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Abstract: The second order Burger’s equation model is used to study the turbulent fluids, suspensions,
shock waves, and the propagation of shallow water waves. In the present research, we investigate a
numerical solution to the time fractional coupled-Burgers equation (TFCBE) using Crank–Nicolson
and the cubic B-spline (CBS) approaches. The time derivative is addressed using Caputo’s formula,
while the CBS technique with the help of a θ-weighted scheme is utilized to discretize the first- and
second-order spatial derivatives. The quasi-linearization technique is used to linearize the non-linear
terms. The suggested scheme demonstrates unconditionally stable. Some numerical tests are utilized
to evaluate the accuracy and feasibility of the current technique.
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1. Introduction

The second order viscous Coupled Burgers equations (VCBEs) are considered for
numerical solution in this article. This model is used to study physical phenomena such as
turbulent fluids, fluid suspensions, shock waves, arising in gas dynamics, the propagation
of shallow water waves, continuous stochastic processes, flow theory, and chromatogra-
phy [1–5]. The non-linear VCBEs are defined as follows:

{
Ut(x, t)− Uxx(x, t) + α1(U(x, t)V(x, t))x + γU(x, t)Ux(x, t) = 0, a ≤ x ≤ b, t ∈ [0, T],

Vt(x, t)− Vxx(x, t) + α2(V(x, t)U(x, t))x + γV(x, t)Vx(x, t) = 0, a ≤ x ≤ b, t ∈ [0, T],
(1)

with initial conditions (ICs)

U(x, 0) = ϕ1(x), V(x, 0) = ϕ2(x), a ≤ x ≤ b (2)

and boundary conditions (BCs)
{

U(a, t) = φ1(t), V(a, t) = ψ1(t),
U(b, t) = φ2(t), V(b, t) = ψ2(t),

t ∈ [0, T] (3)
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where α1 and α2 are system parameters, which represent the diffusion and interaction of
two fluids, respectively, and γ is a constant.

Fractional calculus involves the study of non-integer order derivatives and inte-
grals [6–8]. The nonlinear TFCBE with different parameters is defined as follows:





∂λU(x,t)
∂tλ − ∂2U(x,t)

∂x2 + α1
∂(U(x,t)V(x,t))

∂x + γU(x, t) ∂U(x,t)
∂x = Q1,

∂λV(x,t)
∂tλ − ∂2V(x,t)

∂x2 + α2
∂(U(x,t)V(x,t))

∂x + γV(x, t) ∂V(x,t)
∂x = Q2,

x ∈ [a, b], t ∈ [0, T], λ ∈ (0, 1), (4)

with ICs:
U(x, 0) = ϕ1(x), V(x, 0) = ϕ2(x), (5)

the BCs: {
U(a, t) = φ1(t), U(b, t) = φ2(t),
V(a, t) = ψ1(t), V(b, t) = ψ2(t),

(6)

where λ is the fractional parameter, ∂λU(x,t)
∂tλ is the time fractional derivative (FD) in the

Caputo sense, and ∂U(x,t)
∂x = Ux(x, t) and ∂2U(x,t)

∂t2 = Uxx(x, t) are first- and second-order
spatial derivatives, respectively. This model represents the time fractional coupled-Burgers
equation (TFCBE) in Caputo’s sense that satisfies the mathematical model accurately and
represents the real-world system. These equations are well defined and capture the memory
in time direction. The velocity profiles of two distinct fluids are denoted as U(x, t) and
V(x, t). There are numerous methods to deal with the FD. Usually, the Caputo FD is used
to acquire the appropriate real world physical models. In this paper, Caputo’s FD of the
function is employed to discretize the temporal derivative. The Caputo FD of the function
U(x, t) with order λ ∈ (0, 1) is given as follows:

∂λU(x, t)
∂tλ

=





1
Γ(1−λ)

∫ t
0

∂U(x,κ)
∂κ

dκ

(t−κ)λ , 0 < λ < 1,
∂U(x,t)

∂t , λ = 1,
(7)

where the Euler’s Gamma function is represented by Γ.
Numerous approaches have been developed to deal with the initial and boundary

value problems. Chen et al. [9] represented an approximate solution to coupled Burg-
ers equations (CBEs) with FD using the Adomian decomposition method (ADM). Khan
et al. [10] studied the Burgers and a system of Burgers equations using the homotopy
perturbation method (HPM). They also solved these problems using a generalized differen-
tial transform method (GDTM) involving the Caputo time FD. CBEs have been solved by
Prakash et al. [11] via a time fractional variational iteration approach. They compared their
results with other methods, namely the HPM, the ADM, and the generalized differential
transformation method (GDTM). The CBEs have also been solved using the q-homotopy
analysis transform method by Singh et al. [12]. Aminikhah and Malekzadeh [13] developed
a new HPM, in order to calculate the system of the CBEs and temporal FD that is used
with the Caputo formula. In [14], a reduced differential transform method, the Laplace
ADM, and the Laplace-variational iteration scheme have been utilized to investigate a
solution to the CBEs. Albuohimad and Adibi proposed a solution to the CBEs using the
hybrid spectral exponential Chebyshev method (HSECM), and the FD derivative was
discretized utilizing the finite difference method (FDM) [15]. Sulaiman investigated the
system of viscous Burgers equations using the Atangana–Baleanu FD to obtain a numer-
ical simulation in [16]. A system Burgers equation was estimated using the generalized
differential transform method (DTM) and the Caputo derivative (CD), employed to solve
the temporal FD in [17]. Ozdemir et al. [18] calculated approximate solutions to Burgers
equations by proposing Gegenbauer wavelets-based computational methods with TFD.
Abazari and Borhanifar [19] developed an approximate solution to the CBEs through a
differential transformation method. They also compared their approximate results with
three different methods, namely the variational iteration, HPM, and analysis techniques.
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Mittal and Arora [20] investigated a system of viscous Burgers equations, discretized the
scheme using the CBS collocation, and investigated the stability of the scheme. Shukla
et al. [21] used a modified CBS to study the two-dimensional nonlinear VCBEs and found
approximate solutions using the differential quadrature method. Kumar and Arora [22]
employed approximate solutions to the coupled Klein Gordon equation and a system
of Burgers equations through a reduced differential transformation scheme. Srivastava
et al. [23] used the implication logarithmic FDM to present an approximation of a solution
to the nonlinear CBEs. Mittal and Tripathi [24] investigated an approximate solution to
a system of Burgers equation with the help of a modified spline. Sarboland and Ami-
nataei [25] solved the nonlinear CBEs through a multiquadric quasi-interpolation scheme.
Salih et al. [26] proposed a numerical solution to CBEs with Dirichlet’s boundary conditions
by using trigonometric spline functions. He and Tang [27] developed a lattice Boltzmann
to find a numerical solution to CBEs. Chuathong and Kaennakham [28] suggested a col-
location method to determine approximate solutions to CBEs. Jima et al. [29] presented
an approximated solution using a differential quadrature method. In [30], the authors pre-
sented a Chebyshev wavelets method to investigate a CBE. Guo-Cheng et al. [31] discussed
the concept of short memory fractional differential equations with impulses and provided
exact solutions for linear cases. Dubey et al. [32] presented a computational algorithm
called a local fractional natural homotopy analysis method to solve local fractional coupled
Helmholtz and CBEs in fractal media. They also discussed the uniqueness, convergence,
and error analysis of the solutions obtained using the method. Numerical simulations on
the Cantor set validate the effectiveness of the proposed method. WANG [33] proposed
a new fractal modified equal width-Burgers equation (MEWBE) with the local fractional
derivative using a Mittag–Leffler function.

Spline interpolation is a valuable method for approximating mathematical functions
with a piecewise smooth curve. Specifically, B-spline interpolation utilizes a type of piece-
wise polynomial that exhibits high localization. There is no study on the implementation
of cubic B-spline for the TFCBEs. Inspired by the success of the spline in the numerical
solution to integer-order differential equations and fractional order differential equations,
the main aim of this study is to investigate the numerical solution to TFCBEs by using
cubic B-spline functions. They have been employed by several researchers for solving
fractional partial differential equations. The novelty of the proposed work is to discretize
the first-order time fractional derivative in the Caputo sense with a first-order Crank–
Nicholson finite difference scheme, while the CBS functions are used to discretize the
spatial derivatives for coupled equations. It can be easily seen that the work done in this
paper provides a more accurate numerical solution to the proposed problem because we
use a combination of a Crank–Nicholson finite difference scheme and CBS functions with
the help of a θ-weighted scheme. This first-order time fractional derivative discretization
in the Caputo sense for coupled equations has never been used, as far as we are aware,
for the case of first-order TFCBEs. The superiority of the proposed method is to provide a
numerical solution in a piecewise cubic function with the smoothness of C2 continuity at
each joint point of solution.

The paper is structured as follows: Section 2 describes the CBS functions at different
knots. Sections 3 and 4 present the discretization of the fractional derivative and the
procedure of the proposed numerical technique, respectively. Section 5 discusses the
stability of the suggested technique. The conclusion of the study is presented in Section 6.

2. B-Spline Approximation

Let a = x0 < x1...xN−1 < xN = b be the spatial domain on the interval [a, b]. In the
present section, cubic B-spline approximation for U(x, t) and V(x, t) is constructed. We
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define the partition into equivalent sub-intervals of length h = b−a
N , where xi = a + ih,

where i = 0, 1, 2, 3, ..., N. The cubic B-spline can be defined as follows:

Bi(x) =
1

6h3





(x − xi−2)
3, x ∈ [xi−2, xi−1],

h3 − 3(x − xi−1)
3 + 3h(x − xi−1)

2 + 3h2(x − xi−1), x ∈ [xi−1, xi],
h3 − 3(xi+1 − x)3 + 3h(xi+1 − x)2 + 3h2(xi+1 − x), x ∈ [xi, xi+1],
(xi+2 − x)3, x ∈ [xi+1, xi+2],
0, Otherwise.

(8)

The B-spline {B−1, B0, ..., BN , BN+1} establishes a basis over the assumed domain. The
values of Bi(x) at the different knots are given in Table 1.

Table 1. Bi(x), Bi
′(x), and Bi

′′ (x) at the knots.

xi+1 xi xi−1 Else

Bi(x) 1/6 2/3 1/6 0
Bi

′(x) −1/2h 0 1/2h 0
Bi

′′ (x) 1/h2 −2/h2 1/h2 0

The solution to Equation (4) is considered a linear combination of the CBS by join-
ing the N + 1 number of control points with lines from µ−1(t) to µN+1(t) and ν−1(t) to
νN+1(t) [34]. Our approach for the TFCBE with CBS is to seek as approximate solutions
U(x, t) and V(x, t) in the following form [35]:

{
U(x, t) = ∑N+1

i=−1 µi(t)Bi(x),
V(x, t) = ∑N+1

i=−1 νi(t)Bi(x),
(9)

where µi(t) and νi(t) are control points (or de Boor points), which depend on time and are
to be computed at each time level for the approximate solution. Bi(x) represents the CBS
basis functions defined in (8). They are piecewise CBS functions with geometric properties
like C2 continuity, non-negativity, and partition of unity [36]. The approximations at each
sub-interval [xi, xi−1] contain Bi−1(x), Bi(x), Bi+1(x) non-zero basis functions.

3. Discretization

The forward FDM is applied to discretize the Caputo time FD. Consider tk = kτ,
where k = 0, 1, ..., m and the step size is τ = T

m . The Caputo time FD can be described as
follows at point t = tk:

∂λU(x, tk+1)

∂tλ
=

1
Γ(1 − λ)

∫ t

0

∂U(x, σ)

∂σ

dκ

(tk+1 − σ)λ

=
1

Γ(1 − λ)

k

∑
p=0

∫ tp+1

tp

∂U(x, σ)

∂σ

dκ

(tk+1 − σ)λ

=
1

Γ(1 − λ)

k

∑
p=0

U
(

x, tp+1
)
− U

(
x, tp

)

τ

∫ (p+1)τ

pτ

dκ

(tk+1 − κ)λ
+ Zk+1

τ

=
1

Γ(1 − λ)

k

∑
p=0

U
(

x, t1−p+k

)
− U

(
x, tk−p

)

τ

∫ (p+1)τ

pτ

dϖ

ϖλ
+ Zk+1

τ

=
1

Γ(1 − λ)

k

∑
p=0

U
(

x, t1−p+k

)
− U

(
x, tk−p

)

τλ
[(p + 1)−λ+1 − p−λ+1] + Zk+1

τ .

(10)
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Equation (10) becomes

∂λU(x,tσ+1)
∂tλ = 1

Γ(2−λ)

k
∑

p=0
Yp

U(x,t1−p+k)−U(x,tk−p)
τλ + Zk+1

τ , (11)

where Yp = (p + 1)−λ+1 − p−λ+1, and the truncation error is Zk+1
τ , which is bounded, i.e.,

|Zk+1
τ |≤ θ τ2−λ [37]. The coefficients Yp preserve the following properties [38]:

1. Y0 = 1,
2. Y0 > Y1 > Y2 > ... > Yp, Yp → 0asp → ∞,
3. Yp > 0 f orp = 0, 1, ...k, and
4. ∑k

p=0
(
Yp − Yp+1

)
+ Yk+1 = (1 − Y1) + ∑k−1

p=1
(
Yp − Yp+1

)
+ Yk = 1.

4. Numerical Technique

The θ-weighted scheme [39,40] for the system (4) at the tth
k+1 time level is defined as

{
(Ut)

k
j − θpk+1

j = (1 − θ)pk
j ,

(Vt)
k
j − θqk+1

j = (1 − θ)qk
j ,

(12)

where {
pk

j = (Uxx)
k
j − γ(UUx)

k
j − α1[(UVx)

k
j + (UxV)k

j ],

qk
j = (Vxx)

k
j − γ(VVx)

k
j − α1[(VUx)

k
j + (VxU)k

j ].

It is noted that, when θ = 0, the above scheme becomes explicit; when θ = 1, it reduces to
an implicit scheme; when θ = 1/2, it reduces to a Crank–Nicolson scheme. Using (11) and
the θ-weighted scheme (12) on the spatial derivative, Equation (4) then becomes

1
Γ(2−λ)

k
∑

p=0
Yp

Uk−p+1
j −Uk−p

j
τλ − θ[(Uxx)

k+1
j − γ(UUx)

k+1
j − α1[(UVx)

k+1
j + (UxV)k+1

j ]]

= (1 − θ)[(Uxx)
k
j − γ(UUx)

k
j − α1[(UVx)

k
j + (UxV)k

j ]] + Q1,
(13)

1
Γ(2−λ)

k
∑

p=0
Yp

Vk−p+1
j −Vk−p

j
τλ − θ[(Vxx)

k+1
j − γ(VVx)

k+1
j − α2[(VUx)

k+1
j + (VxU)k+1

j ]]

= (1 − θ)[(Vxx)
k
j − γ(VVx)

k
j − α2[(VUx)

k
j + (VxU)k

j ]] + Q2,
(14)

The quasi-linearization technique [41] at the (k + 1)th stage is defined as





(UUx)
k+1
j = Uk

j (Ux)
k+1
j − (UUx)

k
j + Uk+1

j (Ux)
k
j ,

(VVx)
k+1
j = Vk

j (Vx)
k+1
j − (VVx)

k
j + Vk+1

j (Vx)
k
j ,

(UVx)
k+1
j = Uk

j (Vx)
k+1
j − (UVx)

k
j + Uk+1

j (Vx)
k
j ,

(VUx)
k+1
j = Vk

j (Ux)
k+1
j − (VUx)

k
j + Vk+1

j (Ux)
k
j .

(15)

Using the quasi-linearization technique (15), the non-linear terms in Equations (13) and (14)
are linearized as

1
Γ(2−λ)

k
∑

p=0
Yp

Uk−p+1
j −Uk−p

j
τλ −θ[(Uxx)

k+1
j − γ[Uk

j (Ux)
k+1
j − (UUx)

k
j + Uk+1

j (Ux)
k
j ]

−α1[Uk
j (Vx)

k+1
j − (UVx)

k
j + Uk+1

j (Vx)
k
j + (UxV)k+1

j ]] =(1 − θ)[(Uxx)
k
j − γ(UUx)

k
j − α1

(
(UVx)

k
j + (UxV)k

j

)
] + Q1,

(16)

1
Γ(2−λ)

k
∑

p=0
Yp

Vk−p+1
j −Vk−p

j
τλ −θ[(Vxx)

k+1
j − γ[Uk

j (Vx)
k+1
j − (UVx)

k
j + Uk+1

j (Vx)
k
j ]

−α2[Vk
j (Ux)

k+1
j − (VUx)

k
j + Vk+1

j (Ux)
k
j + (VxU)k+1

j ]] =(1 − θ)[(Vxx)
k
j − γ(VVx)

k
j − α2

(
(VUx)

k
j + (VxU)k

j

)
] + Q2,

(17)
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After some simplification of Equations (16) and (17), we obtain

1
Γ(2−λ)

k
∑

p=0
Yp

Uk−p+1
j −Uk−p

j

τλ − θ(Uxx)
k+1
j + θ[γ(Ux)

k
j + α1(Vx)

k
j ]U

k+1
j + θ[γUk

j + α1Vk
j ](Ux)

k+1
j

+α1θ[Uk
j (Vx)

k+1
j + (Ux)

k
j Vk+1

j ] = (1 − θ)(Uxx)
k
j − γ(1 − 2θ)(UUx)

k
j − α1(1 − 2θ)(UVx)

k
j − α1(1 − 2θ)(UxV)k

j + Q1,
(18)

1
Γ(2−λ)

k
∑

p=0
Yp

Vk−p+1
j −Vk−p

j

τλ − θ(Vxx)
k+1
j + θ[γ(Vx)

k
j + α2(Ux)

k
j ]V

k+1
j + θ[γVk

j + α2Uk
j ](Vx)

k+1
j

+α2θ[Vk
j (Ux)

k+1
j + (Vx)

k
j Uk+1

j ] = (1 − θ)(Vxx)
k
j − γ(1 − 2θ)(VVx)

k
j − α2(1 − 2θ)(VUx)

k
j − α2(1 − 2θ)(VxU)k

j + Q2,
(19)

The Crank–Nicolson approach is used because it is an unconditionally stable scheme
and provides a more reasonable accuracy [42] than other finite difference schemes.
Equations (18) and (19) provide the following relations:

η1Y0Uk+1
j − 1

2 (Uxx)
k+1
j + γ1

2 Uk+1
j + γ2

2 (Ux)
k+1
j + α1

2 [γ3(Vx)
k+1
j + γ4Vk+1

j ] =

1
2 (Uxx)

k
j − η1

k
∑

p=1
Yp

(
Uk−p+1

j − Uk−p
j

)
+ (Q1)

k+1
j ,

(20)

η1Y0Vk+1
j − 1

2 (Vxx)
k+1
j + γ1

2 Vk+1
j + γ2

2 (Vx)
k+1
j + α2

2 [γ3(Ux)
k+1
j + γ4Uk+1

j ] =

1
2 (Vxx)

k
j − η1

k
∑

p=1
Yp

(
Vk−p+1

j − Vk−p
j

)
+ (Q2)

k+1
j ,

(21)

where

η1 = 1
τλΓ(2−λ)

,

γ1 = γ(Ux)
k
j + α1(Vx)

k
j = γ(Vx)

k
j + α2(Ux)

k
j ,

γ2 = γUk
j + α1Vk

j = γVk
j + α2Uk

j , and

γ3 = Uk
j = Vk

j and γ3 = (Ux)
k
j = (Vx)

k
j .

The boundary conditions are utilized to obtain a numerical solution to the proposed
problem. Four extra linear equations are designed, as follows:





(U)k+1
0 = φ1(tk+1),

(U)k+1
n = φ1(tk+1),

(V)k+1
0 = ψ1(tk+1), and

(V)k+1
n = ψ1(tk+1).

The initial conditions are listed below:




(Ux)
k+1
m = ϕ′

1(tm), m = 0, M
(U)k+1

m = ϕ1(tm), m = 0, 1, 2, ..., M
(Vx)

k+1
m = ϕ′

2(tm), m = 0, M
(V)k+1

m = ϕ2(tm), m = 0, 1, 2, ..., M.

Equations (20) and (21) can be written in matrix form as follows:

ACk+1 = CkB + D[η1Ykµ0 +
k−1

∑
p=0

(
Yp − Yp+1

)
µp−s + η1Ykν0 +

k−1

∑
p=0

(
Yp − Yp+1

)
νp−s] + qk+1. (22)

where Ck+1 = [µk+1
−1 ,µk+1

0 , ...µk+1
M+1,νk+1

−1 ,νk+1
0 , ...νk+1

M+1]
T

and Ck = [µk
−1,µk

0, ...µk
M+1,νk

−1,νk
0, ...νk

M+1]
T

.
After some simplification, we obtain

ACk+1 = F. (23)
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where A represents the square matrix of order (2M + 6)× (2M + 6), and F is the column
vector of order (2M + 6).

A =




A1
... B1

· · · · · · · · ·
B1

... A1


, B =




A2
... B2

· · · · · · · · ·
B2

... A2


,

D =




A3
... B2

· · · · · · · · ·
B2

... A3


, qk+1 =




q1
· · ·
q2


.

where

A1 =




1
6

4
6

1
6

p1 p2 p1
p1 p2 p1

. . . . . . . . .
p1 p2 p1

p1 p2 p1
1
6

4
6

1
6




, B1 =




0 0 0
p3 p4 p3

p3 p4 p3
. . . . . . . . .

p3 p4 p3
p3 p4 p3
0 0 0




,

A2 =




0 0 0
p5 p6 p5

p5 p6 p5
. . . . . . . . .

p5 p6 p5
p5 p6 p5
0 0 0




, B2 =




0 0 0
0 0 0

0 0 0
. . . . . . . . .

0 0 0
0 0 0
0 0 0




,

A3 =




0 0 0
1
6

4
6

1
6

1
6

4
6

1
6

. . . . . . . . .
1
6

4
6

1
6

1
6

4
6

1
6

0 0 0




, q1 =




φk+1
1

(Q1)
k+1
0

(Q1)
k+1
1

...
(Q1)

k+1
N−1

(Q1)
k+1
N

φk+1
2




, q2 =




ϕk+1
1

(Q2)
k+1
0

(Q2)
k+1
1

...
(Q2)

k+1
N−1

(Q2)
k+1
N

ϕk+1
2




,

where

p1 = η1Y0
6 − 1

2h2 +
1

12 γ1 − 1
4h γ2,

p1 = 2η1Y0
3 − 1

h2 +
1
3 γ1,

p3 = α
2
(
− γ3

2h + γ4
6
)
,

p4 = α
2

(
γ3
2h + 2γ4

3

)
,

p5 = 1
2h2 +

η1Y0
6 , and

p6 = − 1
h2 +

2η1Y0
3 .

Algorithm

• Describe the model of TFCBEs.
• Use quasi-linearization technique to linearize the problem.
• Use the Caputo FD and the CBS functions to discretize the presented problem.
• Obtain the system of order (2M + 6)× (2M + 6).
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• For each time step, solve the above system using Wolfram Mathematica 11.

5. Stability Analysis

A stability analysis is introduced to affirm that the scheme does not amplify errors.
The numerical error and stability of the numerical scheme are strongly related. If prob-
lems committed during one computing time step do not result in additional errors as the
computations proceed, then the finite difference scheme is stable. When errors in a scheme
do not change as calculations are performed, it is said to be unconditionally stable [42].
The principle of stability is connected to computation technique errors that do not rise
as the method progresses [43]. In this section, we will utilize the Fourier series scheme
to assess the stability of the suggested methodology [44,45]. In order to perform Fourier
stability analysis, a temporary freeze is applied to the non-linear terms. As a result, we
have frozen U and V as constants ω1 and ω2, respectively [46]. Only linear equations are
appropriate for stability analysis. The following equation is constructed by substituting an
approximation of Equation (18):

η1Y0Uk+1
j − 1

2

M
∑

ι=0
D2

jιU
k+1
ι + 1

2 (ηω1 + α1ω2)
M
∑

ι=0
D1

jιU
k+1
ι + α1ω1

2

M
∑

ι=0
D1

jιV
k+1
ι = − 1

2 (ηω1 + α1ω2)
M
∑

ι=0
D1

jιU
k
ι

− α1ω1
2

M
∑

ι=0
D1

jιV
k
ι + 1

2

M
∑

ι=0
D2

jιU
k
ι + η1Y0Uk

j − η1
k
∑

p=1
Yp[Uk−s+1

j − Uk−s
j ] + Q1.

(24)

Let Ũk
j and Ṽk

j be the estimated solution to (24), and errors µk
j and νk

j can be presented as

{
µk

j = Uk
j − Ũk

j ,
νk

j = Vk
j − Ṽk

j ,
k = 0, 1, ...M, j = 0, 1, ...N − 1 (25)

Corresponding vectors are as follows:
{

µk = [µk
1, µk

2, ...µk
N−1]

T
,

νk = [νk
1 , νk

2 , ...νk
N−1]

T
.

(26)

We analyze the stability of the scheme given in (24), and the source term is considered to be
zero. We obtain the round-off error equation as follows:

[
− 1

2h2 − ζ
4h + η1Y0

6

]
µk+1

j−1 +
[

2η1Y0
3 + 1

h2

]
µk+1

j +
[
− 1

2h2 +
ζ

4h + η1Y0
6

]
µk+1

j−1 − α1ω1
4h νk+1

j−1

+ α1ω1
4h νk+1

j+1 =
[

1
2h2 +

ζ
4h + η1Y0

6

]
µk

j−1 +
[

2η1Y0
3 − 1

h2

]
µk+1

j +
[

1
2h2 − ζ

4h + η1Y0
6

]
µk+1

j+1

+ α1ω1
4h νk

j−1 −
α1ω1

4h νk
j+1 + η1

k
∑

p=1
Yp

[
1
6

(
µ

k−p+1
j−1 − µ

k−p
j−1

)
+ 2

3

(
µ

k−p+1
j − µ

k−p
j

)
+ 1

6

(
µ

k−p+1
j+1 − µ

k−p
j+1

)]
,

(27)

where ζ = (ηω1 + α1ω2).
Grid functions are defined as follows:

µk(x) =





µk
j , xj − h

2 < x ≤ xj +
h
2 ,

0, 0 < x ≤ h
2 or L − h

2 < x ≤ L,
, νk(x) =





νk
j , xj − h

2 < x ≤ xj +
h
2 ,

0, 0 < x ≤ h
2 or L − h

2 < x ≤ L,

Fourier expansion for µk(x) and νk(x) can be represented as
{

µk(x) = ∑∞
p=−∞ Xk(p)ei2πpx/L,

νk(x) = ∑∞
p=−∞ Yk(p)ei2πpx/L,

(28)

where Xk(p) = 1
L
∫ L

0 µk(x)ei2πpx/Ldx and Yk(p) = 1
L
∫ L

0 νk(x)ei2πpx/Ldx.
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The Parseval equation is given as [47]:
{ ∫ L

0 ∥ µk(x) ∥2dx = ∑∞
p=−∞ ∥ Xk(p) ∥2,

∫ L
0 ∥ νk(x) ∥2dx = ∑∞

p=−∞ ∥ Yk(p) ∥2, (29)

Applying the Parseval equality [48], which is




∫ L
0 ∥ µk(x) ∥2dx = ∑M−1

j=1 h∥ µk
j ∥

2
,

∫ L
0 ∥ νk(x) ∥2dx = ∑M−1

j=1 h∥ νk
j ∥2

,

we have {
∥ µk ∥2

2 = ∑∞
ℓ=−∞ ∥ Xk(ℓ) ∥2,

∥ νk ∥2
2 = ∑∞

ℓ=−∞ ∥ Yk(ℓ) ∥2.

Now we suppose the solution in the form of Fourier series analysis, described as follows:
{

µk
j = Xkeiψx jh,

νk
j = Ykeiψx jh,

(30)

where ψx = (2πℓ/L). Substituting the above relations into (24), we obtain
[

η1Y0
3 cos(ψxh)− 1

h2 cos(ψxh) + 2η1Y0
3 + 1

h2

]
Xk+1 +

.
ι
[

ζ
2h sin(ψxh)

]
Xk+1 +

.
ι
[ α1ω1

2h sin(ψxh)
]
Yk+1

=
[

η1Y0
3 cos(ψxh) + 1

h2 cos(ψxh) + 2η1Y0
3 − 1

h2

]
Xk −

.
ι
[

ζ
2h sin(ψxh)

]
Xk −

.
ι
[ α1ω1

2h sin(ψxh)
]
Yk

+η1
k
∑

p=1

[(
Xk−p+1 − Xk−p

)
1
3 cos(ψxh) + 2

3

]
.

(31)

Set
A=

η1Y0

3
cos(ψxh)− 1

h2 cos(ψxh) +
2η1Y0

3
+

1
h2 ,

B=
ζ

2h
sin(ψxh),

C=
α1ω1

2h
sin(ψxh),

D= cos(ψxh).

We have

AXk+1 +
.
ι(BXk+1 + CYk+1) = −

(
A +

.
ιB
)
Xk −

.
ιCYk +

η1

3

k

∑
p=1

[(
Xk−p+1 − Xk−p

)
D + 2

]

(
A +

.
ιB
)
Xk+1 +

.
ιCYk+1 = −

(
A +

.
ιB
)
Xk −

.
ιCYk +

η1

3

k

∑
p=1

[(
Xk−p+1 − Xk−p

)
D + 2

]

(
A +

.
ιB
)
Xk+1 = −

(
A +

.
ιB
)
Xk −

.
ιC(Yk+1 + Yk) +

η1

3

k

∑
p=1

[(
Xk−p+1 − Xk−p

)
D + 2

]
(32)

Then

|Xk+1| ≤| Xk | +
| .

ιC |
| A +

.
ιB | (| Yk+1 | + | Yk |) +

1
| A +

.
ιB |

η1

3

k

∑
p=1

[(
Xk−p+1 − Xk−p

)
D + 2

]
. (33)

Theorem 1. Let Xk be the solution to (32). Then Ek is the positive constant, and we have

| Xk |≤ Ek | X0 |, k = 1, 2, 3, ..., N − 1. (34)
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Proof. Using mathematical induction, let k = 1 in Equation (33) yield

|X1| ≤| X0 | + | .
ιC |

| A +
.
ιB | (| Y1 | + | Y0 |). (35)

Using the convergence of the series on the right-hand side of Equation (33),

| Yk |≤ P1 | X0 |, k = 0, 1, 2, ..., N − 1,

where P1 is a positive constant. Equation (35) becomes

| X1 |≤| X0 | +P1(| X0 |) ≤ (1 + P1) | X0 |≤ E1 | X0 |,

where E1 = 1 + P1. Now, suppose that

| Xk |≤ Ek | X0 |, k = 1, 2, ..., N − 2. (36)

Using Equation (36), Equation (33) yields

| Xk+1 |≤ Ek | X0 | +GE1 | X0 | +H
k

∑
p=1

[(X0 − X0)D + 2] ≤ Ek+1 | X0 |, (37)

where G = |.ιC|
|A+

.
ιB| , and H |1|

|A+
.
ιB| . □

Remark 1. Similar to the above, positive constants Ik are such that

| Yk |≤ Ik | Y0 |, k = 1, 2, ..., N − 1. (38)

Theorem 2. The FD scheme (20) and (21) are unconditionally stable for λϵ(0, 1).

Proof. According to Theorem 1 and Remark 1, we obtain

{
∥ µk ∥2

2 = ∑∞
ℓ=−∞ ∥ Xk(ℓ) ∥2 ≤ ∑∞

ℓ=−∞ E2
k ∥ X0(ℓ) ∥2 = E2

k∥ µ0 ∥2
2,

∥ νk ∥2
2 = ∑∞

ℓ=−∞ ∥ Yk(ℓ) ∥2 ≤ ∑∞
ℓ=−∞ I2

k ∥ Y0(ℓ) ∥2 = I2
k ∥ ν0 ∥2

2,
(39)

∥ Uk − ũk ∥2
2≤ Ek∥ U0 − ũ0 ∥2

2,

∥ Vk − ṽk ∥2
2≤ Ik∥ V0 − ṽ0 ∥2

2,
(40)

Hence, the proposed scheme is unconditionally stable. □

6. Numerical Results

In this segment, we describe two examples to illustrate the performance of the scheme
(18) and (19). Results are obtained by using the cubic B-spline. Absolute errors are calculated
using the ∥L∥∞ and ∥L∥2 errors, i.e.,

∥L∥∞ = ∥U(xr, t)− ũ(xr, t)∥∞ = max
0≤r≤N

| U(xr, t)− ũ(xr, t) |,

and

∥L∥2 = ∥U(xr, t)− ũ(xr, t)∥2 =

(
h

N

∑
i=0

| U(xr, t)− ũ(xr, t) |2
) 1

2

.

where ũ(xr, t) is an approximate solution.
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Example 1. Consider the TFCBE in the Caputo sense, when γ = 1000 and α1 = α2 = 0.001,
{

∂λU
∂tλ − ∂2U

∂x2 + γU ∂U
∂x + α1

∂(UV)
∂x = Q1

∂λV
∂tλ − ∂2V

∂x2 + γV ∂V
∂x + α2

∂(UV)
∂x = Q2

a ≤ x ≤ b, 0 ≤ t ≤ T, 0 < λ < 1 (41)

where BCs and ICs are
{

u(0, t) = u(1, t) = 0
v(0, t) = v(1, t) = 0

and
{

u(x, 0) = 0
v(x, 0) = 0

, respectively.

The exact solutions are U(x, t) = V(x, t) = x2(x − 1)2t2 [48]. In Table 2, the computa-
tional results exhibit the value of U(x, t) and V(x, t) at different stages of x, for Example 1.
In Tables 3 and 4, the ∥L∥∞ of U(x, t) are estimated on λ = 0.1, 0.3 and 0.5 for different
values of N and provide an analysis of the convergence order between stages. In Table 5,
∥L∥∞ and an order of convergence assessment are conducted for U(x, t) at different values
of τ when λ = 0.1, 0.005.

Table 2. Absolute error of U(x, t) and V(x, t) at λ = 0.3 for Example 1, when ∆t = 1
1000 , and N = 100.

For U(x,t) For V(x,t)

x Exact Approximated Error Approximated Error
Solution Solution Solution

0.1 0.0081 0.0080992 7.95989 × 10−7 0.0080992 7.95986 × 10−7

0.2 0.0256 0.0255991 8.90499 × 10−7 0.0255991 8.90497 × 10−7

0.3 0.0441 0.0440991 9.17458 × 10−7 0.0440991 9.17457 × 10−7

0.4 0.0576 0.0575990 1.01942 × 10−6 0.0575990 1.01942 × 10−6

0.5 0.0625 0.0624987 1.27097 × 10−6 0.0624987 1.27097 × 10−6

0.6 0.0576 0.0575982 1.82313 × 10−6 0.0575982 1.82313 × 10−6

0.7 0.0441 0.0440967 3.31485 × 10−6 0.0440967 3.31485 × 10−6

0.8 0.0256 0.0255910 9.02991 × 10−6 0.0255910 9.02991 × 10−6

0.9 0.0081 0.0080862 1.38116 × 10−5 0.0080862 1.38116 × 10−5

Table 3. Absolute error and order of convergence of U(x, t) when λ = 0.1, 0.3, 0.5 and ∆t = 0.001 for
Example 1.

h ∥L∥∞ Order ∥L∥∞ Order ∥L∥∞ Order

λ = 0.1 λ = 0.3 λ = 0.5

1/20 3.39429 × 10−4 · · · 3.39353 × 10−4 · · · 3.39557 × 10−4 · · ·
1/40 8.88467 × 10−5 1.93372 8.88382 × 10−5 1.93353 8.88819 × 10−5 1.93369
1/80 2.22587 × 10−5 1.99695 2.22520 × 10−5 1.99725 2.22364 × 10−5 1.99897
1/160 5.59571 × 10−6 1.99198 5.58911 × 10−6 1.99324 5.55831 × 10−6 2.00021
1/320 1.41227 × 10−6 1.98632 1.40599 × 10−6 1.98461 1.37167 × 10−6 2.01871

Table 4. Absolute error and order of convergence of U(x, t) when λ = 0.7, 0.8, 0.9 and ∆t = 0.001 for
Example 1.

h ∥L∥∞ Order ∥L∥∞ Order ∥L∥∞ Order

λ = 0.7 λ = 0.8 λ = 0.9

1/20 3.39995 × 10−4 · · · 3.40177 × 10−4 · · · 3.40102 × 10−4 · · ·
1/40 8.88670 × 10−5 1.93579 8.86860 × 10−5 1.93951 8.81345 × 10−5 1.94819
1/80 2.20861 × 10−5 2.00851 2.18047 × 10−5 2.02407 2.11294 × 10−5 2.06046
1/160 5.37405 × 10−6 2.03906 5.06770 × 10−6 2.10524 4.36195 × 10−6 2.27621
1/320 1.17911 × 10−6 2.18831 8.66987 × 10−7 2.54725 1.63195 × 10−6 1.88726
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Table 5. Absolute error and order of convergence of U(x, t) when λ = 0.1, 0.05 and N = 512 for
Example 1.

τ ∥L∥∞ Order ∥L∥∞ Order

λ = 0.1 λ = 0.05

1/16 4.41715 × 10−4 · · · 4.41624 × 10−4 · · ·
1/32 1.14146 × 10−4 1.95224 1.14119 × 10−4 1.95228
1/64 2.89674 × 10−5 1.97838 2.89596 × 10−5 1.97843
1/128 7.26223 × 10−6 1.99595 7.26003 × 10−6 1.99599

Figure 1 shows the exact 3D solution, while Figure 2 represents the comparison of
2D exact and approximate values U and V using N = 100, ∆t = 0.001, and λ = 0.1. The
convergence of the exact and approximate solutions is illustrated in Figure 3 at different
time stages for Example 1. In Figure 4, the graphs display the function error for different
values of N and λ.
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Figure 3. For Example 1, Exact and Approximate solutions at different time stages. (a) N = 40,
∆t = 1/32 and λ = 0.1 of U, (b) N = 40, ∆t = 1/32 and λ = 0.1 of V, (c) N = 80, ∆t = 1/64 and
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In Figure 4, graphs show the error function (EF) for different value of N and λ.

Figure 3. For Example 1, Exact and Approximate solutions at different time stages. (a) N = 40,
∆t = 1/32 and λ = 0.1 of U, (b) N = 40, ∆t = 1/32 and λ = 0.1 of V, (c) N = 80, ∆t = 1/64 and
λ = 0.5 of U, (d) N = 80, ∆t = 1/64 and λ = 0.5 of V, (e) N = 160, ∆t = 1/132 and λ = 0.9 of U,
(f) N = 160, ∆t = 1/132 and λ = 0.9 of V.

In Figure 4, graphs show the error function (EF) for different value of N and λ.

Example 2. Consider the TFCBE in the Caputo sense, when γ = 1000 and α1 = α2 = 0.001,
{

∂λU
∂tλ − ∂2U

∂x2 + γU ∂U
∂x + α1

∂(UV)
∂x = Q1

∂λV
∂tλ − ∂2V

∂x2 + γV ∂V
∂x + α2

∂(UV)
∂x = Q2

a ≤ x ≤ b, 0 ≤ t ≤ T, 0 < λ < 1 (42)

where BCs and ICs are
{

u(0, t) = v(o, t) = t2

u(1, t) = v(1, t) = t2e
and

{
u(x, 0) = 0
v(x, 0) = 0

, respectively.

The exact solutions are U(x, t) = V(x, t) = t2ex. For Example 2, Table 6 displays the
computational results showing the values of the function at various stages, while Table 7
represents the behaviour of the error norm for different values of k at λ = 0.1 and 0.05.
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Figure 4. Error graph at different stages for Example 1. (a) EF for U, when λ = 0.1 and ∆t = 1/1000.
(b) EF for V, when λ = 0.1 and ∆t = 1/1000. (c) EF for U, when N = 100 and ∆t = 1/100. (d) EF for
V, when N = 100 and ∆t = 1/100.

Table 5. Absolute error and order of convergence of U(x, t) when λ = 0.1, 0.05 and N = 512 for
Example 1.

τ ∥ L ∥∞ Order ∥ L ∥∞ Order

λ = 0.1 λ = 0.05

1/16 4.41715 × 10−4 · · · 4.41624 × 10−4 · · ·
1/32 1.14146 × 10−4 1.95224 1.14119 × 10−4 1.95228
1/64 2.89674 × 10−5 1.97838 2.89596 × 10−5 1.97843
1/128 7.26223 × 10−6 1.99595 7.26003 × 10−6 1.99599

Example 2. Consider the TFCBE in the Caputo sense, when γ = 1000 and α1 = α2 = 0.001,
{

∂λU
∂tλ − ∂2U

∂x2 + γU ∂U
∂x + α1

∂(UV)
∂x = Q1

∂λV
∂tλ − ∂2V

∂x2 + γV ∂V
∂x + α2

∂(UV)
∂x = Q2

a ≤ x ≤ b, 0 ≤ t ≤ T, 0 < λ < 1 (42)

where BCs and ICs are
{

u(0, t) = v(o, t) = t2

u(1, t) = v(1, t) = t2e
and

{
u(x, 0) = 0
v(x, 0) = 0

, respectively.

The exact solutions are U(x, t) = V(x, t) = t2ex. For Example 2, Table 6 displays the
computational results showing the values of the function at various stages, while Table 7
represents the behaviour of the error norm for different values of k at λ = 0.1 and 0.05.

Figure 4. Error graph at different stages for Example 1. (a) EF for U, when λ = 0.1 and ∆t = 1/1000.
(b) EF for V, when λ = 0.1 and ∆t = 1/1000. (c) EF for U, when N = 100 and ∆t = 1/100. (d) EF for
V, when N = 100 and ∆t = 1/100.

Table 6. Absolute error of U(x, t) and V(x, t), when λ = 0.1, ∆t = 0.001, and N = 100, for Example 2.

For U(x,t) For V(x,t)

x Exact Approximated Error Approximated Error
Solution Solution Solution

0.1 1.10517 1.10517 2.99571 × 10−7 1.10517 2.99571 × 10−7

0.2 1.22140 1.22140 6.01967 × 10−7 1.22140 6.01967 × 10−7

0.3 1.34986 1.34986 9.10470 × 10−7 1.34986 9.10470 × 10−7

0.4 1.49182 1.49183 1.22815 × 10−6 1.49183 1.22815 × 10−6

0.5 1.64872 1.64872 1.55804 × 10−6 1.64872 1.55804 × 10−6

0.6 1.82212 1.82212 1.90185 × 10−6 1.82212 1.90185 × 10−6

0.7 2.01375 2.01375 2.25080 × 10−6 2.01375 2.25080 × 10−6

0.8 2.22554 2.22554 2.53167 × 10−6 2.22554 2.53167 × 10−6

0.9 2.71828 2.71828 2.35147 × 10−6 2.71828 2.35147 × 10−5

Table 7. Absolute error and order of convergence of U(x, t) when λ = 0.1, 0.05 and N = 512 for
Example 2.

τ ∥L∥∞ Order ∥L∥∞ Order

λ = 0.1 λ = 0.05

1/64 1.63599 × 10−3 · · · 1.63597 × 10−3 · · ·
1/128 4.10724 × 10−4 1.99392 4.10713 × 10−4 2.01259
1/256 1.01791 × 10−4 2.01256 1.01786 × 10−4 2.01259
1/512 2.42205 × 10−5 2.07131 2.42145 × 10−5 2.07159
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Figure 5 shows the exact 3D solution, while Figure 6 represents the comparison of the
exact and approximate 2D solutions for U and V using N = 100, ∆t = 0.001, and λ = 0.1.
For Example 2, Figure 7 illustrates the convergence of the exact and approximate solution
at different stages. In Figure 8, the graphs display the function error for different values of
N and λ.
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Figure 5 shows the exact 3D solution, while Figure 6 represents the comparison of the
exact and approximate 2D solutions for U and V using N = 100, ∆t = 0.001, and λ = 0.1.
For Example 2, Figure 7 illustrates the convergence of the exact and approximate solution
at different stages. In Figure 8, the graphs display the function error for different values of
N and λ.
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Figure 7. For Example 2, exact and approximate solutions at different time stages. (a) N = 40,
∆t = 1/32, and λ = 0.1 of U. (b) N = 40, ∆t = 1/32, and λ = 0.1 of V. (c) N = 80, ∆t = 1/64, and
λ = 0.9 of U. (d) N = 80, ∆t = 1/64, and λ = 0.9 of V.(e) N = 160, ∆t = 1/132, and λ = 0.5 of U.
(f) N = 160, ∆t = 1/132, and λ = 0.5 of V.
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Figure 7. For Example 2, exact and approximate solutions at different time stages. (a) N = 40,
∆t = 1/32, and λ = 0.1 of U. (b) N = 40, ∆t = 1/32, and λ = 0.1 of V. (c) N = 80, ∆t = 1/64, and
λ = 0.9 of U. (d) N = 80, ∆t = 1/64, and λ = 0.9 of V. (e) N = 160, ∆t = 1/132, and λ = 0.5 of U.
(f) N = 160, ∆t = 1/132, and λ = 0.5 of V.
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Figure 8. Error graph of function at different stages for Example 2. (a) EF for U, when ∆t = 1/512
and λ = 0.1. (b) EF for V, when ∆t = 1/512 and λ = 0.1. (c) EF for U, when N = 100 and ∆t = 1/100.
(d) EF for V, when N = 100 and ∆t = 1/100.

7. Conclusion Remarks

In the conducted research, we have developed the efficient approximate method
for TFCBEs. It is used to study turbulent fluids, suspensions, and the propagation of
shallow water waves. Here, we obtain a approximate solution for TFCBEs using the
CBS and Crank–Nicolson method. The time FD has been discretized using Caputo’s
formula. The numerical algorithm shows that the system is unconditionally stable. The
numerical order of convergence has also been determined. Two numerical test problems
have been considered in order to evaluate the effectiveness of the delivered method. The
results presented in the tables and graphs demonstrate the applicability and accuracy of
the presented technique. Approximated values have been compared with exact values,
and their errors have been determined. The numerical results were calculated using
Mathematica 12.3, and our method yielded acceptable outcomes.
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7. Conclusion Remarks

In the conducted research, we have developed the efficient approximate method
for TFCBEs. It is used to study turbulent fluids, suspensions, and the propagation of
shallow water waves. Here, we obtain a approximate solution for TFCBEs using the
CBS and Crank–Nicolson method. The time FD has been discretized using Caputo’s
formula. The numerical algorithm shows that the system is unconditionally stable. The
numerical order of convergence has also been determined. Two numerical test problems
have been considered in order to evaluate the effectiveness of the delivered method. The
results presented in the tables and graphs demonstrate the applicability and accuracy of
the presented technique. Approximated values have been compared with exact values,
and their errors have been determined. The numerical results were calculated using
Mathematica 12.3, and our method yielded acceptable outcomes.
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