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Abstract: Micro-pore structures are an essential factor for the electrical properties of porous rock.
Theoretical electrical conductivity models considering pore structure can highly improve the accuracy
of reservoir estimation. In this study, a pore structure characterization method based on a multi-
fractal theory using capillary pressure is developed. Next, a theoretical electrical conductivity
equation is derived based on the new pore structure characterization method. Furthermore, a distinct
interrelationship between fractal dimensions of capillary pressure curves (Dv) and of resistivity index
curves (Dt and Dr) is obtained. The experimental data of 7 sandstone samples verify that the fitting
result by the new pore structure characterization method is highly identical to the experimental
capillary pressure curves, and the accuracy of the improved rock resistivity model is higher than the
Archie model. In addition, capillary pressure curves can be directly converted to resistivity index
curves according to the relationship model between fractal dimensions of capillary pressure curves
(Dv) and resistivity index curves (Dt and Dr). This study provides new ideas to improve the accuracy
of pore structure characterization and oil saturation calculation; it has good application prospects
and guiding significance in reservoir evaluation and rock physical characteristics research.

Keywords: fractal theory; micro-pore structure; capillary curve; rock resistivity model

1. Introduction

Rock electrical properties are an essential foundation for rock materials, geophysics,
geological evaluation, and hydrology research [1–3]. The micro-pore structure has a signifi-
cant impact on the electrical resistivity characteristics of porous rock [4]. In recent years,
mechanism analyzations and quantitative characterizations of the impact of micro-pore
structures on electrical resistivity become the focus of attention of domestic and overseas
rock physicists, geologists, and materials scholars [5,6].

The capillary pressure curve is one of the commonly used pore structure characteriza-
tion methods [7–9]. To calculate pore structure parameters, many mathematical models for
capillary pressure are developed [4], such as the mean capillary pressure curve function [10],
power function [11], J function [12], and the Brooks-Corey model [13,14]. Since fractal ge-
ometry theory was proposed by Mandelbrot [15] in the 1970s, it has been widely used in
petroleum geology [16–18]. Lots of studies show that sandstone pore structure exhibits
fractal characteristics, and the fractal theory can be extended to apply in pore structure
characterization method from capillary pressure curve and nuclear magnetic resonance T2
spectrum for porous media of sedimentary rock [19–21]. For instance, Gao et al. conducted
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a fractal analysis of dimensionless capillary pressure function [22]. Liu et al. utilized fractal
geometry to develop an improved capillary pressure model for coal rock [23]. Li et al.
applied fractal geometry to derive a Brooks–Corey-type capillary pressure model [24]. The
fractal geometry provides a new method for pore structure characterization; however,
existing studies mainly focus on single-dimension fractal features, and its characterization
accuracy for complex pore structures is limited [25].

To improve the accuracy of mathematical models that quantitatively describe rock
electrical properties, many researchers analyze and extend the Archie model [26,27]. In
addition, many rock conductivity models that consider pore structure are derived [28,29],
and the fractal theory-based electrical models attracted a lot of attention [30,31]. Rembert
et al. derived a fractal model for the electrical conductivity of water-saturated porous media
and analyzed the relationship of Archie’s resistivity index with fractal dimension [32,33].
Shi Y et al. evaluated relative permeability from resistivity data using fractal dimension [34].
Luo et al. developed a capillary bundle model for the electrical conductivity of saturated
frozen porous media based on fractal theory [35]. Cai et al. investigated the fractal-based
electrical conductivity models in saturated porous media [1]. However, on the one hand,
the application of rock conductivity models considering pore structure is limited by the
agreement of theoretical and actual pore structure [36]. On the other hand, although fractal-
based rock conductivity models are applied widely, they mainly analyze the relationship of
fractal dimension with pore structure and rock electrical properties; \ studies investigating
fully analytical expressions between electrical conductivity and physical parameters are
rare [37].

In this study, a pore structure characterization method based on a multi-fractal theory
using capillary pressure is developed; it is mathematically identical to power or J functions
for homogeneous porous rock. Next, a theoretical electrical conductivity equation is derived
based on the new pore structure characterization method. The proposed model is expressed
in terms of the capillary length fractal dimension Dt, pore fractal dimension Dr, and pore
volume S1. Parameters c and d are determined from experimental capillary pressure
and resistivity data. A distinct interrelationship between fractal dimensions of capillary
pressure curves (Dv) and of resistivity index curves (Dt and Dr) is obtained. Furthermore,
the relationship between the fractal dimension (Dt and Dr) and Archie parameters (m and
n) is analyzed. A total of seven carboniferous clastic sandstone samples in Junger Basin are
selected for model validations. The result shows that the fitting result of capillary pressure
by the new multi-fractal characterization method is highly identical to experimental data,
and the new resistivity model has higher accuracy than the Archie model. In addition,
capillary pressure curves have a similar pattern with resistivity index curves; the fractal
feature parameters Dv,1, Dv,2, c, and d are strongly dependent on pore structure properties,
they have good relationships with

√
K/ϕ, and the pore structure typing result by Dv,1

and c is in accordance with that according to the morphology of capillary pressure curve.
Also, the increment of c is an indication of pore structure improvement, and as d increases,
pore structure gets poor. Finally, we find that the multi-fractal feature of the pore structure
is the main reason for non-Archie resistivity and non-power function capillary pressure
relationships.

2. Mathematical Derivations of a Resistivity Model Based on Multi-Fractal
Characterization Method for Sandstone Micro-Pore Structure Using Capillary Pressure
2.1. Multi-Fractal Characterization Method for Sandstone Micro-Pore Structure Using
Capillary Pressure

We assume that the porous medium is represented as a pore fractal. Applying fractal
geometry, the porosity ϕ of the pore fractal is expressed as [38]

ϕ =

(
rmin

rmax

)3−Dr

(1)
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where, r(µm) is the diameter of a pore and Dr is between 0 < Dr < 3. rmin (µm) and
rmax(µm) are the minimum and maximum fractal pore sizes, respectively.

According to fractal geometry of porous media and Laplace equation, the relationship
between capillary pressure Pc and saturation Sv is expressed as [21]

Sv =

(
Pcmin

Pc

)3−Dv

(2)

where Sv(%) is the pore volume with the capillary pressure greater than Pc, Pcmin(Mpa)
is the displacement pressure, and Dv is the fractal dimension of the pore throat size
determined by the capillary pressure curve.

Existing analyses show that compared with macro-pore space, which can approximate
a circular shape on the plane, micro-pores usually exhibit more complex and tortuous
shapes [39]. As rock pore structure complexity and heterogeneity at different pore scales
become stronger, the pore fractal displays become a multi-fractal feature [40,41].

Divide rock pores into two geometry types of pores, as shown in Figure 1, and assume
each type of pores satisfies the self-similarity characteristics of pore volume distribution, pore
size, and pore throat structures. Then, the porosity ϕ is the sum of two-pore fractals, as follows.

ϕ =

(
rmin,1

rmax,1

)3−Dr,1

+

(
rmin,2

rmax,2

)3−Dr,2

(3)
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Figure 1. Multi-fractal feature of micro-pore structure.

In Equation (3), ϕ1 =
(

rmin,1
rmax,1

)3−Dr,1
, ϕ2 =

(
rmin,2
rmax,2

)3−Dr,2
. Subscript 1 and 2 are for first

and second type pores, respectively.
According to Equation (2), for each type of pores, the relationship between capillary

pressure Pc and saturation Sv is expressed asSv,1 =
(

Pcmin,1
Pc

)3−Dv,1

Sv,2 =
(

Pcmin,2
Pc

)3−Dv,2
(4)

for Sv =
Sv,1ϕ1+Sv,2ϕ2

ϕ , then

Sv = S1

(
Pcmin,1

Pc

)3−Dv,1

+ (1 − S1)

(
Pcmin,2

Pc

)3−Dv,2

(5)

In Equation (5), S1 = ϕ1
ϕ .

Equation (5) is a multi-fractal characterization method for a sandstone micro-pore
structure using capillary pressure.



Fractal Fract. 2024, 8, 118 4 of 14

To reduce non-parameters, according to power function, assume only one c satisfies(
Pcmin,2

Pc

)3−Dv,2
=

(
Pcmin,1

Pc

)c(3−Dv,1)
, Equation (5) is simplified as

Sv = S1

(
Pcmin,1

Pc

)3−Dv,1

+ (1 − S1)

(
Pcmin,1

Pc

)c(3−Dv,1)

(6)

Consequently, in a model constructed of homogeneous porous rock, Equation (5)
reduces to

Sv =

(
Pc

Pcmin

)D
(7)

Equation (7) is mathematically identical to power or J functions [11,12]. D is a power
function exponent.

2.2. An Improved Rock Resistivity Model Considering Pore Structure

Pores are usually assumed to be curved capillaries with different diameters in seepage
and conductivity analysis of pore fluids. According to the fractal theory, the conductivity
of water-saturated rock σ0 is expressed as [38]

σ0 ∝ σcϕ1+(Dt−1)/(3−Dr) (8)

where Dt is the capillary length fractal dimension, 1 ≤ Dt. Dr is the pore fractal dimension,
0 ≤ Dr ≤ 3. σc is the conductivity of pore water.

We assume non-wetting phase fluids are non-conductive, as non-wetting phase fluids
prefer large pore spaces during the seepage process; electrical conductivity σt is disabled
to reflect large pore spaces filled with non-wetting fluids. The electrical conductivity σt is
expressed as

σt ∝ σcϕ
1+(Dt−1)/(3−Dr)
i (9)

where ϕi is the residue porosity not occupied by non-wetting phase fluids, and ϕi = Swϕ.
At the same time, the conductive tortuosity changes as non-wetting phase fluids enter

into pore throats. Equation (9) is rewritten as

σt ∝ σcϕ 1+(Dt−1)/(3−Dr)Sw
1+ (Dt,i−1)/(3−Dr) (10)

In Equation (10), Dt,i is the capillary length fractal dimension under water saturation Sw.
Equation (10) can be approximately expressed as

Sw ∝
(

σ0

σt

)1+(Dt,i−1)/(3−Dr)

(11)

Comparing Equation (11) with the Archie Model [26],{
σc
σ0

= aϕ−m

σ0
σt

= bSw
−n (12)

We find the relationship between fractal dimensions and Archie parameters,{
m = 1 + (Dt − 1)/(3 − Dr)
n = 1 + (Dt,i − 1)/(3 − Dr)

(13)

Equation (13) indicates that both m and n strongly depend on the micro-pore structure
properties of porous media, the fractal dimension Dt and Dr. In addition, Dt and Dt,i can
be determined when n, m and Dr are known parameters.
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Comparing Equations (2) and (11) yields

1 + (Dt,i − 1)/(3 − Dr) = d(3 − Dv) (14)

In Equation (14), according to the similarity between Sw and Sv, we assume Pcmin
Pc

=
(

σ0
σt

)d
.

The capillary pressure curve can be directly converted to resistivity curve when d is determined.
Combining Equations (6) and (14), a rock resistivity model considering pore structure

is developed.

Sw = S1

(
σ0

σt

)(1+(Dt,1−1)/(3−Dr,1))

+ (1 − S1)

(
σ0

σt

)c(1+(Dt,1−1)/(3−Dr,1))

(15)

The new rock resistivity model can also be written as follow according to Equation (14).

Sw = S1

(
σ0

σt

)d(3−Dv,1)

+ (1 − S1)

(
σ0

σt

)cb(3−Dv,1)

(16)

3. Model Validation

For model validation, a total of seven Carboniferous clastic sandstone samples selected
in Junger Basin are taken for porosity, permeability, rock resistivity, and capillary pressure
experiments. Figure 2 shows thin-section photomicrographs of dominant lithology in the
study area. Figure 2a–d are from samples 1, 2, 5, and 7, respectively. Rock samples belong
to medium to high porosity and permeability sandstone; the dominant lithology is quartz
and feldspar. Capillary pressure curves and resistivity are measured by mercury intrusion
and DC method, respectively.

Table 1 shows the specific parameters of all seven samples, capillary pressure under
different Sw are shown in Figure 3. Clay contents of 7 samples range from 0.01 to 0.05
(v/v) to avoid the clay influence on resistivity. Parameters D1, D2, S1, Pcmin, c, and d are
calculated using the least square method with the experimental capillary pressure and
resistivity according to Equation (6).

Table 1. Specific parameters of 7 Carboniferous clastic sandstone samples.

Type No. Depth
m

Porosity
%

Permeability
md F n Dv1 Dv2 S1 Pcmin c d

I
1 317.46 30.2 1910 3.08 1.889 2.82 2.29 0.14 0.015 3.95 0.9
2 316.82 32.59 2020 2.98 1.869 2.79 2.31 0.15 0.028 3.285 0.98

II
3 319.23 30.55 556 2.95 1.981 2.76 2.42 0.18 0.038 2.42 1.02
4 321.55 32.5 530 2.63 1.841 2.77 2.49 0.27 0.023 2.22 1.34

III 5 322.69 25.86 115 3.6 2.149 2.68 2.59 0.44 0.13 1.28 1.28

IV
6 314.55 13.35 14.7 7.27 1.932 2.67 2.66 0.5 0.41 1.03 1.56
7 318.77 15.91 52 10.07 1.746 2.69 2.65 0.59 0.69 1.13 1.71

F is the Formation factor, and m and n are the Archie model parameters in Equation (12).
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Figure 2. Thin section photomicrographs of dominant lithology in the study area. Q: quartz,
F: feldspar, M: matrix, P: pore space. (a) Thin section photomicrographs of sample 1, (b) Thin section
photomicrographs of sample 2, (c) Thin section photomicrographs of sample 5, (d) Thin section
photomicrographs of sample 7.
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3.1. Multi Fractal Characterization of Pore Structure Using Capillary Pressure

Figure 3 shows the capillary pressure curves of seven rock samples. Fractal dimensions
of first- and second-type pores, Dv,1 and Dv,2, the tubular pore volume proportion S1 is
calculated according to the fitting results of capillary pressure curves of seven rock samples
by Equation (6), as listed in Table 1. The result shows that the fitting result by Equation (6)
is highly identical with the experimental data; the goodness of fit is 0.9334, and the average
relative error is 6.89%.

In addition,
√

K/ϕ is a commonly used pore structure characterization parameter.
Figure 4 shows the relationship of

√
K/ϕ with Dv,1 and c. Relationship models for

√
K/ϕ

and Dv,1 is
√

K/ϕ = 2.44 ∗ 10−14Dv,1
32.3 (the goodness of fit 0.93775), and for

√
K/ϕ and

c is
√

K/ϕ = −1.21 × c + 2.45 (the goodness of fit 0.95678). The results indicate that Dv,1
and c are closely related to micro-pore structure; the worse the pore structure, the smaller
the Dv,1 and c value. When pore structure becomes complex, pore throat size turns small,
PCmin increases, and the capillary pressure curve displays a weak dual fractal feature,
responding to the decrement of Dv,1. Additionally, as the difference between Dv,1 and
Dv,2 becomes small, c decreases. Thus, Dv,1 and c value can be used for pore structure
typing. Figure 5 shows the pore structure typing result by Dv,1 and c; it is in accordance
with 4 types of pore structure according to the morphology of the capillary pressure curve.
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3.2. An Improved Rock Resistivity Model Considering Pore Structure

Figure 6a,b show the resistivity experimental data of 7 samples and listed in Table 1.
The Archie fitting result is m = 1.049 (the goodness of fit is 0.8589) and n = 1.881 (the
goodness of fit is 0.9226). The parameter d is calculated according to Equation (13), as
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shown in Figure 7 and listed in Table 1. In Figure 8, the comparison results of the exper-
imental resistivity with the calculated resistivity by Archie model and Equation (16) are
y = 1.02749x − 0.01227 (the goodness of fit 0.9226, and the average relative error 6.28% by
Archie model) and y = 0.99446x − 6.06 × 10−4 (the goodness of fit 0.9874, average relative
error 4.06% by Equation (16)), respectively. It shows that the accuracy of Equation (16) is
improved than the Archie model.
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Figure 6. Experimental formation factor F and resistivity index I. (a) Experimental formation factor F,
(b) Experimental resistivity index I.
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Figure 7. Comparison between capillary pressure curve and resistivity index curve for four rock
types. (a) Comparison of type 1, (b) Comparison of type 2, (c) Comparison of type 3, (d) Comparison
of type 4.
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Figure 8. Comparison of experimental resistivity with calculated by Archie model and Equation (16).

In addition, the relationship model of
√

K/ϕ and d is
√

K/ϕ = 6.55d−3 (the goodness
of fit is 0.85562), as shown in Figure 9. The result indicates that d is strongly depends on
micro-pore structure properties.
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3.3. The Relationship between Capillary Pressure Curve and Resistivity Index Curve Based on
Fractal Theory

Figure 7 shows the comparison between capillary pressure curves and resistivity index
curves for 4 rock types. The result indicates that capillary pressure curves have similar
pattern with resistivity index curves. According to Equation (16), capillary pressure curves
can be directly converted to resistivity index when d is determined. Figure 10 shows the
comparison between the calculated resistivity and experimental resistivity. The relationship
model is y = 1.01154x − 0.03646 (goodness of fit 0.98878, average relative error 10%),
the result indicates that capillary pressure and resistivity index curves has similar fractal
features, both of them are strongly depends on pore structure properties [42]. Equation (16)
can effectively compensate for the lack of experimental resistivity data, and be directly
used for the study of pore structure influence on rock resistivity.
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4. Discussion and Future Work
4.1. Multi-Fractal Based Modeling of Capillary Pressure Curves

(1) According to Equation (6), the fractal Dv,1 and parameter c can be calculated from
permeability and porosity measured in actual formation evaluation. Further, pore
structure can be classified according to the fractals Dv,1, Dv,2, and parameter c, capillary
pressure curve and pore structure characterization can be achieved.

(2) Figure 11 analyzes the affection of Dv,1, Dv,2, c, and S1 on capillary pressure curves
according to Equation (6). The simulated capillary pressure curves with different c
(Dv,2) and fixed Dv,1 = 2.7, S1 = 0.2 v/v, Pcmin = 0.05 Mpa is depicted in Figure 11a.
The result shows that as c increases (Dv,2 decreases), Pc under specific water saturation
decreases, which is an indication of pore structure improvement, it is identical with
that c has a positive correlation with

√
K/ϕ. In addition, the capillary pressure curve

exhibits non-power function features (power function exhibits linear feature in a
logarithmic coordinate system). The simulated capillary pressure curves with different
S1 and fixed Dv,1 = 2.7, c = 5, Pcmin = 0.05 Mpa is depicted in Figure 11b. The result
shows that as S1 increases at large c value, Pc under specific water saturation increases,
it indicates that the pore structure gets poor.
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Figure 11. Affection of Dv,1, Dv,2, c and S1 on capillary pressure curves ((a) c effects on capillary
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4.2. Multi-Fractal Based Modeling of Resistivity Index Curves

Figure 12 analyzes the affection of d and Dt,1 on resistivity index curves according to
Equation (15). The simulated resistivity index curves with different Dt,1 and fixed Dr = 2.7,
S1 = 0.3 v/v, c = 3 is depicted in Figure 12a. The result shows that as Dt,1 increases, rock
resistivity under specific water saturation increases, indicating that electric conduction
becomes poor as rock tortuosity increases. The simulated resistivity index curves with
different d and fixed Dv,1 = 2.7,c = 5, S1 = 0.2 v/v is depicted in Figure 12b. The
result shows that as d increases, rock resistivity under specific water saturation increases,
indicating that electric conduction becomes poor as micro-pores deteriorate.
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4.3. Multi-Fractal Features of Pore Structure

In Section 3.2, non-Archie F-ϕ and I-Sw relationships are seen in Figure 6; that is, as ϕ
decreases, the experimental F deviates from the Archie calculated F, and n disperses (ranges
from 1.639 to 2.131). According to the multi-fractal-based analysis of capillary pressure
curves and resistivity increase rate curves, the multi-fractal feature of pore structure is
the main reason for non-Archie resistivity and non-power function capillary pressure rela-
tionships. As the difference between the two types of pores becomes stronger, non-Archie
and non-power function features become obvious. Therefore, the multi-fractal method
can improve the accuracy of pore structure characterization when rock pore structure
complexity increases.

4.4. Future Work

A. The capillary pressure curve supplies fundamental data for pore structure characteri-
zation methods [43]. According to Equation (6), the pore structure characterization
accuracy is improved for porous rock with complex pore structure, for instance, tight
rock and shales.

B. Reservoir flow unit division research based on capillary pressure curves is an impor-
tant way for reservoir pattern studies [44]. According to Equation (6), more accurate
reservoir flow unit division can be achieved.

C. Resistivity models are crucial for oil and gas saturation calculation in practical appli-
cations [45]. In this paper, the accuracy of Equation (15) is improved than the Archie
model. Equation (15) can be further utilized for reservoir estimation and shale organic
carbon assessments.

D. Equation (16) describes the relationship between the capillary pressure curve and
rock resistivity based on multi-fractal theory. It provides a new idea and an effective
way for studying the effect of pore structure on rock resistivity [46], especially for
rocks with complex micro-pore structures, such as rock within fractures, shale, and
carbonate rocks.
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E. As the heterogeneity of pore size and morphology of the study areas increases, single-
dimension fractal theory is unable to meet the accuracy requirements. Multi-fractal
theory can provide an effective way for pore structure characterization [47], which
will be a research focus.

5. Conclusions

(1) Based on multi-fractal theory, a multi-fractal characterization method for sandstone
micro-pore structure using capillary pressure is developed, and its accuracy is im-
proved than the commonly used power function model for the fitting of experimental
capillary pressure curves. Based on the multi-fractal characterization method for
sandstone micro-pore structure using capillary pressure, a rock resistivity model con-
sidering pore structure is developed. The new model is proven to have higher accuracy
than the Archie model; it can accurately describe the rock conductivity characteristics
and calculate the oil saturation of complex pore structure reservoirs.

(2) A distinct interrelationship between fractal dimensions of capillary pressure curves
(Dv) and resistivity index curves (Dt and Dr) is obtained. The capillary pressure
curve can be directly converted to the resistivity index when d is determined. The
fractal feature parameters Dv,1, Dv,2, c strongly depend on pore structure properties.
Parameters c, d, and Dv,1 have a good relationship with

√
K/ϕ, the pore structure

typing result by Dv,1 and c is accordance with that according to the morphology of
capillary pressure curve.

(3) According to the multi-fractal-based analysis of capillary pressure curves and resis-
tivity increase rate, the multi-fractal feature of pore structure is the main reason for
non-Archie resistivity and non-power function capillary pressure relationships. As
the difference between the two types of pores becomes stronger, non-Archie and
non-power function features become obvious. Therefore, the multi-fractal method
can improve the accuracy of pore structure characterization when rock pore structure
complexity increases.

(4) This study provides new ideas to improve the accuracy of pore structure characteri-
zation and oil saturation calculation; it has good application prospects and guiding
significance in reservoir evaluation and rock physical characteristics research.
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