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Abstract: Green bonds represent a compelling financial innovation that presents a financial perspec-
tive solution to address climate change and promote sustainable development. On the other hand,
the recent process of financialisation of commodities disrupts the dynamics of the commodity market,
increasing its correlation with financial markets and raising the risks associated with commodities. In
this context, understanding the dynamics of the interconnectivity between green bonds and commod-
ity markets is crucial for risk management and portfolio diversification. This study aims to reveal the
multifractal cross-correlations between green bonds and commodities by employing methods from
statistical physics. We apply multifractal detrended cross-correlation analysis (MFDCCA) to both
return and volatility series, demonstrating that green bonds and commodities exhibit multifractal
characteristics. The analysis reveals long-range power-law cross-correlations between these two mar-
kets. Specifically, volatility cross-correlations persist across various fluctuations, while return series
display persistence in small fluctuations and antipersistence in large fluctuations. These findings
carry significant practical implications for hedging and risk diversification purposes.

Keywords: multifractal detrended cross-correlation analysis; nonlinear dynamics; complex structures;
fractal market hypothesis; green bonds

1. Introduction

Green bonds have gained significant traction in recent years as a mechanism to fund en-
vironmentally friendly initiatives [1,2]. They are a new type of fixed-income asset designed
to aid in addressing climate change and promoting sustainable development. Following the
introduction of the first green bond in 2007, the green bond market has experienced rapid
expansion and garnered increased attention from stakeholders. As per the Climate Bond
Initiative (CBI) [3], the green label has become a predominant force in global thematic bond
issuance. The CBI reports that, as of 2022, the cumulative market volume for green-labelled
bonds has reached an impressive USD 2.2 trillion. The global green bond market has been
experiencing incremental growth, emerging as a significant financial model for addressing
climate change [4]. It serves as a promising avenue for funding the transition towards a
more sustainable economy with a reduced carbon footprint [5].

Simultaneously, commodities, encompassing both raw materials and natural resources,
play a pivotal role in shaping economic landscapes. The dynamics of the commodity market
have undergone significant shifts since the beginning of this century, transitioning from
only being inputs for production to becoming a distinct financial instrument class. The
orientation of financial capital toward commodity markets for profit or risk reduction
purposes triggered this financialisation in commodities (see Basak and Pavlova [6] and
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Acikgoz et al. [7] for further literature review). As a result, commodity markets began
to exhibit a high correlation with financial markets and carry high risk [6,8]. Taking into
account the recent evidence highlighting the financialisation of commodities, gaining a
comprehensive understanding of the return and volatility dynamics in the commodity
market has become crucial for participants in the financial markets. On the other hand,
the latest empirical evidence demonstrates that green financial tools have significantly
low comovement and interconnectedness with commodities, and they can offer a solution
to the risks arising in the commodity market and mitigate the negative impacts of the
financialisation of commodities [9–13].

One area being examined is how commodities are used as underlying assets for
projects that are funded through bonds [14]. Agricultural commodities, such as crops that
capture carbon or sustainable forestry projects, demonstrate the potential to align objectives
with goals [15]. In the literature, numerous studies explore the feasibility, risks, and benefits
of connecting bonds to commodities [9,11–13,16–18].

Commodities are inherently susceptible to price fluctuations influenced by factors like
events and weather patterns [19]. Some articles in the literature [9,12,13] indicate that green
bonds can serve as a stabilizing factor when confronted with commodity price changes.
Understanding strategies for mitigating risks and comprehending the role of instruments
within the framework of bonds is essential for cultivating a resilient and sustainable
financial ecosystem. Green bonds have attracted considerable attention among socially re-
sponsible investors seeking environmentally sustainable investment opportunities [1,10,18].
Analysing the relationship between green bonds and commodities in terms of market
dynamics and investor sentiment provides valuable insights into the evolving landscape of
sustainable finance [2,9,12,20]. Similarly, multiple studies delve into how the infusion of
green capital influences commodity markets and shapes investment preferences [11,13].

While prior research on green bonds has offered valuable insights into their relation-
ship with financial markets, a noticeable gap exists, primarily due to the predominant
oversight of nonlinear and chaotic dynamics. These studies have predominantly relied
on the Efficient Market Hypothesis (EMH) proposed by Fama [21]. On the other hand, an
alternative perspective, the Fractal Market Hypothesis (FMH) emerged. Peters [22] devel-
oped FMH, which is based on the fractal Brownian motions and fractal geometry theories
of Mandelbrot [23,24] and Mandelbrot and Van Ness [25]. According to the FMH (Fractal
Market Hypothesis), financial markets can be described as chaotic systems influenced
by nonlinear dynamics, demonstrating multifractal features. Consequently, conventional
econometric approaches and linear models may inadequately capture the complexity of
financial markets, according to this theory. Despite evidence from the econophysics lit-
erature demonstrating the prevalence of multifractal features and structures in diverse
markets, these aspects have been largely overlooked in the existing body of literature on
green bonds.

Within the econophysics literature, a variety of multifractal methodologies have been
employed to analyse the structure of financial markets. First, Peng et al. [26] advocate for
the use of detrended fluctuation analysis (DFA) to examine detrended auto-correlations
and self-similarity in univariate nonstationary signals. However, it is noted that Peng
et al.’s methodology falls short in capturing multifractal features, exhibiting only monofrac-
tals. In a pivotal development, Kantelhardt et al. [27] introduce multifractal detrended
fluctuation analysis (MFDFA). MFDFA is a generalised version of DFA and it explicitly
addresses multifractal dynamics in nonstationary univariate signals. Furthermore, Podob-
nik and Stanley [28] contribute detrended cross-correlation analysis (DCCA) as a method
to discern detrended cross-correlations between two signals. More recently, Zhou [29]
integrates MFDFA and DCCA, proposing multifractal detrended cross-correlation analysis
(MFDCCA) as an approach to identify multifractal structures in the cross-correlations
of two nonstationary signals. The econophysics literature has investigated multifractal
cross-correlations in various financial markets. Examples of these research areas include
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the stock market [30,31], crude oil [32,33], cryptocurrencies [34–36], energy market [37,38],
bond market [39], precious metals [40], and green bonds [41].

Discussing the studies of multifractality in various financial markets, Pan et al. [30] em-
ployed MF-DCCA to investigate the dynamics of the stock market in the pharmaceuticals,
telecommunications, and electronic equipment sectors. Their study focused on the interac-
tions between trading volume, investor sentiment, and policy intensity. The results indicate
that stocks in these sectors exhibit multifractal cross-correlations, revealing multifractal
features in stock markets. Similarly, Li and Su [31] analysed the impact of the COVID-19
pandemic on stock markets using a multifractal perspective. Their examination of the
insurance sector across different stock markets revealed robust multifractal characteristics,
especially during the pandemic. In the crude oil market, Fernandes et al. [32] utilised
MFDCCA to assess multifractal cross-correlations between WTI and currencies, revealing
multifractal patterns in the market. Shao et al. [33] explored cross-correlations in China’s
crude oil market and other financial assets, emphasizing the multifractality present in the
oil market. Turning to the cryptocurrency market, Ruan et al. [35] studied the introduction
of Bitcoin futures on spot market efficiency using multifractal detrended cross-correlation
moving-average analysis. They found that introducing Bitcoin futures weakened the fractal
characteristics of the spot market. Ma et al. [36] examined the multifractality between
Bitcoin and the US Economic Policy Uncertainty Index, uncovering a strong multifractal
cross-correlation. Examining energy markets, Ali et al. [37] modelled the US electricity
market using multifractal models, highlighting multifractal characteristics. Fu et al. [38] in-
vestigated the multifractal features of China’s new energy market and its cross-correlations
with other energy markets using MFDFA and MFDCCA methods. They demonstrated that
China’s new energy market is not efficient and has multifractal cross-correlations with other
markets. Furthermore, Yang et al. [39] provided additional evidence of the multifractality
of financial markets by studying the treasury bond market in China. On the commodity
market side, Wang et al. [40] demonstrated multifractality in the Chinese Rebar market
using asymmetric MFDCCA, revealing complex structures. Fernandes et al. [41] used
MFDCCA to examine multifractal cross-correlations between green bonds and sector eq-
uity/bond indices in the U.S. The econophysics literature consistently asserts the existence
of multifractality in financial markets across various dimensions, including stocks, bonds,
commodities, cryptocurrencies, foreign exchange, and energies.

Motivated by the theoretical framework above, the purpose of this study is to reveal
the multifractality of cross-correlations between green bonds and the commodity market.
In contrast to prior research, this study concentrates on the interdependence between
green bonds and commodities with an econophysics perspective, assessing the feasibility
of hedging and diversifying commodities with green bonds. Employing multifractal
detrended cross-correlation analysis (MFDCCA), the study uncovers multifractal cross-
correlations between green bonds and commodities. This examination of interconnectivity
is conducted across both the return and volatility series of variables, capturing dynamics in
both the first and second moments.

This paper makes several contributions to the existing literature. First, it explores
the existence of cross-correlation between green bonds and commodities, revealing a
significant cross-correlation between these two markets. Second, the paper quantifies the
degree of cross-correlation, demonstrating a positive cross-correlation between green bonds
and commodity markets across various time scales. Third, it establishes the multifractal
relationship between green bonds and commodity markets, demonstrating long-range
power-law cross-correlation. Fourth, the study identifies the sources of multifractality
between the two markets, attributing it primarily to long memory in the series and fat-tail
distributions. In addition to its contribution to the existing literature, this paper offers
various practical implications for green bonds and commodity investors, and we offer
portfolio implications under multifractal relationships.
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2. Literature Review

Over the past two decades, the field of financial literature has experienced a notable
surge in interest in green finance, particularly centred around green bonds. This height-
ened attention can be attributed to two primary factors. First, there is a global trend
towards an economy marked by reduced carbon emissions and minimised environmental
impact [42–44]. Green bonds, as underscored by Flaherty et al. [43], play a crucial role in
financing initiatives aimed at mitigating climate change, highlighting their significance
in addressing environmental repercussions. Additionally, Flammer [44] emphasises the
efficacy of green bonds in fostering the environmental sustainability of companies. Sec-
ond, empirical studies consistently highlight the limited comovement of green bonds with
conventional financial assets, establishing them as a valuable option for hedging and di-
versification. For instance, Guo and Zhou [45] examined various financial instruments,
including stocks, bonds, foreign exchange, and crude oil, demonstrating the efficacy of
green bonds as a hedging alternative. Employing quantile-based econometric models,
Jiang et al. [46] concluded that green bonds can effectively hedge investments in stock
markets and foreign exchange over the medium term. In a comparative analysis of risk
diversification performance for traditional financial market portfolios, Han and Li [47]
found that green bonds offer superior hedging advantages compared to conventional
bonds. These findings were further corroborated by Ren et al. [48] in the context of stock
market investments.

Furthermore, there is a growing interest among financial experts and investment
analysts for assets that can serve as effective hedges and contribute to portfolio diversi-
fication, particularly during times of market stress. Regarding green bonds as financial
instruments, studies conducted by Reboredo and Ugolini [2], Reboredo [16], and Tang
and Zhang [49] delve into the characteristics of risk transmission and reception associated
with green bonds, exploring their interconnections with other financial markets. While
environmentally conscious investors are drawn to green bonds due to their alignment with
social responsibility commitments [5], traditional investors are recognizing the potential
financial benefits. Green bonds offer an avenue for diversification, serving as an alternative
to traditional assets. To discern the financial motives of investors and evaluate the effective-
ness of green bonds as hedging instruments, it becomes imperative to assess the correlation
between green bonds and other financial markets.

In the context of green bonds’ volatility, Pham [50] lays a foundational framework
using a multivariate GARCH model, uncovering its potential interplay with other mar-
kets and establishing time-varying shock transmission from conventional bond markets.
Reboredo [16] extends this work by employing a copula framework, revealing weak co-
movement with stock and energy commodities and significant diversification benefits for
investors in these markets. However, diversification benefits for corporate and treasury mar-
kets are marginal. Building on Reboredo [16], Reboredo and Ugolini [2] utilised a structural
VAR model, demonstrating close connections with currency markets and fixed-income,
with green bonds receiving price spillovers and transmitting negligible spillovers. Gao
et al. [51] contributed by unveiling two-way risk spillovers between the green bond market
and the traditional bond market while finding insignificant risk spillovers with foreign
exchange and monetary markets. According to Reboredo et al. [17], wavelet methodology
can be very helpful in showing the connection between corporate and treasury bonds, and
it also can help in diversification in both the short term and long term. They used the
wavelet methodology to determine the correlation between green bonds and corporate
bonds in the short and long term, emphasizing the diversification benefits.

Together, the abovementioned studies provide a comprehensive understanding of the
dynamic interactions and risk attributes within the green bond market and its relation-
ships with broader financial markets. On the other hand, while numerous studies have
explored the relationship between green bonds and financial markets, research focusing on
commodity markets remains limited.
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Nguyen et al. [9] employed the wavelet correlation method to examine the interrela-
tionship between green bonds and conventional financial markets. The findings revealed
a strong comovement between equities and commodities. The authors emphasised the
substantial diversification benefits that green bonds offer for both stock and commodity
investments, attributing these advantages to the consistently low or negative correlation
relationships observed. Naeem et al. [12] used the cross-quantilogram technique to demon-
strate how green bonds correlate with energy, metals, and agricultural commodities. They
revealed the presence of asymmetric interconnectedness between green bonds and com-
modity markets, highlighting the substantial hedging benefits of green bonds against
risks in the commodity market, especially in times of high volatility. Naeem et al. [11]
investigated asymmetric connectedness among green bonds and commodities in both
time–frequency domains. They identified asymmetric spillovers between green bonds
and commodity markets across various frequencies. Notably, the authors emphasised
that interconnectivity is most pronounced within the same class of commodities. The
study further highlighted that green bonds exhibit high connectedness only with precious
metals, such as gold and silver. For other commodity groups, green bonds showed limited
comovement and volatility spillovers. The authors concluded that green bonds can serve as
a safe haven for commodity markets except for precious metals. Arif et al. [10] investigated
the hedging and risk management features of green bonds versus traditional equity, bond,
commodity, and currency investments during the COVID-19 outbreak. The authors em-
ployed the cross-quantilogram method and revealed that green bonds have the capability
to act as a hedging tool for medium- and long-term equity investments. Furthermore, they
found that green bonds can serve as a safe-haven option for currency and commodity
investments. So, by investing in green bonds, investors can have a more effective and
reliable diversification strategy, which can help them manage currency and commodity
risks adequately. Tsagkanos et al. [13] conducted a study on the long-term relationship
between corporate green bonds and commodities. The authors utilised value-at-risk-based
copula models and revealed that nonperishable commodities have a tendency to transmit
risk to perishable commodities, particularly lead, gold, and agriculture commodities. The
study also suggests that green bonds have low connectedness with commodities, which
implies significant diversification advantages for investors.

In conclusion, the intricate connection between green bonds and commodities is
subject to change, influenced by factors such as market conditions and timeframes. Current
research indicates that green bonds not only play a pivotal role in funding environmentally
sustainable projects but also serve as valuable assets for investors aiming to diversify and
mitigate risks in their portfolios.

3. Materials and Methods
3.1. Data

This study investigates the multifractal relationship between green bonds and com-
modity markets. We use S&P Green Bond Index data for representation of the green bond
market. The index is built and published by S&P to exhibit the dynamics of the global
sustainable debt market. On the other side of the analysis, we use five commodity indices
to proxy different aspects of the market. Here, we utilise subgroups of commodity indices
of the S&P Goldman Sach Commodity Index (S&P GSCI). These commodity groups are
(i) agriculture, (ii) livestock, (iii) energy, (iv) industrial metals, and (v) precious metals.
The agriculture commodity index includes wheat (Chicago and Kansas), corn, soybeans,
cotton, sugar, coffee, and cocoa, while the livestock index contains price information of live
cattle, feeder cattle, and lean hogs. The energy index consists of crude oils (WTI and Brent),
gasoline, heating oil, gas oil, and natural gas. Precious metals cover gold and silver, while
the industrial metals index is a function of aluminium, copper, lead, nickel, and zinc prices.
The data cover the daily information from 1 November 2013 to 24 November 2023, with
2534 observations.
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In order to capture the multifractal dynamics between green bonds and commodities,
the analyses are conducted for both return series and volatility series. In this way, it is pos-
sible to exhibit the relationship between the markets both for the first and second moments.

The return series are calculated as in Equation (1). We use continuously compounded
return series as follows. We take the natural logarithmic difference of level data of asset i at
time t and time t − 1.

ri,t = ln(Ii,t)− ln(Ii,t−1) (1)

On the other side, volatility series are constructed by estimating the standard GARCH
(1,1) model for the series. We estimate volatilities with a stochastic volatility model due
to the heteroscedastic structure of the return series. In the GARCH (1,1) model presented
in Equation (2), σ2

i,t stands for the conditional variance of asset i at time t, ωi is the model
constant, and ϵi,t−1 is the innovation of the series i at time t. Lastly, αi captures the short-
term effects of shocks, while βi measures long-term persistency in volatility.

σ2
i,t = ωi + αiϵi,t−1 + βi ∗ σ2

i,t−1 (2)

As a preliminary analysis, we present descriptive statistics for the return series in
Table 1 and data graphs in Figure 1. Table 1 shows that assets have zero mean and median.
According to the table, green bonds have the lowest unconditional standard deviation
among all, while energy commodities have the highest standard deviation with a 2.33% de-
viation from the mean. Skewness and kurtosis values provide insights into the non-normal
distribution of the return series. Figure 1 shows nonstationarity in level data with various
means and local trends over time. The return series exhibits several volatility clusters
with some extreme fluctuations in all commodities. For instance, energy commodities
experienced about a 30% decrease in value in one trading day. Lastly, stochastic volatilities
are dynamic and show strong heteroscedastic behaviour.

Table 1. Descriptive statistics (return series).

Agriculture Livestock Energy Industrial_Metals Precious_Metals gbi

Mean 0.00 0.01 −0.01 0.01 0.02 0.00
Median −0.03 0.04 0.11 0.00 0.02 0.00

Min. −5.25 −6.23 −30.18 −4.11 −5.43 −2.41
Max. 4.96 5.30 15.99 5.16 5.72 2.27

Std. Dev. 1.10 1.06 2.33 1.09 0.98 0.37
Skewness 0.00 −0.30 −1.30 −0.03 −0.12 −0.16
Kurtosis 1.82 2.33 19.84 1.12 3.76 4.35
# of Obs. 2534 2534 2534 2534 2534 2534
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Figure 1. The data graphs of (i) level, (ii) return, and (iii) volatility series (1 November 2013–24
November 2023).

3.2. MFDCCA Method

In this study, we use MFDCCA to examine the multifractal relationship between green
bonds and commodities. The method offered by Zhou [29] is a combination of the DCCA
of Podobnik and Stanley [28] and the MFDFA of Kantelhardt et al. [27]. The method allows
us to investigate the multifractal behaviour of cross-correlations between bivariate series. It
consists of 6 steps described as follows.

Step 1. Let us consider two nonstationary time series whose lengths are equal:
{Xt : t ∈ [1, N]} and {Yt : t ∈ [1, N]}. Construct the profile of the series as follows: cal-
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culate the cumulative sums of the series by subtracting arithmetic means (X and Y) and
cumulatively integrating afterwards.

x(t) =
N

∑
k=1

Xk − X (3)

y(t) =
N

∑
k=1

Yk − Y (4)

Step 2. Divide the profiles into nonoverlapping segments with size s as Ns ≡ N\s,
where s is the time scale. Obviously, s will not be the exact multiple of N in most cases.
Therefore, we repeat the same segmentation from the starting end of the sequence in order
to not discard the remaining observations. In the end, we obtained 2Ns segments.

Step 3. Find the detrended covariance for each segment g obtained in Step 2.
For segments g = 1, 2, . . . Ns, we have the following:

F2
g (s) =

1
s

s

∑
k=1

|[x(g − 1)s + k]− x(k)| ∗|[y(g − 1)s + k ]− y(k)| (5)

For segments g = Ns + 1, Ns + 2, . . . 2Ns, we have the following function:

F2
g (s) =

1
s

s

∑
k=1

|x[N − (g − 1)s + k]− x(k)| ∗ |y[N − (g − 1)s + k]− y(k)| (6)

In Equations (5) and (6), x(k) and y(k) are obtained from fitting a second-order poly-
nomial to each segment.

In Zhou’s original paper [29], the modulus of the detrended covariance calculation
(Equations (5) and (6)) was not considered. Oswiecimka et al. [52] and Kwaipen et al. [53]
have pointed out that Zhou’s original method may result in negative cross-covariances,
leading to restrictions, for instance, fluctuation functions with complex values and chal-
lenges in calculating the generalised Hurst exponents. Various solutions to this problem
have been proposed in the literature. For instance, contrary to Zhou’s approach [29], ap-
plied studies ([54,55]) propose utilizing the modulus of the cross-covariance function as a
solution to the sign issue. This approach has been widely adopted in numerous empirical
analyses (e.g., [35,56–61]).

While there are alternative methods to handle the sign issue, Oswiecimka et al. [52]
introduced a technique called the multifractal cross-correlation method (MFCCA) for this
purpose. In our research, we adhere to the prevailing literature and tackle the mentioned
issues by applying the modulus to both series in this step, as it signifies the most commonly
utilised approach in MFDCCA.

Step 4. The wave (fluctuation) function of order q is calculated by taking the average
of local covariance functions of each segment obtained in Step 3.

For {q : q ∈ R, q ̸= 0}, the wave function of order q is obtained as follows:

Fq(s) =

{
1

2Ns

2Ns

∑
g=1

[
F2(s, g)

q
2
]} 1

q

(7)

For q = 0, the wave function takes the form:

F0(s) =

{
1

4Ns

2Ns

∑
g=1

[
ln F2(s, g)

]}
(8)
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Step 5. The interaction of wave function Fq(s) and s exhibits the relationship between
the two series. If the wave function has a power-law relationship with time scale, then it is
concluded that long-range cross-correlations exist between the two series.

Fq(s) ∼ shxy(q) (9)

Equation (9) is also expressed as follows:

log
(

Fq(s)
)
= hxy(q)log(s) + log(K) (10)

At this point, draw the log–log plot of Fq(s) versus s at each q order. The slope of
this regression gives the scaling exponent hxy(q) (or generalised Hurst exponent). If the
scaling exponent changes with q order, then we conclude that the cross-correlation between
the two series is multifractal. Otherwise, we conclude that the relationship is monofractal.
The scaling exponent can be examined to check various multifractal interactions of cross-
correlation between the two series. q > 0, hxy(q) shows the relationship in large fluctuation,
while q < 0 displays the cross-correlation at small fluctuations. If hxy(q) > 0.5, the cross-
correlation of two pairs is persistent. When hxy(q) < 0.5, then it is extracted that two series
have long-range antipersistent cross-correlation. When q = 2, the scaling exponent is the
well-known Hurst exponent, and if hxy(2) = 0.5, it shows that the cross-correlation between
the two series is not multifractal; in contrast, it shows a random walk characteristic.

Step 6. In addition to the log–log plot and the scaling exponent, it is required to inves-
tigate further evidence of the multifractal relationship between the two series. Zou and
Zhang [58] propose to check the Renyi exponent, which is calculated as
τxy(q) = q ∗ hxy(q) − 1. If the Renyi exponent nonlinearly increases with q, the cross-
correlation of the two series is multifractal. Otherwise, if the Renyi exponent is a linear
function of q, then the cross-correlation is single fractal. Another way to check the multifrac-
tality of the cross-correlation is to examine the singularity strength αxy(q) and multifractal
spectrum fxy(α). Using Legendre transform, singularity strength and multifractal spectrum
are calculated.

αxy(q) = τ′
xy(q) = hxy(q) + q∗h′xy(q) (11)

fxy(α) = q ∗
(
αxy − hxy(q)

)
+ 1 (12)

The multifractal spectrum fxy(α) is a concave function of the singularity strength
αxy(q) in the existence of multifractal cross-correlation. Otherwise, it is said that the series
have a single-fractal relationship.

3.3. Cross-Correlation Significance Test

As a preliminary analysis, it is better to check the existence of cross-correlations
qualitatively. For this purpose, Podobnik et al. [62] developed the Qcc(m) statistic. For two
time series {Xt : t ∈ [1, N]} and {Yt : t ∈ [1, N]} of length N, the cross-correlation function
{δi : i = 1, 2, . . . m} and Qcc(m) statistic is obtained as follows:

δi =
∑N

l=i+1 XlYl−i√
∑N

l=1 X2
l ∑N

l=1 Y2
l

(13)

Qcc(m) = N2
m

∑
i=1

δi
N − i

(14)

The test statistic Qcc(m) obeys chi-square distribution with m degree of freedom.
The cross-correlation is significant between the two series if the statistic exceeds the criti-
cal value.
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3.4. DCCA Coefficient

The DCCA coefficient ρDCCA of Zebende [63] is used to quantitatively assess bivari-
ate cross-correlations. It is calculated by dividing the fluctuation function of detrended
covariance (F2

DCCA(xy, s)) by the multiplication of the fluctuation function of detrended
variances (FDCCA(xx, s) ∗ FDCCA(yy, s)) of individual assets. Here, the fluctuation functions
are calculated at q = 2.

ρDCCA =
F2

DCCA(xy, s)
FDCCA(xx, s) ∗ FDCCA(yy, s)

(15)

The DCCA coefficient is bounded ρDCCA ∈ [−1, 1]. The coefficient is evaluated as
follows. For ρDCCA ∈ [−1, 0), it shows antipersistent cross-correlation between the two
series, while for ρDCCA ∈ (0, 1], it is evidence of the existence of persistent cross-correlation.
ρDCCA = −1 shows perfectly antipersistent cross-comovement, and if ρDCCA = 1, then the
two series exhibit perfect persistent cross-correlation.

4. Findings and Discussion

In this part of the article, we present findings on the multifractal detrended cross-
correlation between green bonds and commodities and discuss the results accordingly.
For the MFDCCA method, we need to specify some parameters. We choose q such that
{q : q ∈ [−10, 10], q ∈ Z} and set the time scale as 10 ≤ s ≤ N/2. The minimum value of
time scale s is set to 10 to avoid incorrect results in polynomial fitting on local trends for
s < 10 [64,65]. For the upper bound on s, we set the maximum value as N/2 to showcase
very long-range cross-correlation in the series. Following the recommendation of Ferreira
et al. [66] and Saâdaoui [67], we fix the maximum time scale as N/2 to fit robust scaling
exponents and highlight long-range interconnectivity between green bonds and commodity
markets.

Before proceeding with multifractal analysis, we first test whether the cross-correlations
are significant by using Podobnik and Stanley’s [28] Qcc(m) test statistic. The test results
are given in Figure 2 for return pairs and Figure 3 for volatility pairs, for m = N/2 and at
the 95% confidence interval. The test statistics exceed the critical value for all time periods
for volatility pairs. For the return series, the test values exceed the critical value for most
of the sample period. In general, the results show that both return and volatility pairs of
green bonds and commodities have significant cross-correlation.
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Proceeding further, Tables 2 and 3 present ρDCCA coefficients for both return and
volatility pairs for s = 16, 32, 64, 126, 256, 512, 1024. For both the first and second mo-
ments, the commodity market and green bonds are highly integrated, and cross-correlations
are positive and significant. ρDCCA coefficients are mostly increasing with time scale s,
implying that the interconnectedness of green bonds and commodities has long-range
interactions. Another observation of the results is that the cross-correlation of volatilities
of asset pairs is much stronger than return pairs. It indicates that risk interdependence is
much more powerful than returninterdependence for the underlying assets.

Table 2. DCCA coefficients ρDCCA for return series.

Window Size s = 16 s = 32 s = 64 s = 126 s = 256 s = 512 s = 1024

gbi-agriculture 0.57 0.57 0.56 0.53 0.53 0.61 0.68
gbi-livestock 0.57 0.58 0.53 0.52 0.60 0.68 0.66
gbi-energy 0.54 0.61 0.57 0.55 0.62 0.70 0.73

gbi-industrial_metals 0.63 0.63 0.65 0.66 0.69 0.71 0.75
gbi-precious_metals 0.69 0.71 0.71 0.66 0.70 0.72 0.79

Table 3. DCCA coefficients ρDCCA for volatility series.

Window Size s = 16 s = 32 s = 64 s = 126 s = 256 s = 512 s = 1024

gbi-agriculture 0.39 0.41 0.45 0.41 0.28 0.54 0.71
gbi-livestock 0.44 0.49 0.48 0.91 0.93 0.91 0.84
gbi-energy 0.32 0.44 0.60 0.79 0.92 0.92 0.91

gbi-industrial_metals 0.48 0.55 0.58 0.48 0.62 0.73 0.75
gbi-precious_metals 0.48 0.61 0.52 0.87 0.92 0.65 0.85

From now on, we direct our focus toward the multifractality of the relationship. In
Figure 4, we draw the log–log plot of fluctuation function Fq(s) versus time scale s. As
shown in Figure 4, the fluctuation functions of return and volatility pairs are increasing
with s, which indicates a power-law relationship in all groups. The result shows the
existence of long-range cross-correlation between the green bond market and the commod-
ity market and the existence of multifractality of cross-correlations for both the first and
second moments.
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The slope of the log–log plots in Figure 4 shows the generalised Hurst exponent
(scaling exponent) hxy(q) for various q orders. We obtain the scaling exponent and present
the results in Figure 5. We check the Hurst exponent hxy(2) to identify whether the
cross-correlations are random walk or they have multifractal structures. The empirical
findings show that hxy(2) ̸= 0.5 for all return and volatility pairs, which implies that
cross-correlation of the green bond market and the commodity market is not random walk.
In addition, the cross-correlation of the markets has multifractal features. Further, we
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investigate the direction of multifractal cross-correlations with the Hurst exponent at q = 2.
Both return and volatility pairs have hxy(2) > 0.5, indicating the long-range persistent
cross-correlation. In a general perspective, hxy(2) is the strongest between green bonds and
energy/industrial metal markets for the first moment series. On the other hand, it is the
strongest among green bonds–industrial metals and green bonds–precious metals pairs
at the second moment of the data. Furthermore, we can check how the cross-correlation
dynamics occur under small and large fluctuations in the markets. For this aim, we check{

hxy(q) : q < 0
}

for small fluctuations and
{

hxy(q) : q > 0
}

for large fluctuations.
Let us discuss the first moment dynamics first. While the market has relatively

stable conditions with small fluctuations, all types of commodities exhibit long-range
persistent cross-correlations with green bonds. Among them, energies and industrial
metals have the highest hxy(q) values, which means that these assets have the strongest
persistent cross-correlations. On the other hand, agricultural commodities have the lowest
hxy(q) values, which means that the cross-correlations are much lower than others in
small fluctuations. But when the market experiences large fluctuations, the commodity
market shows antipersistent cross-correlations with green bonds in most of the q orders.
Further, precious metals and energies are the assets that have the highest antipersistent
cross-correlations.

For volatility pairs, it is observed that commodity market and green bonds always
display persistent cross-correlation for both small and large fluctuation conditions. On
the other hand, the volatility interconnectedness is much stronger in small fluctuations,
whereas it decreases significantly when the market conditions transform through large
fluctuations. Energies and metals (precious and industrial) have the strongest persistent
cross-correlations in small fluctuations. When the market condition transforms to large
fluctuations, it can be seen that agricultural commodities and industrial metals show the
most powerful positive comovements with green bonds.

Comparing the results of return and volatility pairs, while return cross-correlations
mostly vary over the market conditions, volatilities mostly show similar behaviour, although
the power of interconnectedness changes. The return series respond significantly to small
and large fluctuations, and the cross-correlation direction changes accordingly. However,
the direction of the risk-interdependence of the underlying assets stays the same, although
the cross-correlation persistency decreases significantly. It may be due to the fact that while
financial risks are highly transmitted between markets and highly interconnected due to the
common risk factors, returns are more disposed to be individual and heterogeneous.
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In addition to the findings on the power-law relationship of the fluctuation function
and time scale, and the generalised Hurst exponent, we provide further evidence on the
multifractality of the cross-correlation between green bonds and the commodity market.
For this purpose, we present Renyi exponents τxy(q) for various q orders in Figure 6 and
multifractal spectrum f

(
αxy(q)

)
in Figure 7.
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.

The Renyi exponent is supposed to nonlinearly increase with q in the case of multifrac-
tality. As can be seen in Figure 6, τxy(q) of the return and volatility series of bivariate pairs
is a nonlinear and increasing function of q, which indicates that the cross-correlations of
green bonds and the commodity market have multifractal features with complex dynamics.
Figure 7 presents the singularity strength αxy(q) and multifractal spectrum f

(
αxy

)
for all

pairs. The multifractal spectra take concave form for all return and volatility pairs. So,
we can further conclude that the cross-correlation between green bonds and commodity
markets has multifractal features.

We evaluate the strength of multifractality by calculating the multifractality de-
gree ∆hxy = max

(
hxy

)
− min

(
hxy

)
and the width of multifractality ∆αxy = max

(
αxy

)
−

min
(
αxy

)
. The results are given in Table 4 for return and volatility pairs. For both moments,

the multifractality degree ∆hxy and the multifractal spectra width are the largest for en-
ergy commodities, indicating the strongest multifractality among all. On the other hand,
agricultural commodities display the weakest multifractality with green bonds.

Further, we examine sources of multifractality in cross-correlations among green
bonds and commodities. Multifractality is primarily attributed to two main factors: long
memory and fat-tail distributions [68–72]. To evaluate the impact of these sources on the
multifractality of cross-correlations, we obtain transformed data and repeat the analysis
to compare how the multifractality degree and multifractal spectra width change. For
this purpose, we first generate a shuffled series. This process removes long-term memory
while preserving the original probability distribution function of the series. We apply
1000*N transpositions on the original series, where N is the length of data, and generate
shuffled series. Secondly, we apply the Fourier phase randomisation process and obtain a
surrogated series. We conduct discrete Fourier transformation and rotate the transformed
series by a random phase angle. Afterwards, we apply inverse Fourier transformation
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and obtain a surrogated series. This process weakens non-Gaussian distribution while
preserving statistical moments and lets us evaluate the contribution of fat-tail distribution
on multifractality.

Table 4. The strength of multifractality analysis.

Return Pairs Min(hxy(q)) Max(hxy(q)) ∆hxy(q) Min(αxy(q)) Max(αxy(q)) ∆αxy(q)

gbi-agricultuıre 0.4231 0.6390 0.2159 0.3381 0.6854 0.3472
gbi-livestock 0.3892 0.7010 0.3118 0.2819 0.7498 0.4679
gbi-energy 0.3733 0.8008 0.4275 0.2660 0.8684 0.6024

gbi-industrial_metals 0.4405 0.7403 0.2998 0.3553 0.7867 0.4314
gbi-precious_metals 0.3454 0.6936 0.3481 0.2502 0.7531 0.5029

Volatility Pairs min
(
hxy(q) ) max

(
hxy(q) ) ∆hxy(q) min

(
αxy(q) ) max

(
αxy(q) ) ∆αxy(q)

gbi-agricultuıre 0.9024 1.5898 0.6874 0.8108 1.6699 0.8591
gbi-livestock 0.7350 1.5741 0.8391 0.6301 1.6447 1.0147
gbi-energy 0.7711 1.9267 1.1555 0.6652 2.0088 1.3436

gbi-industrial_metals 0.9337 1.8406 0.9070 0.8201 1.9394 1.1193
gbi-precious_metals 0.8630 1.8560 0.9930 0.7565 1.9317 1.1752

The multifractality degrees and multifractal spectra widths of the transformed data
are given in Table 5. After undergoing transformation processes, both return and volatility
series exhibit a significant decrease in multifractality strength. This suggests that both
long-term memory and heavy-tail distributions contribute to the multifractality of cross-
correlations between green bonds and the commodity market.

Table 5. Sources of multifractality.

Return Pairs Volatility Pairs

∆horiginal ∆hshu f f led ∆hsurrogated ∆horiginal ∆hshu f f led ∆hsurrogated

gbi-agriculture 0.2159 0.0852 0.0909 0.6874 0.1972 0.2647
gbi-livestock 0.3118 0.1326 0.0759 0.8391 0.2516 0.3225
gbi-energy 0.4275 0.1425 0.0602 1.1555 0.3017 0.2728

gbi-industrial_metals 0.2998 0.0779 0.0339 0.9070 0.1982 0.2468
gbi-precious_metals 0.3481 0.1846 0.0406 0.9930 0.1028 0.3589

∆αoriginal ∆αshu f f led ∆αsurrogated ∆αoriginal ∆αshu f f led ∆αsurrogated

gbi-agriculture 0.3472 0.1537 0.1654 0.8591 0.3208 0.3988
gbi-livestock 0.4679 0.2234 0.1462 1.0147 0.3630 0.4682
gbi-energy 0.6024 0.2445 0.1225 1.3436 0.4343 0.4020

gbi-industrial_metals 0.4314 0.1430 0.0955 1.1193 0.3114 0.3741
gbi-precious_metals 0.5029 0.3030 0.0938 1.1752 0.1817 0.5136

For return series, we observe ∆hsurrogated < ∆hshu f f led < ∆horiginal and ∆αsurrogated <
∆αshu f f led < ∆αoriginal for livestock, energy, industrial metals, and precious metals, while
∆hshu f f led < ∆hsurrogated < ∆horiginal and ∆αshu f f led < ∆αsurrogated < ∆αoriginal is found for
agriculture. These findings suggest that heavy tail distributions have the most powerful
impact on the multifractality of livestock, energy, industrial metals, and precious metals.
On the other hand, the multifractality of cross-correlation of green bonds and agriculture is
mainly influenced by long memory in return series.

In the case of volatility pairs, the multifractality degree and the width of multifractal
spectra significantly diminish after data transformation. Specifically, for agriculture, live-
stock, industrial, and precious metals series, it is observed that ∆hshu f f led < ∆hsurrogated <
∆horiginal and ∆αshu f f led < ∆αsurrogated < ∆αoriginal . Conversely, for energy volatility se-
ries, the sequences ∆hsurrogated < ∆hshu f f led < ∆horiginal and ∆αsurrogated < ∆αshu f f led <
∆αoriginal hold true. Thus, while both long memory and fat-tail distributions contribute to
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the multifractality of volatility series, the dominance of long memory is evident in agricul-
ture, livestock, industrial, and precious metals, whereas fat tails play a more significant role
in energy volatility.

5. Conclusions

In recent years, green bonds have become a prominent means of financing environ-
mentally friendly projects, with a growing focus on utilizing commodities, particularly
agricultural ones, as underlying assets for these initiatives. The relationship between green
bonds and commodities is explored in the literature, with attention to the feasibility, risks,
and benefits associated with such connections. Notably, green bonds are suggested to act
as a stabilizing force amid commodity price fluctuations, addressing a crucial aspect of
risk mitigation. Socially responsible investors are drawn to green bonds as sustainable
investment options, and studying their impact on commodities provides insights into the
evolving landscape of sustainable finance. While existing research has offered valuable
insights using the EMH, there is a notable gap in understanding nonlinear and chaotic
dynamics, which the FMH proposes as a more intricate and multifractal perspective on
financial markets.

This study employs methods from statistical physics to assess the relationship between
green bonds and the commodity market from an econophysics perspective. While a few
articles in the existing literature have explored interactions between the two markets, they
tend to adhere to the EMH, attempting to explain market behaviour through conventional
econometrics and linear approaches. Indeed, econophysicists have repeatedly demon-
strated that EMH is insufficient to explain financial markets due to its complex dynamics.
We contribute to the literature by exploring the relationship between these two markets,
considering their complex structures and nonlinear dynamics. We use MFDCCA and reveal
the multifractal cross-correlations between two markets in both return and volatility series.

Our contribution to the literature is threefold. First, we find significant cross-
correlations between green bonds and the commodity market. Second, we exhibit that
these cross-correlations are positive up to very long lags (e.g., s = 1024). Thirdly, we
show that the cross-correlations between two markets are multifractal, both in the first
and second moments. Both return and volatility cross-correlations exhibit long-range
power-law persistent behaviour. While volatility cross-correlations are always persistent,
return series have changing behaviour. When the market is relatively stable with small
fluctuations, return cross-correlations of green bonds and commodities exhibit persistent
behaviour. On the other hand, when the market experiences large fluctuations, the
cross-correlations of return series become antipersistent. In addition, our analysis of
the sources of multifractality indicates that long memory and heavy-tail distributions
contribute to the multifractality of cross-correlations.

For portfolio implications, we recommend using commodities to hedge the risk in
green bonds and vice versa, as these assets exhibit high and persistent cross-correlation
at second moments. Investors in these markets can adopt inverse positions to mitigate
volatility in their initial holdings. From a general perspective, the green bonds–precious
metals pair has the lowest persistent cross-correlation. Consequently, these two assets can
be combined for portfolio diversification in long positions. For short traders, the green
bond–industrial metal pairs can be considered as two inverse positions due to their high
and persistent return cross-correlations. Additionally, we provide two specific examples
for both extreme cases. However, investors can also consider other commodities based on
their risk preferences.

The previous literature highlights the portfolio diversification and hedging benefits of
green bonds for the commodity market. Nguyen et al. [12] utilised the wavelet correlation
method and demonstrated that green bonds perform very well in commodity portfolios.
Similarly, Naeem et al. [11] and Arif et al. [10] supported the findings of Nguyen et al. [12]
by using the cross-quantilogram method. Furthermore, Naeem et al. [12] and Tsagkanos
et al. [13] provided similar results on time–frequency connectedness and copula–VaR
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models. In this study, we support the previous findings with some crucial facts. In contrast
to the previous studies, we reject the EMH and show that the interconnectivity between
green bonds and commodities is multifractal. Also, while the previous literature offers
one-dimensional basic portfolio and hedging activities for green bonds and commodities,
we show that due to the complex dynamics in the market, these suggestions cannot be
straightforward. This study illustrates how portfolio applications and hedging activities
should be realised under multifractal characteristics and various fluctuations in the market.

Future studies may delve deeper into exploring the multifractality of green bonds
in relation to other financial assets. Another potential avenue for research could involve
examining multifractal dynamics through time-varying analysis. Our study primarily
focuses on a full-sample analysis; however, it is essential to acknowledge that complex
dynamics may undergo variations over time. Investigating these dynamics across different
time periods could provide valuable insights into the evolving nature of the multifractal
characteristics associated with green bonds and their interactions with other financial
instruments.
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