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Abstract: The degradation of soil bonding, which can be described by the evolution of bond degrada-
tion variables, is essential in the constitutive modeling of cemented soils. A degradation variable
with a value of 0/1.0 indicates that the applied stress is completely sustained by bonded parti-
cles/unbounded grains. The discrete element method (DEM) was used for cemented soils to analyze
the bond degradation evolution and to evaluate the degradation variables at the contact scale. Numer-
ical cemented soil samples with different bonding strengths were first prepared using an advanced
contact model (CM). Constant stress ratio compression, one-dimensional compression, conventional
triaxial tests (CTTs), and true triaxial tests (TTTs) were then implemented for the numerical samples.
After that, the numerical results were adopted to investigate the evolution of the bond degrada-
tion variables BN and B0. In the triaxial tests, B0 evolves to be near to or larger than BN due to
shearing, which indicates that shearing increases the bearing rate of bond contacts. Finally, an
approximate stress-path-independent bond degradation variable Bσ was developed. The evolution
of Bσ with the equivalent plastic strain can be effectively described by an exponential function and a
hyperbolic function.

Keywords: numerical simulation; discrete element method; cemented soil; bond degradation evolution;
bond breakage

1. Introduction

Soil fabric and interparticle bonding together can be termed soil structure [1]. There are
substantial distinctions in the mechanical properties between natural/artificially cemented
soils (CSs) and uncemented soils (USs) ascribed to the interparticle bonding derived from
cementation, as verified by experimental data [2,3]. Cemented soils exhibit structural
yielding in isotropic compression and strain softening in triaxial tests. These characteristics
are ascribed to the degradation evolutions of cementation bond contacts. Further, for
silt-sized soils, fine particles can sustain themselves in a loose structure due to the van der
Waals attraction force [4]. Loose cemented soils may undergo a considerable volume change
under loading/wetting due to interparticle bond degradation and may cause engineering
problems [5,6]. Accordingly, it is essential to quantify the bonding effect and to assess the
bonding degradation evolution when carrying out constitutive modeling of cemented soil.

As a cemented soil is loaded, the interparticle bonds gradually break, and the cemented
soil correspondingly performs towards the uncemented soil. A bond degradation variable
represents the degree to which the soil bonding is damaged. Although it is complex to model the
degree and degradation of interparticle bonding, a variety of formulations have been proposed
and incorporated into constitutive models in recent decades. Some models have assumed a
larger yield surface for cemented soil, which is progressively reduced during bond degradation.
By comparing the yield surface size of cemented soil pc and the corresponding uncemented soil
pc0, the bonding effect can be assessed by evaluating the additional strength ∆pc = pc− pc0 [7,8]

Fractal Fract. 2024, 8, 119. https://doi.org/10.3390/fractalfract8020119 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8020119
https://doi.org/10.3390/fractalfract8020119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract8020119
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8020119?type=check_update&version=1


Fractal Fract. 2024, 8, 119 2 of 16

or the strength ratio R∗ = pc0/pc [9–11]. Alternatively, in the disturbed state concept [12,13],
cemented soil is modeled by a combination of material parts at relatively intact and fully
adjusted states. The bonding effect can be quantified by the disturbance function D, which
denotes the contribution ratio of fully adjusted states to material stress. In the damage
model for cemented soils [14,15], a similar strategy is employed, and the bonding effect
can be quantified by a bond degradation variable. However, owing to the difficulties in
microscopic observations and the deficiency of the micromechanical basis, these bond
degradation indicators that denote the debonding process are based on the macro mechani-
cal differences between cemented and corresponding uncemented soils.

Since it is difficult to obtain insight into the debonding process at the particle and
contact scales with current experimental technologies [16–18], the DEM [19] is a supple-
mentary way to study microscopic behavior and analyze the bond degradation evolution
of cemented soils. The DEM has been employed in microscopic investigations on var-
ious cemented soils, such as cemented sand, structural silt, methane hydrate-bearing
soil, etc. [20–25]. The DEM has also been applied to correlate the macro- and microme-
chanical performances of geomaterials [15,26,27]. Thornton [26] relates the normal and
tangential contact forces to the stress tensor, respectively. Jiang et al. [15] relates the forces
at bonded contacts and the forces at unbonded contacts to the stress tensor, respectively,
and developed micromechanical-based models for cemented soils.

In this study, a numerical sample is first produced using the particle flow code 3D
(PFC3D) [28], whose contact model takes into account rolling and twisting resistances [29]
and van der Waals forces [30,31] to sustain an open structure, followed by precompression
and cementation bond generation. Subsequently, various loading paths, including constant
stress ratio compression, one-dimensional compression, conventional triaxial, and true
triaxial loading, are applied on cemented DEM assemblies with different bond strengths.
After that, the evolution of two representative bond degradation variables versus plastic
strain is micromechanically investigated. Finally, the bond degradation evolution of ce-
mented soils not only depends on the plastic strain but also the stress path. Based on the
DEM analyses of the bond degradation evolution, an approximate stress-path-independent
bond degradation variable and its degradation evolution law are proposed.

2. Materials and Methods
2.1. Bond Contact Model Framework

The force and moment at a contact point between particles are considered to be
conveyed through both particle interactions and the bonding material in parallel. The
total force (moment) vector is the sum of the force (moment) vector transmitted by the
particle interaction and the force (moment) vector transmitted by the cementation bond.
The schematic diagram (Figure 1) shows the forces and moments in four directions: normal,
tangential, rolling, and twisting.
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2.1.1. Particle Interaction

A three-dimensional contact model, which accounts for sliding, rolling and twisting
resistances [28,29], was employed to account for the influence of particle shapes on sphere-
based DEM simulations, and it was then further developed for soils with interparticle
attraction forces, such as silt-sized soils with van der Waals forces [30].

The model posits that the interaction between two spheres occurs at the contact through a
circular flat region with a specific radius Rc = βR, where β serves as the shape parameter gov-
erning the characteristics of rolling and twisting resistances, R = 2R1R2/(R1 + R2) represents
the shared radius of the particle pair, and R1 and R2 are their individual radii, respectively.

In the direction perpendicular to the surface, the normal force is computed by the following:

Fp
n =

{
knδn − Fv δn ≥ 0

0 δn < 0
(1)

where kn is the normal stiffness, δn is the normal overlap between a pair of particles with a
negative value denoting separation, and Fv is the van der Waals force.

The tangential force, rolling moment, and twisting torque are determined through
incremental calculations as follows:

Fp
s ← Fp

s − ks∆δs (2)

Mp
r ← Mp

r − kr∆θr (3)

Mp
t ← Mp

t − kt∆θt (4)

where ks, kr = 0.25knRc
2, and kt = 0.5ksRc

2 denote the tangential, rolling, and twisting
stiffnesses, respectively, and ∆δs, ∆θr, and ∆θt are the relative shear displacement incre-
ment, rotation increment, and twist increment, as introduced in the contact resolution in
PFC3D [28]. Tangential sliding is initiated and the contact transitions to the perfectly plastic
stage once the tangential force reaches its limiting value, i.e.,

∥∥∥Fp
s

∥∥∥ ≤ µ(Fn
p + Fv), where

µ is the friction coefficient between the particles. Similarly, rolling is initiated when the
rolling moment attains the limiting value, i.e.,

∥∥∥Mp
r

∥∥∥ ≤ 0.25ζcRc(Fn
p + Fv), where the

local crushing parameter ζc is 2.1. Plastic twisting is triggered when the torque reaches its
limiting value, i.e., Mp

t ≤ 0.65µRc(Fn
p + Fv).

The normal and tangential stiffnesses can be calculated in a simple way to consider
the effect of particle radii [28]:

kn = πR2E∗/(R1 + R2) (5)

ks = kn/κ∗ (6)

where E∗ represents the effective modulus between particles, and κ∗ denotes the ratio of
normal stiffness to shear stiffness.

2.1.2. Prefailure Behavior of the Cementation Bond

The connection between two spheres can be conceptualized as a short cylinder with
concave spherical ends. The behavior of the cementation bond is proposed based on
both contact tests and theoretical analyses. The bond cylinder radius is calculated by
Rb = λbR [28], where λb is the bond radius multiplier. Before a bond breaks, the bond
force and moment can be updated as follows [28,32]:

Fb
n ← Fb

n − kb
n∆δn (7)

Fb
s ← Fb

s − kb
s ∆δs (8)

Mb
r ← Mb

r − kb
r ∆θr (9)
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Mb
t ← Mb

t − kb
t ∆θt (10)

where Fb
n , Fb

s , Mb
r , and Mb

t denote the transmission of normal force, tangential force,
rolling moment, and twisting torque through the bond material, respectively. kb

n, kb
s ,

kb
r = 0.25kb

nRb
2, and kb

t = 0.5kb
s Rb

2 are the normal stiffness, tangential stiffness, rolling
stiffness, and twisting stiffness, respectively. ∆δn is the relative normal displacement increment.

The transmission of bond force and moment is assumed to occur through different
components or sections, namely A1, B1, C1, C2, B2, and A2 in series, as shown in Figure 2.
Hence, the bond normal stiffness can be calculated as follows [33]:

kb
n = 1/(δA1 + δA2 + δB1 + δB2 + δC1 + δC2) (11)

δA1 =
R1ξE

πE∗Rb
2

δB1 =


1

2πE∗(1−ηE)R1ΛE

(
ln(ΛE+1

ΛE−1 )− ln(ΛE+ξE
ΛE−ξE

)
)

(when ηE < 1)

R1(1−ξE)

πE∗Rb
2 (when ηE = 1)

δC1 =
hb

0/2

ηEπE∗R2
b

where δA1, δB1, and δC1 are calculated by integration along the force-transmitting path, while δA2,

δB2, and δC2 can be obtained similarly. ξE =
√

1− (Rb/R1)
2 and ΛE =

√
1+ ηE

1−ηE
(Rb/R1)

2

are intermediate variables. hb
0 is the bond thickness, and hb

0 = 0 for a thin bond, which
forms after the two particles have been in physical contact. E∗ is the bond effective
modulus. Since the modulus of the bond material is smaller than that of the particles, the
modulus reduction factor ηE is incorporated. The stiffness will be reduced to the parallel
bond [32] when ηE = 1 and hb

0 = 0.
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The bond tangential stiffness can be computed as follows [28]:

kb
s = kb

n/κ∗ (12)

where κ∗ represents the ratio of normal stiffness to shear stiffness in the bond.

2.1.3. Bond Failure Criterion

Upon reaching the failure criterion, the bond undergoes breakage, resulting in abrupt
reductions in force and moment in the contact to their residual values. A bond failure
criterion proposed in Shen et al. [34] is simplified [33] and applied in the simulations.
This bond failure criterion considers the bond size effect and the coupled effect of the
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normal force, tangential force, rolling moment, and twisting torque on the bond failure.
The criterion will be briefly introduced below.

The bond compressive and tensile strengths, denoted by Rb
nc and Rb

nt, respectively, are
expressed as follows [34]:

Rb
nc = χcσb

c Ab, χc =
c1

λb
c3

exp(
c2hb

0
2Rb

) (13)

Rb
nt = χtσ

b
t Ab, χt = 1 (14)

where Ab = πRb
2 represents the cross-sectional area of the bond cylinder. σb

c represents the
compressive strength, and σb

t signifies the tensile strength of the bond material. σb
t = ησσb

c ,
where ησ represents the ratio of tensile strength to compressive strength. χc and χt are
two factors considering the bond size effect, for which c1 = 1.45, c2 = −0.7, and c3 = 1/6
were used.

The shearing, rolling, and twisting strengths, namely Rb
s = Sb

s (Rb
nc + Rb

nt),
Rb

r = Sb
r (Rb

nc + Rb
nt)Rb, and Rb

t = Sb
t (Rb

nc + Rb
nt)Rb, of the bond depend on the com-

pressive strength Rb
nc, the tensile strength Rb

nt, and the bond size [34], where Sb
i (I = s, r,

and t, denoting shearing, rolling, and twisting, respectively) captures the impact of the
normal force on the shearing, rolling, and twisting strengths. A simplified form of Sb

i can
be expressed as follows [33,34]:

Sb
i = mi f b

n [ln(1/ f b
n )]

3/5
(15)

where f b
n = (Fb

n + Rb
nt)/(Rb

nc + Rb
nt) is a dimensionless normal force, and the strength

envelope shape parameters ms = 0.5, mr = 0.3, and mt = 0.36 are adopted according to the
data obtained by Shen et al. [34].

In general, a bond may be subjected to the normal and shear forces, rolling moment,
and torque. A unified failure criterion can be characterized as follows [34]:(∥∥Fb

s
∥∥

Rb
s

)2

+

(∥∥Mb
r
∥∥

Rb
r

)2

+

(
Mb

t

Rb
t

)2

= 1 (16)

2.2. DEM Simulations
2.2.1. Sample Preparation

The particle and particle interaction parameters that are used to prepare the unce-
mented sample are the same as those of the saturated sample in the work of Li et al. [30]
and are shown in Table 1. In particular, at the ball–wall contacts, both the friction coefficient
and the shape parameter are zero. A van der Waals force of 1.6 × 10−6 N is applied to
each ball–ball contact because it cannot be neglected for silt-sized soils [4]. Figure 3 shows
the grain size distribution curve of the DEM sample with a median grain size of 20 µm.
An assembly is compacted in five layers via the multi-layer under-compaction method
(UCM) [35]. The cubic sample is composed of 42,180 particles with a side length of 0.67 mm.
When using the UCM method, the accumulated layers of the particles are compacted to an
intermediate void ratio that is slightly higher than the target void ratio, 0.945, to obtain a
homogenous DEM sample. Then, a vertical pressure of 12.5 kPa is applied to the top and
bottom walls with the sidewalls kept stationary to reproduce an in situ K0 stress state.

After sample preparation, the bonds were then installed at neighboring particles
with a gap of less than gcRb, where gc is the bond thickness threshold. Table 1 lists the
bond parameters that were empirically set to study cemented silts in general [33]. The
compressive and tensile strengths are significant parameters that control the shear strength
of a cemented soil. Two representative compressive strengths, 5 MPa for weak bonds and
25 MPa for strong bonds, were analyzed in this study. Given that the experimental results
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indicate a significantly lower tensile strength compared to the compressive strength, the
tension-to-compression strength ratio was assumed to be 0.1.

Table 1. DEM simulation parameters.

Parameters Values

Particle
Particle density/kg·m−3 2710

Local damping coefficient 0.7
Particle interaction

Effective modulus E∗/MPa 800
Normal-to-shear stiffness ratio κ∗ 1.5

Friction coefficient µ 0.5
Shape parameter β 0.21

Van der Waals force Fv/N 1.6 × 10−6

Bond contact
Bond effective modulus E∗ /MPa 200
Bond modulus reduction factor ηE 0.2

Bond normal-to-shear stiffness ratio κ∗ 2.0
Compressive strength of the bond material σb

c /MPa 5; 25
Bond tension-to-compression strength ratio ησ 0.1

Bond radius multiplier λb 0.35
Bond thickness threshold gc 0.1
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2.2.2. Simulation Execution

The mean stress p, deviator stress q, volumetric strain εv, and deviator strain εs are
expressed as follows:

p =
1
3
(σ1 + σ2 + σ3) (17)

q =

√
2

2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (18)

εv = ε1 + ε2 + ε3 (19)

εs =

√
2

3

√
(ε1 − ε2)

2 + (ε2 − ε3)
2 + (ε3 − ε1)

2 (20)

where σ1, σ2, and σ3 are the principal stresses of the stress tensor, and ε1, ε2, and ε3 are the
principal strains of the stain tensor.
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Following the installation of bonds, numerical samples underwent a series of tests,
including constant stress ratio compression, one-dimensional compression (1D compres-
sion), conventional triaxial tests, and true triaxial tests. Figure 4 shows the stress paths
in the DEM simulations. During one-dimensional compression, incremental loads were
imposed on the top and bottom walls while keeping the sidewalls in a stationary position.
In constant stress ratio compression (CSR compression), incremental loads were applied to
the top and bottom walls, and the sidewalls were servo-controlled to maintain a constant
principal stress ratio CSR = σ3/σ1.
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Figure 4. Stress paths in the DEM simulations: (a) σb
c = 5 MPa and (b) σb

c = 25 MPa.

In triaxial tests, following the isotropic compression of samples to various confining
stresses, continuous deviator loading was initiated by downward and upward movement
of the top and bottom walls. Simultaneously, the sidewalls were servo-controlled to sustain
a constant horizontal stress in the conventional triaxial tests and to align the horizontal
stresses with their designated target values in the true triaxial tests (constant p). The target
values are determined through the following calculation:

σ2 =
(3− 3b)p− (1− 2b)σ1

2− b
(21)

σ3 =
3p− (1 + b)σ1

2− b
(22)

where the coefficient b = (σ2 − σ3)/(σ1 − σ3).

3. Results
3.1. Bond Degradation Evolutions

The stress and strain of a granular material depend on the interparticle forces at the
contacts. The average stress of a representative volume element (RVE) can be expressed as
follows [36]:

σij =
1

V

N

∑
k=1

Fk
i lk

j (23)

where V and N are the volume and the number of contacts of the RVE, respectively; Fk
i

is the contact force at contact k; and lk
j is the branch vector connecting the centers of the

two particles.
In the disturbed state concept and damage mechanics [37] regarding cemented granu-

lar materials, it is assumed that cemented soils generally consist of bonded aggregates and
unbonded grains. To evaluate the bond degradation in cemented soils subjected to external
loading, a primary bond degradation variable can be defined as the ratio of the unbonded
contact number to the total contact number as follows:

BN =
Nd

N
(24)
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where Nd is the number of unbonded contacts.
By assuming that the applied loading is independently sustained by bonded aggre-

gates and unbonded grains, the second bond degradation variable can be defined as the
ratio of the stress sustained by the unbonded contacts to the total stress as follows:

B0 =

Nd

∑
k=1

Fk
i lk

j

N
∑

k=1
Fk

i lk
j

(25)

Under external loading, the bonded aggregates in the cemented soil gradually break
and transform into unbonded grains due to the breakage of bonded contacts. The bond
degradation variables BN and B0 represent the degree to which the soil bonding is dam-
aged. When the bond degradation variable equals zero, the applied loading is completely
sustained by the bonded aggregates, indicating that the soil bonding is intact. The bond
degradation variable of the soil increases as more bonded contacts break. When the value
of the bond degradation variable reaches 1.0, the soil bonding is fully disturbed; the applied
stress is completely sustained by the unbonded grains.

The bond degradation is commonly assumed to vary with the plastic strain. The bond
degradation mainly evolves with the volumetric plastic strain in compression tests, while it
primarily develops with the deviator plastic strain in triaxial tests. Hence, an equivalent
plastic strain must be introduced to consider both the volumetric and deviator plastic

strains. A simple equivalent plastic strain can be defined as ε
p
d =

√
(ε

p
v)

2
+ (ε

p
s )

2
, where ε

p
v

is the volumetric plastic strain and ε
p
s is the deviator plastic strain.

3.2. Compression Tests

Figure 5 shows the compression curves of the numerical samples under constant stress
ratio compression with different principal stress ratios as well as the one-dimensional
compression tests. For the numerical sample with weak bonds (σb

c = 5MPa, sample I), the
void ratio first gradually decreases and then accelerates after an obvious distinguishing
point, namely the “structural yield stress” point, which agrees with the experimental
results [38]. In contrast, the slopes of the compression curves vary relatively gradually for
the numerical sample with strong bonds (σb

c = 25MPa, sample II).
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Figure 5. Compression behavior of the samples with different bond strengths: (a) σb
c = 5 MPa and

(b) σb
c = 25 MPa.

All of the specimens with different principal stress ratios are fairly coincident with
each other except for the specimen with a principal stress ratio of σ3/σ1 = 0.4. Both the
experimental [38,39] and DEM results illustrate that the compression curve with a small
principal stress ratio is separated from the coincident curve, which is probably because
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the stress state approaches the sample strength envelope. The compression curve with
σ3/σ1 = 0.4 is separated from the coincident curves at a mean stress of approximately
65 kPa for sample I, while it separates at approximately 400 kPa for sample II due to the
different bond strengths.

Figure 6 shows the evolution of the bond degradation variables BN and B0 with the
equivalent plastic strain under compression tests. Both variables increase at a decreasing
rate with the equivalent plastic strain until they reach 1.0 under different principal stress
ratios. There is a small threshold strain, especially for sample II, with strong bonds.
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Figure 6. Evolutions of the bond degradation variables in the compression tests on the DEM samples
with different bond strengths: (a) σb

c = 5 MPa and (b) σb
c = 25 MPa.

Both the principal stress ratio and the bond strength affect the evolution of the bond
degradation variables. The effect of the principal stress ratio in sample II with strong
bonds is more considerable than that in sample I. The bond degradation variables generally
decrease as the principal stress ratio increases between 0.4 and 1.0. Except for σ3/σ1 = 0.4
in sample I, B0 is smaller than the corresponding BN, demonstrating the priority of the
bonded contacts to sustain the applied loading throughout the compression tests.

3.3. Conventional Triaxial Tests

Figure 7 shows the relationships between the deviator stress/void ratio and axial
strain observed in the conventional triaxial tests. The DEM simulation reproduces the
typical behavior of cemented soils [2,40]. The deviator stress increases, and the void ratio
decreases with the increase in confining stress. The strain-softening behavior increases, and
the tendency for the specimens to expand increases under shearing as the bond strength
increases. The deviator stresses and void ratios are almost the same for samples I and II
at the critical state, which demonstrates a similar critical state for samples with different
bond strengths.

Figure 8 shows the evolution of the bond degradation variables BN and B0 in conven-
tional triaxial tests. There are initial equivalent plastic strains and initial bond degradation
variables at the beginning of shearing for sample I under confining stresses larger than
50 kPa, which is ascribed to isotropic compression before shearing. However, the initial
degradation variables are almost zero after isotropic compression for sample II on account
of the large bond strength.

The evolution of the bond degradation variables in sample I with weak bonds is
slightly influenced by the confining stress; some curves form a rough “S” shape under
shearing. The degradation variables of the robust bonds in Sample II show an upward
trend with an increasing confining stress. The degradation variable B0 is smaller than BN
at the intermediate stage of shearing, similar to the conclusion in the compression tests,
while B0 varies near or higher than BN at the end of shearing when the stress state develops
close to the strength envelope, as illustrated by the circles in Figures 8 and 9.
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Figure 7. Stress–strain relationships and volume evolutions in the conventional triaxial tests on the
DEM samples with different bond strengths: (a) stress–strain relationships and (b) volume evolutions.
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Figure 8. Evolutions of the bond degradation variables in conventional triaxial tests on the DEM
samples with different bond strengths: (a) σb

c = 5 MPa and (b) σb
c = 25MPa.
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Figure 10. Stress–strain relationships and volume evolutions in the true triaxial tests on the DEM 

samples with different bond strengths: (a) stress–strain relationships and (b) volume evolutions. 

Figure 11 shows the evolution of the bond degradation variables BN and B0 in the true 

triaxial tests. The degradation variables increase with the equivalent plastic strain, 

Figure 9. Relationships between the bond degradation variables and the stress ratio in the con-
ventional triaxial tests on the DEM samples with different bond strengths: (a) σb

c = 5MPa and
(b) σb

c = 25 MPa.

3.4. True Triaxial Tests

Figure 10 represents the macroscopic behavior of the numerical specimens in true
triaxial tests (constant p). Parallel to the findings in conventional triaxial tests, there is an
augmentation in the strain-softening behavior and an expanding tendency as the bond
strength rises. In laboratory tests [41], it is noted that the deviator stress declines, and the
void ratio increases with the growing coefficient b = (σ2 − σ3)/(σ1 − σ3).
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triaxial tests. The degradation variables increase with the equivalent plastic strain, 

Figure 10. Stress–strain relationships and volume evolutions in the true triaxial tests on the DEM
samples with different bond strengths: (a) stress–strain relationships and (b) volume evolutions.

Figure 11 shows the evolution of the bond degradation variables BN and B0 in the
true triaxial tests. The degradation variables increase with the equivalent plastic strain,
forming a rough “S” shape for sample I with weak bonds, and increase at a decreasing rate
for sample II with strong bonds. The bond degradation variables are slightly influenced by
the coefficient b for sample I, while they decrease considerably as the coefficient b increases
for sample II. The degradation variable B0 tends to be near or higher than BN at the end of
shearing, especially for the samples with a small confining stress and small coefficient b.
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4. Discussion

The evolution of the bond degradation variables BN and B0 with the equivalent
plastic strain appears to be affected by the ratio of principal stresses, confining stress, and
coefficient b, especially for samples with strong bonds. Hence, there is a defect in using a
general bond degradation evolution law, e.g., BN or B0 = f (εp

d), in constitutive modeling
since the parameters in the formula are dependent on the stress path. It is necessary to
further develop a stress-path-independent bond degradation variable.

The stress ratio and strength potential are incorporated into B0 to derive a bond
degradation variable Bσ that considers their effect on the bond degradation evolution
as follows:

Bσ =
2B0

1 + (η/ηf)
2 (26)

where η = q/p is the stress ratio, ηf = qf/p is the strength potential, and qf is the deviator
stress at failure. ηf can be expressed by an extended elliptical envelope:

ηf = max(M(
p + pt

p
)(

pc

p + pt
− 1)

1/n
, M) (27)

The envelope, in which the parameters are determined using conventional triaxial tests,
is shown in Figure 4 for both samples I and II. In the expression of Bσ, η/ηf is incorporated
to accommodate the bond degradation rate.

Figure 12 shows the collective evolution of the bond degradation variables B0 and
Bσ with the equivalent plastic strain under all of the above stress paths. The impact of
the stress path on the evolution of the bond degradation variable Bσ seems to be less
pronounced compared to that on B0. The collective data of Bσ can be effectively fitted using
the following exponential formulation and hyperbolic formulation:

Bσ = 1− exp[−ca(ε
p
d)

cb ] (28)

Bσ =
ε

p
d

ha + hbε
p
d

(29)

where ca represents the increasing rate of Bσ, and cb is an index. 1/ha controls the increasing
rate of Bσ, and 1/hb represents the ultimate value of Bσ. Figure 12c,d show the fitting curves
of both formulations.

In constitutive modeling, one-dimensional compression and conventional triaxial
tests are recommended to determine the parameters in the evolution law of the bond
degradation variable Bσ for simplicity.
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5. Conclusions

This paper investigates the bond degradation evolution of cemented soils at the
particle and contact scales. Numerical compression and triaxial tests reproduced the
primary experimental mechanical behavior. Then, the simulation results were used to
investigate the evolution of the bond degradation variables BN and B0. A stress-path-
independent bond degradation variable Bσ was developed based on B0, and its evolution
law was formulated accordingly. The conclusions are as follows:

(1) The bond degradation variables BN, B0, and Bσ represent the extent to which the soil
bonding is damaged. A degradation variable of 0/1.0 indicates that the applied stress
is completely sustained by the bonded aggregates/unbounded grains.

(2) The bond degradation variables BN and B0 increase with the equivalent plastic strain
until they reach 1.0 under varying stress paths. The evolutions of both variables are
influenced by the principal stress ratio, confining stress, and coefficient b, especially
for the sample with strong bonds.

(3) In compression tests with principal stress ratios higher than 0.4, B0 is smaller than
the corresponding BN, indicating the priority of the bonded contacts to sustain the
applied loads. In triaxial tests, B0 is smaller than BN before the intermediate stage of
shearing, and then B0 evolves to be near or larger than BN at the end of shearing when
the stress state approaches the strength envelope.

(4) The evolutions of the further developed bond degradation variable Bσ under different
stress paths are approximately coincident with each other. The collective data of Bσ

can be effectively fitted by an exponential or a hyperbolic evolution law.

In the future, the evolution of the bond degradation variables for unsaturated struc-
tured soils will be studied by taking capillary forces into account. A micromechanical-based
constitutive model for cemented soils can be developed by incorporating the evolution law
of the bond degradation variable.

Author Contributions: Writing—original draft and review and editing, J.H.; writing—original draft
and review and editing, T.L. and Y.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was financially supported by the China National Natural Science Founda-
tion (No. 51809193) and the China Postdoctoral fund (No. 2019M651580). These supports are
greatly appreciated.

Data Availability Statement: The data associated with this research are available from the corre-
sponding author upon reasonable request.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.



Fractal Fract. 2024, 8, 119 14 of 16

Abbreviations

Rc contact radius of particle interaction
β shape parameter
R common radius of a particle pair
Fv van der Waals force
Fp

n normal force of particle interaction
Fp

s tangential force of particle interaction
Mp

r rolling moment of particle interaction
Mp

t twisting torque of particle interaction
kn normal stiffness of particle interaction
ks tangential stiffness of particle interaction
kr rolling stiffness of particle interaction
kt twisting stiffness of particle interaction
δn normal overlap between a particle pair
∆δs relative shear displacement increment
∆θr relative rotation increment
∆θt relative twist increment
µ friction coefficient between a particle pair
E∗ interparticle effective modulus
κ∗ normal-to-shear stiffness ratio
λb bond radius multiplier
Rb bond radius
Fb

n bond normal force
Fb

s bond tangential force
Mb

r bond rolling moment
Mb

t bond twisting torque
kb

n bond normal stiffness
kb

s bond tangential stiffness
kb

r bond rolling stiffness
kb

t bond twisting stiffness
∆δn relative normal displacement increment
hb

0 bond thickness
E∗ bond effective modulus
ηE bond modulus reduction factor
κ∗ bond normal-to-shear stiffness ratio
σb

c compressive strength of the bond material
σb

t tensile strength of the bond material
Rb

nc bond compressive strength
Rb

nt bond tensile strength
ησ bond tension-to-compression strength ratio
Rb

s bond shearing strength
Rb

r bond rolling strength
Rb

t bond twisting strength
gc bond thickness threshold
σ1, σ2 and σ3 principal stresses of a stress tensor
ε1, ε2 and ε3 principal strains of a stain tensor
p mean stress
q deviator stress
εv volumetric strain
εs deviator strain
σij average stress tensor of a representative volume element
BN bond degradation variable based on the number of unbonded contacts
B0 bond degradation variable based on the stress contribution of unbonded contacts
ε
p
d equivalent plastic strain

ε
p
v volumetric plastic strain

ε
p
s deviator plastic strain

Bσ bond degradation variable considering stress effect



Fractal Fract. 2024, 8, 119 15 of 16

η stress ratio
ηf strength potential
pc yield surface size of a cemented soil
pc0 yield surface size of corresponding uncemented soil
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