗∥∞

+
ςΥ1 + κςΥ2

N
∥Iu − Iu

∗∥∞ +
ϵ(ςΥ1 + κςΥ2)

N
∥Ir − Ir

∗∥∞

+
( ς(Υ4 + ϵΥ5)

N

)
∥S − S∗∥∞

+
(κς(Υ4 + ϵΥ5)

N

)
∥V − V∗∥∞

)
,

∥Iu − I∗
u∥∞ ≤

( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε4 +

( θTγ+θ−1

Γ(γ)
H(γ, θ)

)(
ρ(1 − σ)∥A−A∥∞

+ (νu + d1 + m)∥Iu − I∗
u∥∞

)
,

∥Ir − I∗
r ∥∞ ≤

( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε5 +

( θTγ+θ−1

Γ(γ)
H(γ, θ)

)(
ρσ∥A−A∗∥∞

+ (νr + d2 + m)∥Ir − I∗
r ∥∞

)
,

∥R−R∗∥∞ ≤
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
ε6 +

( θTγ+θ−1

Γ(γ)
H(γ, θ)

)(
νu∥Iu − I∗

u∥∞ + νr∥Ir − I∗
r ∥∞

+ (ω2 + m)∥R−R∗∥∞

)
,

Consequently, one can write

∥X − X∗∥G ≼
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)




ε1
ε2
ε3
ε4
ε5
ε6

+℧∥X − X∗∥G

.

Considering the convergence of the matrix ℧ to zero, it then follows that

∥X − X∗∥G ≼
(

I6 −
( θTγ+θ−1

Γ(γ)
H(γ, θ)

)
℧
)−1( θTγ+θ−1

Γ(γ)
H(γ, θ)

)


ε1
ε2
ε3
ε4
ε5
ε6

.

Therefore, (6) exhibits GUHS.
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5. Numerical Scheme for the FF Model

In this section, we employ a two-step Newton polynomial approximation [21] to
establish the numerical schemes for our fractal–fractional model describing coronavirus
dynamics. We reorder the fractal–fractional problem as follows:

C
0 Dγ

t S(t) = θtθ−1F1(t,S(t),V(t),A(t), Iu(t), Ir(t),R(t))
C
0 Dγ

t V(t) = θtθ−1F2(t,S(t),V(t),A(t), Iu(t), Ir(t),R(t))
C
0 Dγ

t A(t) = θtθ−1F3(t,S(t),V(t),A(t), Iu(t), Ir(t),R(t))
C
0 Dγ

t Iu(t) = θtθ−1F4(t,S(t),V(t),A(t), Iu(t), Ir(t),R(t))
C
0 Dγ

t Ir(t) = θtθ−1F5(t,S(t),V(t),A(t), Iu(t), Ir(t),R(t))
C
0 Dγ

t R(t) = θtθ−1F6(t,S(t),V(t),A(t), Iu(t), Ir(t),R(t))

.

At the point tn+1, we have the following:

S(tn+1) = S(0) + θ

Γ(γ)

∫ tn+1

0
τθ−1(tn+1 − τ)γ−1F1(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ,

V(tn+1) = V(0) + θ

Γ(γ)

∫ tn+1

0
τθ−1(tn+1 − τ)γ−1F2(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ,

A(tn+1) = A(0) +
θ

Γ(γ)

∫ tn+1

0
τθ−1(tn+1 − τ)γ−1F3(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ,

Iu(tn+1) = Iu(0) +
θ

Γ(γ)

∫ tn+1

0
τθ−1(tn+1 − τ)γ−1F4(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ,

Ir(tn+1) = Ir(0) +
θ

Γ(γ)

∫ tn+1

0
τθ−1(tn+1 − τ)γ−1F5(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ,

R(tn+1) = R(0) +
θ

Γ(γ)

∫ tn+1

0
τθ−1(tn+1 − τ)γ−1F6(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ.

Thus, we can write

S(tn+1) = S(0) + θ

Γ(γ)

n

∑
p=2

∫ tp+1

tp

τθ−1(tn+1 − τ)γ−1F1(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ

V(tn+1) = V(0) + θ

Γ(γ)

n

∑
p=2

∫ tp+1

tp

τθ−1(tn+1 − τ)γ−1F2(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ

A(tn+1) = A(0) +
θ

Γ(γ)

n

∑
p=2

∫ tp+1

tp

τθ−1(tn+1 − τ)γ−1F3(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ

Iu(tn+1) = Iu(0) +
θ

Γ(γ)

n

∑
p=2

∫ tp+1

tp

τθ−1(tn+1 − τ)γ−1F4(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ

Ir(tn+1) = Ir(0) +
θ

Γ(γ)

n

∑
p=2

∫ tp+1

tp

τθ−1(tn+1 − τ)γ−1F5(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ

R(tn+1) = R(0) +
θ

Γ(γ)

n

∑
p=2

∫ tp+1

tp

τθ−1(tn+1 − τ)γ−1F6(τ,S(τ),V(t),A(τ), Iu(τ), Ir(τ),R(τ))dτ

.

Using the two steps of the Newton polynomial, we obtain
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S(tn+1) = S(0) + θ

Γ(γ)

n

∑
m=2

∫ tm+1

tm



F1(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

+

[
F1(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

h

−F1(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

h

]
(τ − tm−2)

+

[
F1(tm ,Sm ,Vm ,Am ,Ium ,Irm ,Rm)

2h2

− 2F1(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

2h2

+
F1(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

2h2

]
(τ − tm−2)(τ − tm−1)



(tn+1 − τ)γ−1dτ,

V(tn+1) = V(0) + θ

Γ(γ)

n

∑
m=2

∫ tm+1

tm



F2(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

+

[
F2(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

h

−F2(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

h

]
(τ − tm−2)

+

[
F2(tm ,Sm ,Vm ,Am ,Ium ,Irm ,Rm)

2h2

− 2F2(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

2h2

+
F1(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

2h2

]
(τ − tm−2)(τ − tm−1)



(tn+1 − τ)γ−1dτ,

A(tn+1) = A(0) +
θ

Γ(γ)

n

∑
m=2

∫ tm+1

tm



F3(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

+

[
F3(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

h

−F3(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

h

]
(τ − tm−2)

+

[
F3(tm ,Sm ,Vm ,Am ,Ium ,Irm ,Rm)

2h2

− 2F3(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

2h2

+
F3(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

2h2

]
(τ − tm−2)(τ − tm−1)



(tn+1 − τ)γ−1dτ,

(26)
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Iu(tn+1) = Iu(0) +
θ

Γ(γ)

n

∑
m=2

∫ tm+1

tm



F4(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

+

[
F4(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

h

−F4(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

h

]
(τ − tm−2)

+

[
F4(tm ,Sm ,Vm ,Am ,Ium ,Irm ,Rm)

2h2

− 2F4(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

2h2

+
F4(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

2h2

]
(τ − tm−2)(τ − tm−1)



(tn+1 − τ)γ−1dτ,

Ir(tn+1) = Ir(0) +
θ

Γ(γ)

n

∑
m=2

∫ tm+1

tm



F5(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

+

[
F5(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

h

−F5(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

h

]
(τ − tm−2)

+

[
F5(tm ,Sm ,Vm ,Am ,Ium ,Irm ,Rm)

2h2

− 2F5(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

2h2

+
F5(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

2h2

]
(τ − tm−2)(τ − tm−1)



(tn+1 − τ)γ−1dτ,

R(tn+1) = R(0) +
θ

Γ(γ)

n

∑
m=2

∫ tm+1

tm



F6(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

+

[
F6(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

h

−F6(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

h

]
(τ − tm−2)

+

[
F6(tm ,Sm ,Vm ,Am ,Ium ,Irm ,Rm)

2h2

− 2F6(tm−1,Sm−1,Vm−1,Am−1,Ium−1 ,Irm−1 ,Rm−1)

2h2

+
F6(tm−2,Sm−2,Vm−2,Am−2,Ium−2 ,Irm−2 ,Rm−2)

2h2

]
(τ − tm−2)(τ − tm−1)



(tn+1 − τ)γ−1dτ.

(27)

After some calculation, we obtain the numerical scheme for Model (6) of the coronavirus epidemic
as follows:

S(tn+1) = S0 +
hγ

Γ(γ + 1)

n

∑
m=2

θtθ−1
m−2F1(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

[
(n − m + 1)γ − (n − m)γ

]
+

hγ

Γ(γ + 2)

n

∑
m=2

[
θtθ−1

m−1F1(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)− θtθ−1
m−2F1(tm−2,Sm−2,Vm−2,

Am−2, Ium−2 , Irm−2 ,Rm−2)
][
(n − m + 1)γ(n − m + 3 + 2γ)− (n − m)γ(n − m + 3 + 3γ)

]
+

hγ

2Γ(γ + 3)

n

∑
m=2

[
θtθ−1

m F1(tm,Sm,Vm,Am, Ium , Irm ,Rm)

− 2θtθ−1
m−1F1(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)

+ θtθ−1
m−2F1(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

]
×
[
(n − m + 1)γ[2(n − m)2 + (3γ + 10)(n − m) + 2γ2 + 9γ + 12]

− (n − m)γ[2(n − m)2 + (5γ + 10)(n − m) + 6γ2 + 18γ + 12]
]
,
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V(tn+1) = V0 +
hγ

Γ(γ + 1)

n

∑
m=2

θtθ−1
m−2F2(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

[
(n − m + 1)γ − (n − m)γ

]
+

hγ

Γ(γ + 2)

n

∑
m=2

[
θtθ−1

m−1F2(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)− θtθ−1
m−2F2(tm−2,Sm−2,Vm−2,

Am−2, Ium−2 , Irm−2 ,Rm−2)
][
(n − m + 1)γ(n − m + 3 + 2γ)− (n − m)γ(n − m + 3 + 3γ)

]
+

hγ

2Γ(γ + 3)

n

∑
m=2

[
θtθ−1

m F2(tm,Sm,Vm,Am, Ium , Irm ,Rm)

− 2θtθ−1
m−1F2(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)

+ θtθ−1
m−2F2(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

]
×
[
(n − m + 1)γ[2(n − m)2 + (3γ + 10)(n − m) + 2γ2 + 9γ + 12]

− (n − m)γ[2(n − m)2 + (5γ + 10)(n − m) + 6γ2 + 18γ + 12]
]
,

,

A(tn+1) = A0 +
hγ

Γ(γ + 1)

n

∑
m=2

θtθ−1
m−2F3(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

[
(n − m + 1)γ − (n − m)γ

]
+

hγ

Γ(γ + 2)

n

∑
m=2

[
θtθ−1

m−1F3(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)− θtθ−1
m−2F3(tm−2,Sm−2,Vm−2,

Am−2, Ium−2 , Irm−2 ,Rm−2)
][
(n − m + 1)γ(n − m + 3 + 2γ)− (n − m)γ(n − m + 3 + 3γ)

]
+

hγ

2Γ(γ + 3)

n

∑
m=2

[
θtθ−1

m F3(tm,Sm,Vm,Am, Ium , Irm ,Rm)

− 2θtθ−1
m−1F3(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)

+ θtθ−1
m−2F3(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

]
×
[
(n − m + 1)γ[2(n − m)2 + (3γ + 10)(n − m) + 2γ2 + 9γ + 12]

− (n − m)γ[2(n − m)2 + (5γ + 10)(n − m) + 6γ2 + 18γ + 12]
]
,

, (28)

Iu(tn+1) = Iu0 +
hγ

Γ(γ + 1)

n

∑
m=2

θtθ−1
m−2F4(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

[
(n − m + 1)γ − (n − m)γ

]
+

hγ

Γ(γ + 2)

n

∑
m=2

[
θtθ−1

m−1F4(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)− θtθ−1
m−2F4(tm−2,Sm−2,Vm−2,

Am−2, Ium−2 , Irm−2 ,Rm−2)
][
(n − m + 1)γ(n − m + 3 + 2γ)− (n − m)γ(n − m + 3 + 3γ)

]
+

hγ

2Γ(γ + 3)

n

∑
m=2

[
θtθ−1

m F4(tm,Sm,Vm,Am, Ium , Irm ,Rm)

− 2θtθ−1
m−1F4(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)

+ θtθ−1
m−2F4(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

]
×
[
(n − m + 1)γ[2(n − m)2 + (3γ + 10)(n − m) + 2γ2 + 9γ + 12]

− (n − m)γ[2(n − m)2 + (5γ + 10)(n − m) + 6γ2 + 18γ + 12]
]
,

,
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Ir(tn+1) = Ir0 +
hγ

Γ(γ + 1)

n

∑
m=2

θtθ−1
m−2F5(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

[
(n − m + 1)γ − (n − m)γ

]
+

hγ

Γ(γ + 2)

n

∑
m=2

[
θtθ−1

m−1F5(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)− θtθ−1
m−2F5(tm−2,Sm−2,Vm−2,

Am−2, Ium−2 , Irm−2 ,Rm−2)
][
(n − m + 1)γ(n − m + 3 + 2γ)− (n − m)γ(n − m + 3 + 3γ)

]
+

hγ

2Γ(γ + 3)

n

∑
m=2

[
θtθ−1

m F5(tm,Sm,Vm,Am, Ium , Irm ,Rm)

− 2θtθ−1
m−1F5(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)

+ θtθ−1
m−2F5(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

]
×
[
(n − m + 1)γ[2(n − m)2 + (3γ + 10)(n − m) + 2γ2 + 9γ + 12]

− (n − m)γ[2(n − m)2 + (5γ + 10)(n − m) + 6γ2 + 18γ + 12]
]
,

R(tn+1) = R0 +
hγ

Γ(γ + 1)

n

∑
m=2

θtθ−1
m−2F6(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

[
(n − m + 1)γ − (n − m)γ

]
+

hγ

Γ(γ + 2)

n

∑
m=2

[
θtθ−1

m−1F6(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)− θtθ−1
m−2F6(tm−2,Sm−2,Vm−2,

Am−2, Ium−2 , Irm−2 ,Rm−2)
][
(n − m + 1)γ(n − m + 3 + 2γ)− (n − m)γ(n − m + 3 + 3γ)

]
+

hγ

2Γ(γ + 3)

n

∑
m=2

[
θtθ−1

m F6(tm,Sm,Vm,Am, Ium , Irm ,Rm)

− 2θtθ−1
m−1F6(tm−1,Sm−1,Vm−1,Am−1, Ium−1 , Irm−1 ,Rm−1)

+ θtθ−1
m−2F6(tm−2,Sm−2,Vm−2,Am−2, Ium−2 , Irm−2 ,Rm−2)

]
×
[
(n − m + 1)γ[2(n − m)2 + (3γ + 10)(n − m) + 2γ2 + 9γ + 12]

− (n − m)γ[2(n − m)2 + (5γ + 10)(n − m) + 6γ2 + 18γ + 12]
]
.

.

6. Simulations and Discussion
In this section, we employ the numerical scheme (28) to explore simulations of system (1). Given

the parameter values listed in Table 1 and the initial conditions S(0) = 34,813,051, V(0) = 2000,
A(0) = 1500, Iu = 204, Ir = 80, and R(0) = 0, we discuss the influence of fractal and frac-
tional orders, as well as various values of the contact and vaccination parameters, on the dynamics of
COVID-19 disease transmission.

Figures 3–5 illustrate the numerical results depicting the impact of fractal and fractional orders
on the dynamics of COVID-19 disease transmission. It is noted that the populations in the susceptible
subclass decrease, while they increase in the remaining five groups over time.

In Figure 3, we fix the fractional order γ = 1 and observe the behavior of the six groups of the
model under the impact of different values of the fractal dimension θ = 1, 0.97, 0.95, 0.93. When the
fractal dimension is smaller, both the decrease and increase rates in the susceptible group and the
other five groups are slower when compared to higher values of θ.

Figure 4 displays the numerical graphics of the six groups of the model when fixing the fractal
dimension θ = 1 and varying the fractional order γ = 1, 0.97, 0.95, 0.93; we see that for smaller values
of the fractional order γ, the rates of decline in the susceptible group and the growth in the vaccinated
group are slower compared with large values of gamma, while smaller values of γ lead to rapid
growth in the subclasses of exposed, asymptomatic infected, symptomatic infected, and recovered.

We observe the same behavior in Figure 5, when we vary both the fractal dimension and
fractional order together. However, the deceleration of decay and growth rates in the six subclasses is
more pronounced compared to the previous case.

This observation demonstrates the feasibility of using fractal–fractional derivatives to enhance
the comprehension of the dynamics of a disease.
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Figure 3. Numerical results for model (6) under various values of the fractal dimension θ.
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Figure 4. Numerical results for model (6) under various values of the fractional order γ.
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Figure 5. Numerical results for model (6) under various values of the fractal–fractional dimension
order θ ,γ.

In this part of the simulation, we explore effective strategies to control the spread of COVID-19.
In this regard, we set the values of the fractal dimension and the fractional order to θ = 0.93 and
γ = 0.92, respectively, and observe the influence of varying values of ς, ωV , ωS , and k on the
infected populations.

First, we examine the effect of lock-down on the transmission of the coronavirus by changing
the contact rate ς. As shown in Figure 6, we note that restricting interactions between susceptible
individuals and both asymptomatic and symptomatic infected individuals can decrease the number
of future infection cases.
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Figure 6. The impact of the contact rate on the components of the system.
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Next, to demonstrate the influence of vaccination, we present the numerical results of the
proposed model in Figure 7, both with and without the vaccination parameters. It is observed that
there is a clear decrease in the number of infections when vaccine parameters are included.
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Figure 7. The dynamic behavior of the infected population with and without vaccination
(ωV = 0.0458, ωS = 0.01, k = 0.2851).

Figures 8–10 depict the influence of the k, ωV and ωS parameter values individually, in order to
investigate the optimal approach for implementing vaccination within the community.

In Figure 7, we observe the impact of an increasing vaccination rate (ωV ) on the size of the
infected groups. It becomes evident that as the vaccination rate rises, the number of infections
decreases over time.

Figure 9 displays the evolution of the number of infections under improved vaccine effectiveness.
It must be noted first that if k is close to 0, the vaccine is more effective. It is observed that as the
vaccine’s effectiveness increases, the number of infected individuals decreases.

Figure 10 depicts the impact of the vaccine’s waning immunity rate, and we see that the number
of infections decreases significantly when we take smaller values of ωS .

Then, we can conclude that by increasing both the vaccination rate (ωV ) and vaccine efficacy (k)
while decreasing the waning immunity rate (ωS ), we can achieve a rapid reduction in the number of
infected cases within the population.

To validate this conclusion, Figure 11 presents numerical results obtained by increasing the
vaccination rate from 0.0428 to 0.0488 and decreasing the waning immunity rate from 0.01 to 0.009. It
is evident that the reduction in the number of infected cases occurs more rapidly when compared to
the results shown in Figure 7.
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Figure 8. The impact of the vaccination rate on the components of the infected classes.
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Figure 9. The impact of the vaccination efficacy rate on the components of the infected classes.
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Figure 10. The impact of the loss of immunity rate on the components of the infected classes.
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Figure 11. Numerical results for the behavior of the infected population with and without vaccination
(ωV = 0.0488, ωS = 0.009, k = 0.2851).
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7. Conclusions
This research presents a developed model of COVID-19 virus transmission. We used fractal–

fractional derivatives to create a suitable model of the third wave of COVID-19 in the KSA. The qual-
itative examination of the suggested model began with showing the existence and uniqueness of
solutions as provided by the Perov fixed point theorem. Furthermore, we demonstrated the stability
of the suggested system’s solutions using Ulam–Hyers principles. In addition, the numerical ap-
proach for the model was provided using the two-step Newton polynomial approximation. Then,
by adjusting the fractal dimension values, fractional order, contact rate, vaccination rate, and loss of
immunity rate, we graphed the convergence and stability of the system’s six solutions. Using our
results, better responses will be implemented in the following waves, which will help eliminate the
disease forever from society.

Our study did, however, have some limitations. First, the hospitalization class was not taken
into account in this study. Additionally, the vaccination process typically consists of three stages: the
first dose, the second dose, and the booster dose. Therefore, it is necessary to divide the vaccinated
segment into three subclasses. Furthermore, while our study provides insights into the dynamics
of infection rates in relation to vaccination strategies, we acknowledge its limitations. Primarily,
it does not encompass the broader implications of vaccination, such as the impact on mortality
rates. Further research is warranted to explore this critical aspect, especially in light of emerging
data that suggest complex outcomes of vaccination programs in terms of public health. Future
studies should aim to integrate comprehensive mortality rate analyses, comparing vaccinated and
unvaccinated populations, to provide a more holistic understanding of vaccine efficacy and public
health implications.
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