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Abstract: In this article, we compute the irregularity measures of generalized Sierpiński graphs and
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indices for generalized Sierpiński graphs of any arbitrary graph H along with classification of the
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1. Introduction

For many years, the topic of polymer networks has been of great importance in
research. The properties of polymer networks rely on the structure of polymer chains and
how these chains are cemented to form a network. The primary study of polymer modelling
began with linear polymeric structures, but nowadays, researchers are focusing their
attention on the complex underlying geometries as well as fractal generalized networks.

In theoretical chemistry, a numerical quantity is used to gain information about the
chemical, physical or biological properties of organic substances. This numerical quantity is
obtained by applying mathematical definitions to the molecular structures of the substance,
and it is called a topological index.

We consider simple, finite, connected and undirected graphs in our present study.
Graph theoretic terminologies that are not defined here can be found in [1]. Let H = H(V, E)
be a graph, with V as its node set and E its edge set. The cardinalities of V and E are of
order n and size m of H, respectively. The total number of nodes adjacent to a node x ∈ V is
the degree of x in H, denoted by dH(x) or simply d(x). Pn and Sn are path and star graphs,
respectively, with n nodes.

In 1998, Bollobás et al. [2] introduced the following definition of the generalized
Randić index:

Rγ(H) = ∑
xy∈E(H)

(
d(x)d(y)

)γ,

where γ is any non-zero real number. For γ = −1
2 , we obtain the famous Randić index,

while for γ = 1
2 , 1 gives the reduced Randić and second Zagreb indices.

The historical and mathematical concepts of the above-discussed topological indices
can be found in [3–8].

By replacing product with sum in the above expression, we obtain the general sum-
connectivity index. The concept of general sum-connectivity index was put forward by
Zhou et. al. in [9] and is defined as

χγ(H) = ∑
xy∈E(H)

(
d(x) + d(y)

)γ.
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From the above, the sum-connectivity index can be obtained by replacing γ with −1
2 .

When γ = 1, the expression is known as the first Zagreb index, while for γ = 2, we obtain
the hyper Zagreb index.

Studies on the general sum-connectivity, sum-connectivity, first Zagreb and hyper
Zagreb indices have been conducted by many researchers [5,10–13].

A graph G is regular if the degree of each of its nodes is same; otherwise, it is irregular.
In most problems and applications, it is of great interest to know the irregularity of H. The
topological characterization of the irregularity of H is useful for investigating the structural
properties of random and deterministic networks, as well as systems appearing in social
and chemical structures and biology [14].

In 1991, Albertson [15] defined the irregularity of graph H as

IrrAlb(H) = ∑
xy∈E(H)

|d(x)− d(y)|.

The above quantity is also named the Albertson index or third Zagreb index.
In [16], the authors proposed a similar kind of quantity (a forgotten topological index):

IrrAlb2(H) = ∑
xy∈E(H)

(d(x)− d(y))2.

Detailed studies on the above irregularities can be found in [17–22].
For a graph H of order n ≥ 2, let Vl be a set of words with a length of l letters from

V, where l is a positive integer. The letters of a word x ∈ Vl are indexed by x1x2 · · · xl .
Klavžar [23] introduced the concept of Sierpiński graphs S(Kn, l). Later, Gravier [24] gener-
alized this concept for any graph G and named it the generalized Sierpiński graph gS(G, l).
Motived by the study of Gravier [24] and topological index work by Javed et. al. [25], we
consider the problem of irregularities and connectivity indices for generalized Sierpiński
graphs gS(G, l) and classify the extremal graphs for said invariants. In QSAR/QSPR stud-
ies, a TI (topological index) is a numeric entity associated with a chemical graph which
can tell the specific physical and chemical properties of the corresponding molecule. In
many problems and applications, it is interesting to know how irregular a graph can be.
The generalized Sierpiński graph gS(H, l) of H with dimension l is a graph of Vl such that
two words, x and y, form an edge iff (if and only if) there exists i ∈ {1, · · · , l}, satisfying
the following:

• xj = yj, if j < i.
• xi ̸= yi but {xi, yi} ∈ E(H).
• xj = yi and yj = xi, whenever j > i.

From the above, we note that if xy∈ E(gS(H, l)), then there is uv ∈ E(H) and a
word z satisfying x= zuvv · · · v and y= zvuu · · · u. A node of the representation xx · · · x
is said to be an extreme node. For H and an integer l ≥ 2, gS(H, l) has n extreme
nodes. Further, we have dH(x) = dgS(H,l)(xx · · · x), dH(x) + 1 = dgS(G,l)yxx · · · x and
dH(y) + 1 = dgS(H,l)xyy · · · y. Figures 1 and 2 give gS(H, l) and gS(C4, l), respectively.

From the construction, we have x ∈ V(gS(H, l)) and dgS(H,l)(x)∈ {dG(x), dG(x) + 1},
where dG(x) represents the degree of x in H. We follow the notations and terminologies
of [26]. Let |dG(x), dG(y)|gS{H,l} be the number of copies {zxyy . . . y, zyxx . . . x} of the edge
{x, y} whose endpoints have degrees dG(x) and dG(y) in gS(H, l). For x, y ∈ V(H), the
number of C3s in H with nodes x and y is denoted by ▷(x, y), and ▷(H) is the number
of C3s in H. For an arbitrary {x, y} ∈ E(H), we see that |NG(x) ∩ NG(y)| = ▷(x, y),
|NG(x)∪ NG(y)| = dH(x) + dH(y)−▷(x, y) and |NG(x)− NG(y)| = dG(x)−▷(x, y). For
H, we use the identity 1 + n + n2 + · · ·+ nl−1 = nl−1

n−1 and denote it as ξn(l).
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Figure 1. Generalized Sierpiński Graphs gS(H, 1) and gS(H, 2).

Figure 2. Generalized Sierpiński Graphs gS(C4, 1) and gS(C4, 3).

In [27], the authors used the concept of topological indices to describe the structure
of polymers with optimal levels of macroscopic properties. Javed et. al. [25] gave bounds
on topological indices for generalized Sierpiński and extended Sierpiński graphs. In this
article, we find the irregularity measures of a model of polymer networks based on gS(H, l).
Moreover, we present upper/lower bounds on the general sum-connectivity and general
Randić indices for gS(H, l) of any graph H. Our results are very general, and the bounds
are sharp for large class of graphs. This study answers several questions and fills the gaps
in previously published articles.

2. Discussion and Main Results

In this section, we calculate the irregularity of the generalized Sierpiński graph for any
arbitrary graph G. Some sharp bounds are also presented as corollaries of the main result.
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Moreover, we present the bounds on general connectivity indices, such as the general
sum-connectivity and general Randić indices, for the generalized Sierpiński graphs.

First, we mention an important lemma which we use to prove the main results.

Lemma 1 ([26]). For a graph H of order n and an integer l ≥ 2, the following holds for an arbitrary
edge xy of H.

1. |d(x), d(y)|gS(H,t) = nl−2(n − d(x)− d(y) +▷(x, y)
)
.

2. |d(x), d(y) + 1|gS(H,t) = nl−2(d(y)−▷(x, y)
)
− ξn(l − 2)d(x).

3. |d(x) + 1, d(y)|gS(H,t) = nl−2(d(x)−▷(x, y)
)
− ξn(l − 2)d(y).

4. |d(x) + 1, d(y) + 1|gS(H,t) = nl−2(▷ (x, y) + 1
)
+ ξn(l − 2)(d(x) + d(y) + 1).

The first result is about the Albertson irregularity of the generalized Sierpiński graph
of any graph and presents an explicit formula for it.

Theorem 1. Let H be a graph. Then, the Albertson irregularity of the generalized Sierpiński graph
gS(H, l) with dimension l ≥ 2 is

IrrAlb(gS(H, l)) = IrrAlb(H)(ξn(l) + ξn(l − 1)) + 2ω,

where

ω = ∑
xy∈E(H)

d(x)=d(y)

(
nl−2(d(x)−▷(x, y))− ξn(l − 2) · d(y)

)
.

Proof. Let H be a graph with n nodes. The Albertson irregularity for the generalized
Sierpiński graph of H, gS(H, l) is given as

IrrAlb(gS(H, l)) = ∑
xy∈E(H)

∑
i,j=0,1

|d(x) + i, d(y) + j|gS(H,t)
∣∣d(x) + i − (d(y) + j)

∣∣.
From Lemma 1, we have

IrrAlb(gS(H, t)) = ∑
xy∈E(H)

[
nl−2(n − d(x)− d(y) +▷(x, y)

)∣∣d(x)− d(y)
∣∣

+

(
nl−2(d(y)−▷(x, y)

)
− ξn(l − 2)d(x)

)∣∣d(x)− (d(y) + 1)
∣∣

+

(
nl−2(d(x)−▷(x, y)

)
− ξn(l − 2)d(y)

)∣∣(d(x) + 1)− d(y)
∣∣

+

(
nl−2(▷ (x, y) + 1

)
+ ξn(l − 2)(d(x) + d(y) + 1)

)
∣∣(d(x) + 1)− (d(y) + 1)

∣∣].

Now, for each edge xy of H, |d(x) + i − d(y)− j| = (d(x) + i − d(y)− j) for d(x) > d(y),
where 0 ≤ i, j ≤ 1. For d(x) = d(y), |d(x) + i − d(y) − j| is either 0 or 1. So we have
the following:

= ∑
xy∈E(H)

(d(x)− d(y))
[

nl−1 + nl−2 + ξn(l − 2) + nl−2 + ξn(l − 2)
]

+ 2 ∑
xy∈E(H)

d(x)=d(y)

[
nl−2(d(x)−▷(x, y))− ξn(l − 2)d(x)

]

= IrrAlb(gS(H, l))
(

ξn(l) + ξn(l − 1)
)
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+ 2 ∑
xy∈E(H)

d(x)=d(y)

[
nl−2(d(x)−▷(x, y))− ξn(l − 2)d(x)

]
,

which is the required result.

The importance of the above results lies in the closed formulae for the Albertson
irregularity of the generalized Sierpiński graph of an arbitrary graph. The following are
its consequences.

Corollary 1. For a tree T, the generalized Sierpiński graph gS(T, l) satisfies

2(n − 3)
(

nl−2ξn(l − 2)
)
≤ IrrAlb(gS(H, l)) ≤ (n − 1)(n − 2)

(
ξn(l) + ξn(l − 1)

)
.

The lower equality is achieved iff T = Pn and the upper is achieved iff T = Sn.

The following result tells us that the Albertson irregularity-2 of the generalized Sier-
piński graph of H depends on the Alberston irregularity-2 and the first Zagreb index
of H.

Theorem 2. Let H be a graph and gS(H, l) with l ≥ 2 be the generalized Sierpiński graph of H.
Then, the Albertson-2 irregularity of gS(H, l) is given as follows:

IrrAlb2(gS(H, l)) = IrrAlb2(H)
(
ξn(l) + 2ξn(l − 1)

)
+

(
ξn(l − 1)

)
M1(G)− 2nl−2 ∑

xy∈E(H)

▷(x, y).

Proof. Let H be a graph with n nodes. The Albertson irregularity-2 for the generalized
Sierpiński graph of H, gS(H, l) can be given as follows:

IrrAlb2(gS(H, l)) = ∑
xy∈E(H)

∑
i,j=0,1

|d(x) + i, d(y) + j|gS(H,t)
(
d(x) + i − (d(y) + j)

)2

From Lemma 1, we have

IrrAlb2(gS(H, t)) = ∑
xy∈E(H)

[
nl−2

(
n − d(x)− d(y) +▷(x, y)

)(
d(x)− d(y)

)2

+

(
nl−2(d(y)−▷(x, y)

)
− ξn(l − 2)d(x)

)(
d(x)− (d(y) + 1)

)2

+

(
nl−2(d(x)−▷(x, y)

)
− ξn(l − 2)d(y)

)(
(d(x) + 1)− d(y)

)2

+

(
nl−2(▷ (x, y) + 1

)
+ ξn(l − 2)(d(x) + d(y) + 1)

)(
(d(x) + 1)− (d(y) + 1)

)2
]

= ∑
xy∈E(H)

[(
d(x)− d(y))2(nl−1 + nl−2 + ξn(l − 2)

)
+

(
nl−2 − ξn(l − 2)

)
(d(x) + d(y))

− 2nl−2 ▷ (x, y) + 2(d(x)− d(y))2(nl−2 + ξn(l − 2))
]

= IrrAlb2(H)
(
ξn(l) + ξn(l − 1) + nl−2)+ (

nl−2 − ξn(l − 2)
)

M1(H)

− 2nl−2 ∑
xy∈E(H)

▷(x, y).

Corollary 2. Let T be any tree. Then, for a given generalized Sierpiński graph gS(T, l), we have
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2ξn(l)− ξn(l − 1)(6n − 10) + 6(n − 1)nl−2 ≤ IrrAlb2(gS(H, l)) ≤

(n − 1)(n − 2)2ξn(l) + ξn(l − 1)
[

2(n − 1)(2n2 − 7n + 8)
]
+ n(n − 1)nl−2.

The lower bound achieves equality iff T = Pn, and the upper inequality achieves equality iff T = Sn.

Now, we will present some results related to the general connectivity indices.

Theorem 3. Let H be a graph and gS(H, l) be the generalized Sierpiński graph of H with l ≥ 2.
Then, for γ > 0, we have

ξn(l) · χγ(H) < χγ(gS(H, l)) < ξn(l) · χγ(H1),

where H1 is a graph obtained from H by adding one extra weight on each node of H, i.e., for every
x ∈ V(H), we have dH1(x) = dH(x) + 1.

Proof. Let gS(H, l) be a generalized Sierpiński graph of a graph H with order n. The
general sum-connectivity index for gS(H, l) is given as

χγ(gS(H, l)) = ∑
xy∈E(H)

∑
i,j=0,1

|d(x) + i, d(y) + j|gS(H,t)
(
d(x) + i + d(y) + j

)γ.

From Lemma 1, we have

χγ(gS(H, l)) = ∑
xy∈E(H)

[
nl−2(n − d(x)− d(y) +▷(x, y)

)(
d(x) + d(y)

)γ

+

(
nl−2(d(y)−▷(x, y)

)
− ξn(l − 2)d(x)

)(
d(x) + (d(y) + 1)

)γ

+

(
nl−2(d(x)−▷(x, y)

)
− ξn(l − 2)d(y)

)(
(d(x) + 1) + d(y)

)γ

+

(
nl−2(▷ (x, y) + 1

)
+ ξn(l − 2)(d(x) + d(y) + 1)

)(
(d(x) + 1) + (d(y)

)
+ 1)γ

]
< ∑

xy∈E(H)

(d(x) + d(y) + 2)γ

[
nl−1 + nl−2 + ξn(l − 2)

]
= ξn(l) · χγ(H1).

Now, for the lower bound, we have

χγ(gS(H, l)) > ∑
xy∈E(H)

[
nl−2(n − d(x)− d(y) +▷(x, y)

)(
(d(x) + i) + (d(y) + j)

)γ

+

(
nl−2(d(y)−▷(x, y)

)
− ξn(l − 2)d(x)

)(
d(x) + d(y)

)γ

+

(
nl−2(d(x)−▷(x, y)

)
− ξn(l − 2)d(y)

)(
d(x) + d(y)

)γ

+

(
nl−2(▷ (x, y) + 1

)
+ ξn(l − 2)(d(x) + d(y) + 1)

)(
d(x) + d(y)

)
)γ

]
= ∑

xy∈E(H)

(d(x) + d(y))γ

[
nl−1 + nl−2 + ξn(l − 2)

]
= ξn(l) · χγ(H),

which is the required result.

For γ < 0, the inequalities in the above result become reverse. For γ = 1, 2, we have
the following corollaries.
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Corollary 3. Let H be a graph and gS(H, l) be the generalized Sierpiński graph of H with l ≥ 2.
Then, for the first Zagreb index, we have

ξn(l) · M1(H) < M1(gS(H, l)) < ξn(l) · M1(H1).

With the bound for the first Zagreb index for the trees, unicyclic graphs and bicyclic
graphs for Zagreb indices of [6], we have the following consequence from Theorem 3.

Corollary 4. Let T, U and B be a tree, a unicyclic and a bicyclic graph. Then, for l ≥ 2, we have

ξn(l) · 2(n − 3) < M1(gS(T, l)) < ξn(l) · (n2 + 4n − 4),

ξn(l) · 4n < M1(gS(U, l)) < ξn(l) · (n2 + 4n + 6),

ξn(l) · (4n + 10) < M1(gS(B, l)) < ξn(l) · (n2 + 4n + 18).

Corollary 5. Let H be a graph and gS(H, l) be the generalized Sierpiński graph of H with l ≥ 2.
Then, for the first hyper Zagreb index, we have

ξn(l) · HM1(H) < HM1(gS(H, l)) < ξn(l) · HM1(H1).

With the help of the results from [11] (see Theorems 6, 7 and 8), and Theorem 3, we
have the following result.

Corollary 6. Let T, U and B be a tree, a unicyclic and a bicyclic graph, respectively, with n and
l ≥ 2. Then,

ξn(l) · 2(8n − 15) < HM1(gS(T, l)) < ξn(l) · (n − 1)(n + 2)2,

ξn(l) · 16n < HM1(gS(U, l)) < ξn(l) · (3n2 + 16n + 58),

ξn(l) · 2(8n + 35) < HM1(gS(B, l)) < ξn(l) · (n3 + 3n2 + 8n + 116).

For γ = −1
2 , we have the following results.

Corollary 7. Let H be a graph and gS(H, l) be the generalized Sierpiński graph of H with l ≥ 2.
Then, for the sum-connectivity index, we have

ξn(l) · χ− 1
2
(H) > χ− 1

2
gS(H, l) > ξn(l) · χ− 1

2
(H1).

Using the extremal values for the general sum-connectivity and harmonic indices of
the unicylic graph and bicyclic graphs from [10,28], the following result follows from the
above corollary.

Corollary 8. Let T be a tree, U be a unicyclic and B be a bicyclic graph of order n. Then,

ξn(l) ·
( 2√

3
+

(n − 3)√
4

)
< χ− 1

2
gS(T, l) < ξn(l) ·

n − 1√
n + 2

,

ξn(l) ·
(

1√
6
+

2√
n + 3

+
n − 3√
n + 2

)
< χ− 1

2
gS(U, l),

χ− 1
2

gS(B, l) < ξn(l) ·
(

n − 4√
6

+
4√
7
+

1√
8

)
.

In the following result, we present the lower/upper bounds on the general Randić
index for gS(H, l).

Theorem 4. Let H be a graph and gS(H, l) be the generalized Sierpiński graph of H for l ≥ 2.
Then, for γ > 0, the general Randić index has the following bounds:
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ξn(l) · Rγ(H) < Rγ(gS(H, l)) < ξn(l) · Rγ(H1)

where H1 is a graph which is obtained from H by adding one extra weight on each node of H, i.e.,
for every x ∈ V(H), we have dH1(x) = dH(x) + 1.

Proof. Let gS(H, l) be the generalized Sierpiński graph of a graph H with order n. The
general Randić index of gS(H, l) can be written as

Rγ(gS(H, l)) = ∑
xy∈E(H)

∑
i,j=0,1

|d(x) + i, d(y) + j|gS(H,t)
(
(d(x) + i) · (d(y) + j)

)γ.

From Lemma 1, we have

Rγ(gS(H, l)) = ∑
xy∈E(H)

[
nl−2(n − d(x)− d(y) +▷(x, y)

)(
d(x) · d(y)

)γ

+

(
nl−2(d(y)−▷(x, y)

)
− ξn(l − 2)d(x)

)(
d(x) · (d(y) + 1)

)γ

+

(
nl−2(d(x)−▷(x, y)

)
− ξn(l − 2)d(y)

)(
(d(x) + 1) · d(y)

)γ

+

(
nl−2(▷ (x, y) + 1

)
+ ξn(l − 2)(d(x) + d(y) + 1)

)(
(d(x) + 1) · (d(y)

)
+ 1)γ

]
< ∑

xy∈E(H)

((d(x) + 1) · (d(y) + 1))γ

[
nl−1 + nl−2 + ξn(l − 2)

]
= ξn(l) · Rγ(H1).

Now, for the lower bound,

Rγ(gS(H, l)) = ∑
xy∈E(H)

∑
i,j=0,1

|d(x) + i, d(y) + j|gS(H,t)
(
(d(x) + i) · (d(y) + j)

)γ.

From Lemma 1, we have

Rγ(gS(H, l)) = ∑
xy∈E(H)

[
nl−2(n − d(x)− d(y) +▷(x, y)

)(
d(x) · d(y)

)γ

+

(
nl−2(d(y)−▷(x, y)

)
− ξn(l − 2)d(x)

)(
d(x) · (d(y) + 1)

)γ

+

(
nl−2(d(x)−▷(x, y)

)
− ξn(l − 2)d(y)

)(
(d(x) + 1) · d(y)

)γ

+

(
nl−2(▷ (x, y) + 1

)
+ ξn(l − 2)(d(x) + d(y) + 1)

)(
(d(x) + 1) · (d(y)

)
+ 1)γ

]
> ∑

xy∈E(H)

(d(x) · d(y))γ

[
nl−1 + nl−2 + ξn(l − 2)

]
= ξn(l) · Rγ(H),

which is the required result.

The inequalities in the above result flip for γ < 0.
The following results hold for γ = 1

2 , 1.

Corollary 9. Let gS(H, l) be the generalized Sierpiński graph of H with l ≥ 2. Then, the bounds
of the reciprocal Randić index are as follows:

ξn(l) · RR(H) < RR(gS(H, l)) < ξn(l) · RR(H1).
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Corollary 10. Let gS(H, l) be the generalized Sierpiński graph of H with l ≥ 2. Then, the second
Zagreb index has the following bounds:

ξn(l) · M2(H) < M2(gS(H, l)) < ξn(l) · M2(H1).

For γ = −1
2 , we have the following:

Corollary 11. Let gS(H, l) be the generalized Sierpiński graph of H with l ≥ 2. Then, the Randić
index has the following bounds:

ξn(l) · R(H) > R(gS(H, l)) > ξn(l) · R(H1)

With values for the smallest general Randić index for trees from [29], the above
corollary implies the following consequence.

Corollary 12. Let gS(T, l) be the generalized Sierpiński graph of T with l ≥ 2. The Randić index
has the bounds

ξn(l) ·
(

n − 1√
2n

)
< R(gS(T, l)) < ξn(l) ·

(
n − 3

2
+
√

2
)

,

ξn(l) ·
(

2
√

3 + 2(n − 3)
)
< RR(gS(T, l)) < ξn(l) ·

(
(n − 1)

√
n + 2

)
,

ξn(l) ·
(

4(n − 2)
)
< M2(gS(T, l)) < ξn(l) ·

(
4n2(n − 1))

)
.

Finally for the general Randić index and M2 from [30], we have the following immedi-
ate consequence of the above result.

Corollary 13. Let U be a unicyclic graph and gS(U, l) be the generalized Sierpiński graph of U for
l ≥ 2. Then, we have

ξn(l) · 4n < M2(gS(U, l)) < ξn(l) ·
(

2n2 + 9
)

,

ξn(l) · 16n < RR(gS(U, l)) < ξn(l) ·
(
(n − 3)

√
2n + 2

√
3n + 3

)
,

ξn(l) ·
(

1
3
+

2√
3n

+
n − 3√

2n

)
< R(gS(U, l)) < ξn(l) ·

(
n
2

)
.
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7. Li, X.; Shi, Y. A survey on the Randić index. MATCH Commun. Math. Comput. Chem. 2008, 59, 127–156.
8. Gutman, I.; Furtula, B.; Elphick, C. Three new/old node-degree-based topological indices. MATCH Commun. Math. Comput.

Chem. 2014, 72, 617–632.
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29. Bingjun, L.; Weijun, L. The smallest Randić index for trees. Proc. Indian Acad. Sci. Math. Sci. 2013, 123, 167–175. [CrossRef]
30. Li, X.; Shi, Y.; Xu, T. Unicyclic graphs with maximum general Randić index for γ > 0. MATCH Commun. Math. Comput. Chem.
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