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Abstract: In the sense of an arbitrary time scale, some new sufficient conditions on oscillation are
presented in this paper for a class of nonlinear third-order delay dynamic equations involving a local
fractional derivative with a super-linear neutral term. The established oscillation results include
known Kamenev and Philos-type oscillation criteria and are new oscillation results so far in the
literature. Some inequalities, the Riccati transformation, the integral technique, and the theory of time
scale are used in the establishment of these oscillation criteria. The proposed results unify continuous
and discrete analysis, and the process of deduction is further extended to another class of nonlinear
third-order delay dynamic equations involving a local fractional derivative with a super-linear neutral
term and a damping term. As applications for the established oscillation criteria, some examples
are given.
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1. Introduction

In the qualitative analysis of solutions of differential and difference equations, oscil-
lation is a hot topic. An equation is oscillatory if all its solutions are neither positive nor
negative eventually. The oscillatory theory of differential and difference equations has
extensive applications in control, ecology, economics, biology, life sciences, engineering,
and many other fields. In the last few decades, there have been rich research results on
oscillation in the literature. The main approaches for studying oscillation are the Riccati
transformation and the integral average technique. In the early research, the studied differ-
ential equations were mainly of low order with simple forms (for example, see [1,2], and the
references therein). Later, the research of oscillation was extended to other differential equa-
tions with complex forms, such as differential equations with a neutral form [3,4], or with
distributed deviating arguments [5], or with a delay term [6], or with a damping term [7].
At the same time, research into oscillation was extended to various difference equations by
many authors, for example, difference equations with retarded arguments [8], linear and
half-linear difference equations [9], advanced difference equations [10], and so on.

With the increasing application of fractional derivatives and fractional differential
equations in various fields, recently, many authors have paid much attention to the re-
search into the oscillation of fractional differential equations [11], fractional difference
equations [12], and q-fractional difference equations [13].

In [14], Hilger proposed the concept of time scale, which is desired to unify continuous
and discrete analysis. Since then, the oscillation of dynamic equations on time scales has
been given much attention by many authors, and a lot of valuable oscillation criteria have
been established for various dynamic equations on time scales. The main approaches for
studying oscillation for dynamic equations on time scales in most research are still the
Riccati transformation and the integral average technique together with the theory of time
scale, and the research contents are roughly divided into two directions. One is that the
orders of a dynamic equation were from a lower order [15–17] to higher order [18–22].
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The other is that the forms of dynamic equations appear different, for example, superlinear
and sublinear dynamic equations [16], functional dynamic equations [18,19], and dynamic
equations with a neutral term [20,23].

Delay dynamics is a theory that studies the delay effect in dynamical systems. The ap-
plication of delayed dynamics is very extensive. For example, studying the delayed effects
of signal transmission between neurons in neuroscience can help us better understand the
function of the nervous system and disease control. Studying the delayed effects in the
food chain in ecology can help us better protect the stability of ecosystems. In the current
research on the oscillation of delay dynamic equations on time scales, most of the existing
results are related to linear, half-linear, and quasi-linear delay dynamic equations, while
little research is related to super-linear delay dynamic equations due to the complexity of
the analysis process. In [24], Grace et al. researched a class of delay second-order dynamic
equations on time scales with a super-linear neutral term, and based on some certain
inequalities, Riccati functions, and the ∆ integral technique, they established some new
oscillation criteria, including Kamenev and Philos-type oscillation criteria for the equation.
In this research, we notice that very few authors have paid attention to delay dynamic
equations on time scales involving local fractional derivative with a super-linear neutral
term so far in the literature.

Motivated by the above analysis, in this paper, we research the oscillation of a class of
nonlinear third-order delay dynamic equations on time scales involving a local fractional
derivative with a super-linear neutral term denoted as follows:

Dθ [s1(x)Dθ(s2(x)Dθ [w(x) + m(x)wα(l1(x))])] + s3(x)wβ(l2(x)) = 0,

x ∈ T0, 0 < θ ≤ 1,
(1)

and another class of nonlinear third-order delay dynamic equations involving a local
fractional derivative with a super-linear neutral term and a damping term as follows:

Dθ [s1(x)Dθ(s2(x)Dθ [w(x) + m(x)wα(l1(x))])] + v(x)Dθ(s2(x)Dθ [w(x) + m(x)wα(x)])

+ s3(x)wβ(l2(x)) = 0, x ∈ T0, 0 < θ ≤ 1,
(2)

where T is an arbitrary time scale, Dθ is the local fractional operator of θ order, w is the
unknown function, α, β are the ratios of two positive odd integers satisfying β ≥ α ≥ 1,
and T0 = [x0, ∞)

⋂
T, x0 > 0, s1, s2, s3, m, v ∈ Crd(T0,R+). Assume l1, l2 are increasing

delay functions, and l1(x) ≤ x, l2(x) ≤ x, l−1
1 (l2(x)) ≥ x.

The delay dynamic equations denoted by (1) and (2) have a wide range of applications
in the fields of dynamics and thermodynamics in physics research. They can fully consider
the historical changes of the research object and the impact of the current state on future
state changes. By studying its qualitative properties such as oscillation and stability,
they can more deeply and accurately grasp and control the current state of the physics
research object.

Definition 1. A function u ∈ (T,R) is regressive provided 1 + µ(x)u(x) ̸= 0, where µ(x) =
σ(x) − x, σ(x) = inf{t ∈ T, t > x}. The set of rd-continuous functions is denoted by Crd,
and the set of all regressive and rd-continuous functions is denoted by R, while R+ = {u|u ∈
R, 1 + µ(x)u(x) > 0, ∀x ∈ T}.

For more details on the theory of time scales, we refer the readers to [25,26].

Definition 2 ([27]). For x ∈ T, 0 < θ ≤ 1, the local fractional derivative of θ order for a function
f ∈ (T,R) is defined by Dθ f (x) satisfying

|[ f (σ(x))− f (s)]x1−α − Dθ f (x)(σ(x)− s)| ≤ ε|σ(x)− s| f orallx ∈ U,

where U is a neighborhood of x.
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Remark 1. The local fractional derivative defined on an arbitrary time scale T in Definition 2
unifies the continuous and discrete case; that is, if T = R or T = Z, then Dθ f (x) becomes the
fractional derivative on the set of real numbers and the set of integers, respectively. The latter can be
denoted by the fractional difference operator ∆θ .

According to Definition 2, if x is right-scattered, then one has Dθ f (x) = f (σ(x))− f (x)
σ(x)− x

x1−θ , while Dθ f (x) = lim
s→x

f (s)− f (x)
s − x x1−θ if x is right-dense. So, Dθ f (x) = f ∆(x)x1−θ . By

use of this relationship, (1) and (2) can be diverted to the following equations:

[b1(x)(b2(x)[w(x) + m(x)wα(l1(x))]∆)∆]∆ + n(x)wβ(l2(x)) = 0, x ∈ T0, (3)

and

[b1(x)(b2(x)[w(x) + m(x)wα(l1(x))]∆)∆]∆ + v(x)(b2(x)[w(x) + m(x)wα(x)]∆)∆

+ n(x)wβ(l2(x)) = 0, x ∈ T0,
(4)

where b1(x) = x1−θs1(x), b2(x) = x1−θs2(x), and b3(x) = xθ−1s3(x).
Define A1(x, x∗) =

∫ x
x∗

1
b1(t)

∆t, and A2(x, x∗) =
∫ x

x∗
1

b2(t)
∆t. In the following analy-

sis, we always assume m is nondecreasing, and
lim

x→∞
m(x) = ∞,

lim
x→∞

A1(x, x∗)A2(x, x∗)
m

1
α (x)

= 0.
(5)

Set y(x) = w(x) + m(x)wα(l1(x)). Then, (4) and (5) can be converted into the follow-
ing forms

(b1(x)[b2(x)y∆(x)]∆)∆ + n(x)wβ(l2(x)) = 0, x ∈ T0, (6)

(b1(x)[b2(x)y∆(x)]∆)∆ + v(x)[b2(x)y∆(x)]∆ + n(x)wβ(l2(x)) = 0, x ∈ T0. (7)

The rest of this paper is organized as follows. In Section 1, we present some new
oscillation results for Equation (1) (or its equivalent form Equation (3)). Then, in Section 2,
we extend the deduction process and establish some new oscillation criteria to Equation (2)
(or its equivalent form Equation (4)). Some examples are presented in Section 3 for applying
the established oscillation criteria. At last, we give some concluding comments. Throughout
the paper, [x, ∞)T = [x, ∞)

⋂
T.

2. Oscillation Results for Equation (1)

In this section, as Equation (1) is equivalent to (3), we only need to research the
oscillation of Equation (3). First, we give some lemmas.

Lemma 1. Assume Equation (3) has an eventually positive solution w(x), satisfying w(x) >
0, w(l1(x)) > 0, w(l2(x)) > 0 on [x1, ∞)T, where x1 ∈ [x0, ∞)T and x1 > x0. If

lim
x→∞

A1(x, x0) = ∞, (8)

lim
x→∞

A2(x, x0) = ∞, (9)

then it holds that
(a). There exists x2 ∈ [x1, ∞)T such that (b1(x)[b2(x)y∆(x)]∆)∆ < 0, [b2(x)y∆(x)]∆ > 0

on [x2, ∞)T.
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(b). We suppose an arbitrary x such that B1(x, c) > 0 on x ∈ [x, ∞)T, where B1(x, c) =
1

m(l−1
1 (l2(x)))

[1 − c
1
α −1

m
1
α (l−1

1 (l−1
1 (l2(x))))

], and c is an arbitrary positive constant. If it further

satisfies that

lim
x→∞

sup
∫ x

x
[

1
b2(ρ)

∫ ∞

ρ
(

1
b1(ξ)

∫ ∞

ξ
n(t)B

β
α
1 (t, c)∆t)∆ξ]∆ρ = ∞, (10)

then either y∆(x) > 0 on [x∗, ∞)T or lim
x→∞

w(x) = 0, where x∗ is sufficiently large.

Proof. (a): As w(x) is positive on [x1, ∞)T, one has y(x) > 0, x ∈ [x1, ∞)T, and

b1(x)[b2(x)y∆(x)]∆)∆ = −n(x)wβ(l2(x)) < 0. (11)

So, b1(x)[b2(x)y∆(x)]∆ is strictly decreasing on [x1, ∞)T, which implies the sign of [b2(x)y∆(x)]∆

does not change eventually. Here, we conclude [b2(x)y∆(x)]∆ > 0 on [x2, ∞)T for some
sufficiently x2 ∈ [x1, ∞)T. If not, we can find x3 ∈ [x2, ∞)T satisfying [b2(x)y∆(x)]∆ <
0, x ∈ [x3, ∞)T. So, b2(x)y∆(x) is strictly decreasing on [x3, ∞)T, and

b2(x)y∆(x)− b2(x3)y∆(x3) =
∫ x

x3

b1(t)[b2(t)y∆(t)]∆

b1(t)
∆t

≤ b1(x3)[b2(x3)y∆(x3)]
∆
∫ x

x3

1
b1(t)

∆t.
(12)

By (8), one can deduce that lim
x→∞

b2(x)y∆(x) = −∞. So, we can find x4 ∈ [x3, ∞)T such that

b2(x)y∆(x) < 0 on [x4, ∞)T, and

y(x)− y(x4) =
∫ x

x4

b2(t)y∆(t)
b2(t)

∆t ≤ b2(x4)y∆(x4)
∫ x

x4

1
b2(t)

∆t.

By (9), we can obtain lim
x→∞

y(x) = −∞, which is a contradiction. So, [b2(x)y∆(x)]∆ > 0 on

[x2, ∞)T. The proof is complete.

(b): By y(x) = w(x) + m(x)wα(l1(x)), one has wα(l1(x)) = y(x)− w(x)
m(x) ≤ y(x)

m(x) . So

wα(x) =
y(l−1

1 (x))− w(l−1
1 (x))

m(l−1
1 (x))

≥
y(l−1

1 (x))− [
y(l−1

1 (l−1
1 (x)))

m(l−1
1 (l−1

1 (x)))
]

1
α

m(l−1
1 (x))

=
y(l−1

1 (x))

m(l−1
1 (x))

[1 −
y

1
α (l−1

1 (l−1
1 (x)))

y(l−1
1 (x))m

1
α (l−1

1 (l−1
1 (x)))

].

According to (a), as [b2(x)y∆(x)]∆ > 0 on [x2, ∞)T, one can conclude the sign of y∆(x)
does not change eventually. Thus, we can find x5 ∈ [x2, ∞)T satisfying either y∆(x) > 0 or
y∆(x) < 0 for x ∈ [x5, ∞)T.

If y∆(x) < 0, then y(x) is strictly decreasing. Since y(x) > 0, x ∈ [x1, ∞)T, we
deduce that lim

x→∞
y(x) = ε1 ≥ 0 and lim

x→∞
b2(x)y∆(x) = ε2 ≤ 0. Here, we conclude ε1 = 0.

If not, we can find x6 ∈ [x5, ∞)T satisfying y(x) ≥ ε1 > 0, y(l−1
1 (l2(x))) ≥ ε1 > 0 for

x ∈ [x6, ∞)T, and

wα(x) ≥
y(l−1

1 (x))

m(l−1
1 (x))

[1 −
y

1
α (l−1

1 (x))

y(l−1
1 (x))m

1
α (l−1

1 (l−1
1 (x)))

]
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≥
y(l−1

1 (x))

m(l−1
1 (x))

[1 −
ε

1
α −1
1

m
1
α (l−1

1 (l−1
1 (x)))

] > 0, x ∈ [x6, ∞)T,

where the first equality of (5) is used in the last inequality. So,

wα(l2(x)) ≥
y(l−1

1 (l2(x)))

m(l−1
1 (l2(x)))

[1 −
ε

1
α −1
1

m
1
α (l−1

1 (l−1
1 (l2(x))))

] = B1(x, ε1)y(l−1
1 (l2(x))) > 0.

From (3) and (6), one has

(b1(x)[b2(x)y∆(x)]∆)∆ ≤ −n(x)B
β
α
1 (x, ε1)y

β
α (l−1

1 (l2(x))). (13)

After taking the ∆ integral on both sides of (13), from x to ∞, one can deduce that

−b1(x)[b2(x)y∆(x)]∆

= − lim
x→∞

b1(x)[b2(x)y∆(x)]∆ +
∫ ∞

x
−n(t)B

β
α
1 (t, ε1)y

β
α (l−1

1 (l2(t)))∆t

≤ −
∫ ∞

x
n(t)B

β
α
1 (t, ε1)y

β
α (l−1

1 (l2(t)))∆t ≤ −ε
β
α
1

∫ ∞

x
n(t)B

β
α
1 (t, ε1)∆t,

which implies

−[b2(x)y∆(x)]∆ ≤ −
ε

β
α
1

b1(x)

∫ ∞

x
n(t)B

β
α
1 (t, ε1)∆t. (14)

Replacing x with ξ in (14), taking the ∆ integral on both sides of (14) yields

b2(x)y∆(x) ≤ lim
x→∞

b2(x)y∆(x)− ε
β
α
1

∫ ∞

x
(

1
b1(ξ)

∫ ∞

ξ
n(t)B

β
α
1 (t, ε1)∆t)∆ξ

= ε2 − ε
β
α
1

∫ ∞

x
(

1
b1(ξ)

∫ ∞

ξ
n(t)B

β
α
1 (t, ε1)∆t)∆ξ

≤ −ε
β
α
1

∫ ∞

x
(

1
b1(ξ)

∫ ∞

ξ
n(t)B

β
α
1 (t, ε1)∆t)∆ξ,

which is followed by

y∆(x) ≤ −ε
β
α
1 [

1
b2(x)

∫ ∞

x
(

1
b1(ξ)

∫ ∞

ξ
n(t)B

β
α
1 (t, ε1)∆t)∆ξ]. (15)

Replacing x with ρ in (15), taking the ∆ integral on both sides of (15) yields

y(x)− y(x6) ≤ −ε
β
α
1

∫ x

x6

[
1

b2(ρ)

∫ ∞

ρ
(

1
b1(ξ)

∫ ∞

ξ
n(t)B

β
α
1 (t, ε1)∆t)∆ξ]∆ρ. (16)

Due to (10), one has lim
x→∞

y(x) = −∞, which is a contradiction. So, it holds that lim
x→∞

y(x) =

0, and lim
x→∞

w(x) = 0. We have finished the proof.

Lemma 2. If w(x) is an eventually positive solution of Equation (3) satisfying

[b2(x)y∆(x)]∆ > 0, y∆(x) > 0 on [x∗, ∞)T,

then it holds that
A1(x, x∗)b1(x)[b2(x)y∆(x)]∆

b2(x)
≤ y∆(x)
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≤ b2(x∗)y∆(x∗) + b1(x∗)[b2(x∗)y∆(x∗)]∆ A1(x, x∗)
b2(x)

, x ∈ [x∗, ∞)T, (17)

and

y(x) ≤ y(x∗) + b2(x∗)y∆(x∗)A2(x, x∗) + b1(x∗)[b2(x∗)y∆(x∗)]∆ A1(x, x∗)A2(x, x∗),

x ∈ [x∗, ∞)T.
(18)

Proof. According to Lemma 1, there exists x∗ such that b1(x)[b2(x)y∆(x)]∆ > 0 and de-
creasing on [x∗, ∞), b2(x)y∆(x) > 0 and increasing on [x∗, ∞). So, one has

b2(x)y∆(x) = b2(x∗)y∆(x∗) +
∫ x

x∗

b1(t)[b2(t)y∆(t)]∆

b1(t)
∆t

≥ b1(x)[b2(x)y∆(x)]∆
∫ x

x∗

1
b1(t)

∆t = A1(x, x∗)b1(x)[b2(x)y∆(x)]∆

and
b2(x)y∆(x) ≤ b2(x∗)y∆(x∗) + b1(x∗)[b2(x∗)y∆(x∗)]∆ A1(x, x∗).

Furthermore,

y(x) = y(x∗) +
∫ x

x∗

b2(t)y∆(t)
b2(t)

∆t ≤ y(x∗) + b2(x)y∆(x)
∫ x

x∗

1
b2(t)

∆t.

From above, the desired results can be obtained.

Theorem 1. Under the conditions of (8)–(10), if, for an arbitrary x∗ ∈ T0, it holds that

lim
x→∞

sup
∫ x

x0

{c
β
α −1n(t)B

β
α
2 (t, x∗, c)η(t)− b2(t)[η∆(t)]2

4η(t)A1(t, x∗)
}∆t = ∞, (19)

where η is one known nonnegative function,

B2(x, x∗, c) =

1
m(l−1

1 (l2(x)))
{1 − c

1
α −2

m
1
α (l−1

1 (l−1
1 (l2(x))))

[y(x∗) + b2(x∗)y∆(x∗)A2(l−1
1 (l−1

1 (l2(x))), x∗)

+b1(x∗)[b2(x∗)y∆(x∗)]∆ A1(l−1
1 (l−1

1 (l2(x))), x∗)A2(l−1
1 (l−1

1 (l2(x)), x∗)]},

and c is an arbitrary positive constant, then the solution w(x) of Equation (3) is oscillatory or
satisfies lim

x→∞
w(x) = 0.

Proof. Suppose w(x), x ∈ [x0, ∞)T is a non-oscillatory solution of Equation (3). We may
assume w(x) > 0, w(l1(x)) > 0, w(l2(x)) > 0 on [x1, ∞)T without loss of generality, where
x1 ∈ [x0, ∞)T. According to Lemma 1, we can find a sufficiently large x2 ∈ [x1, ∞)T such
that b1(x)[b2(x)y∆(x)]∆ is positive and decreasing on [x2, ∞), and either y∆(x) > 0, x ∈
[x2, ∞)T or lim

x→∞
w(x) = 0.

It is enough to consider the case y∆(x) > 0, x ∈ [x2, ∞)T. In this case, y(x) is increasing
on [x2, ∞)T. Then, there exists a positive constant c1 such that y(x) ≥ c1, y(l−1

1 (l2(x))) ≥ c1
on [x2, ∞)T.

On the other hand, wα(x) ≥ y(l−1
1 (x))

m(l−1
1 (x))

{1 − y
1
α −1(l−1

1 (l−1
1 (x)))

m
1
α (l−1

1 (l−1
1 (x)))

[
y(l−1

1 (l−1
1 (x)))

y(l−1
1 (x))

]}.
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Combining with (18) and the second equality of (5), one can deduce that for some
sufficiently large x3 ∈ [x2, ∞)T, it holds that

wα(l2(x)) ≥ B2(x, x2, c1)y(l−1
1 (l2(x))) > 0, x ∈ [x3, ∞)T.

By the use of (3) and (6), combined with α ≤ β, one can deduce that

(b1(x)[b2(x)y∆(x)]∆)∆ ≤ −n(x)B
β
α
2 (x, x2, c1)y

β
α (l−1

1 (l2(x)))

≤ −c
β
α −1
1 n(x)B

β
α
2 (x, x2, c1)y(l−1

1 (l2(x))), x ∈ [x3, ∞)T.
(20)

Now, we construct a Riccati function with definition ζ(x) = η(x)
y(x) [b1(x)(b2(x)y∆(x))∆].

Then, ζ(x) ≥ 0, x ∈ [x2, ∞)T according to Lemma 1 (a), and

ζ∆(x) =
η(x)
y(x)

[b1(x)(b2(x)y∆(x))∆]∆ + [
η(x)
y(x)

]∆b1(σ(x))(b2(σ(x))y∆(σ(x)))∆

=
η(x)
y(x)

[b1(x)(b2(x)y∆(x))∆]∆ + [
y(x)η∆(x)− y∆(x)η(x)

y(x)y(σ(x))
]b1(σ(x))(b2(σ(x))y∆(σ(x)))∆

=
η(x)
y(x)

[b1(x)(b2(x)y∆(x))∆]∆ +
η∆(x)

η(σ(x))
ζ(σ(x))

−[
η(x)y∆(x)

y(x)
]
b1(σ(x))(b2(σ(x))y∆(σ(x)))∆

y(σ(x))

≤ −
c

β
α −1
1 n(x)B

β
α
2 (x, x2, c1)η(x)y(l−1

1 (l2(x)))
y(x)

+
η∆(x)

η(σ(x))
ζ(σ(x))

−[
η(x)y∆(x)

y(x)
]
b1(σ(x))(b2(σ(x))y∆(σ(x)))∆

y(σ(x))

≤ −c
β
α −1
1 n(x)B

β
α
2 (x, x2, c1)η(x) +

η∆(x)
η(σ(x))

ζ(σ(x))

−[
η(x)y∆(x)

y(x)
]
b1(σ(x))(b2(σ(x))y∆(σ(x)))∆

y(σ(x))
,

where y(l−1
1 (l2(x))) ≥ y(x) and l−1

1 (l2(x)) ≥ x are used in the last step.
By (17) in Lemma 2, one has

y∆(x) ≥ A1(x, x2)b1(x)[b2(x)y∆(x)]∆

b2(x)
, x ∈ [x2, ∞)T.

So, we can deduce that
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ζ∆(x) ≤ −c
β
α −1
1 n(x)B

β
α
2 (x, x2, c1)η(x) +

η∆(x)
η(σ(x))

ζ(σ(x))

− (
η(x)
y(x)

)[
A1(x, x2)b1(x)[b2(x)y∆(x)]∆

b2(x)
]
b1(σ(x))(b2(σ(x))y∆(σ(x)))∆

y(σ(x))

≤ −c
β
α −1
1 n(x)B

β
α
2 (x, x2, c1)η(x) +

η∆(x)
η(σ(x))

ζ(σ(x))

− (
η(x)

y(σ(x))
)

A1(x, x2)

b2(x)
{b1(σ(x))[b2(σ(x))y∆(σ(x))]∆} b1(σ(x))(b2(σ(x))y∆(σ(x)))∆

y(σ(x))

= −c
β
α −1
1 n(x)B

β
α
2 (x, x2, c1)η(x) +

η∆(x)
η(σ(x))

ζ(σ(x))

− [
η(x)A1(x, x2)

b2(x)
][

b1(σ(x))(b2(σ(x))y∆(σ(x)))∆

y(σ(x))
]2

= −c
β
α −1
1 n(x)B

β
α
2 (x, x2, c1)η(x) +

η∆(x)
η(σ(x))

ζ(σ(x))

− [
η(x)A1(x, x2)

b2(x)
][

ζ(σ(x))
η(σ(x))

]2

≤ −c
β
α −1
1 n(x)B

β
α
2 (x, x2, c1)η(x) +

b2(x)[η∆(x)]2

4η(x)A1(x, x2)
, x ∈ [x3, ∞)T.

(21)

Replacing x with t in (21), taking the ∆ integral on both sides of (21) yields

∫ x

x3

{c
β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)−

b2(t)[η∆(t)]2

4η(t)A1(t, x2)
}∆t ≤ ζ(x3)− ζ(x) ≤ ζ(x3).

So, ∫ x

x0

{c
β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)−

b2(t)[η∆(t)]2

4η(t)A1(t, x2)
}∆t

≤ ζ(x3) +
∫ x3

x0

{c
β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)−

b2(t)[η∆(t)]2

4η(t)A1(t, x2)
}∆t < ∞,

which contradicts (19). We have finished the proof.

Theorem 2. Under the conditions of (8)–(10), furthermore, suppose for an arbitrary x2 and
x3 ∈ [x2, ∞)T, it holds that B2(x, x2, c) > 0, x ∈ [x3, ∞)T, where c is an arbitrary constant,
and B2 is defined as in Theorem 1. If

lim
x→∞

sup{

∫ x

x3

[
1

b2(ρ)

∫ ρ

x3

(
1

b1(ξ)

∫ ∞

ξ
n(t)B

β
α
2 (t, x2, c)∆t)∆ξ]∆ρ

A1(x, x2)A2(x, x2)
} = ∞, (22)

then the solution w(x) of Equation (3) is oscillatory or satisfies lim
x→∞

w(x) = 0.

Proof. Suppose w(x) is a non-oscillatory solution of Equation (3). Similar to the first two
paragraphs in Theorem 1, all that is left is to consider the case y∆(x) > 0, x ∈ [x2, ∞)T,
and one can further obtain that

(b1(x)[b2(x)y∆(x)]∆)∆ ≤ −c
β
α
1 n(x)B

β
α
2 (x, x2, c1), x ∈ [x3, ∞)T, (23)

where x3 ∈ [x2, ∞)T is sufficiently large.
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By taking the ∆ integral on both sides of (23), one can deduce that

−b1(x)[b2(x)y∆(x)]∆ = − lim
x→∞

b1(x)[b2(x)y∆(x)]∆ +
∫ ∞

x
−c

β
α
1 n(t)B

β
α
2 (t, x2, c1)∆t

≤ −c
β
α
1

∫ ∞

x
n(t)B

β
α
2 (t, x2, c1)∆t,

which implies

−[b2(x)y∆(x)]∆ ≤ −
c

β
α
1

b1(x)

∫ ∞

x
n(t)B

β
α
2 (t, x2, c1)∆t. (24)

Furthermore,

b2(x)y∆(x) ≥ b2(x3)y∆(x3) + c
β
α
1

∫ x

x3

(
1

b1(ξ)

∫ ∞

ξ
n(t)B

β
α
2 (t, x2, c1)∆t)∆ξ

≥ c
β
α
1

∫ x

x3

(
1

b1(ξ)

∫ ∞

ξ
n(t)B

β
α
2 (t, x2, c1)∆t)∆ξ,

which is followed by

y∆(x) ≥ c
β
α
1 [

1
b2(x)

∫ x

x3

(
1

b1(ξ)

∫ τ

x3

n(t)B
β
α
2 (t, x2, c1)∆t)∆ξ]. (25)

Moreover,

y(x) ≥ y(x3) + c
β
α
1

∫ x

x3

[
1

b2(ρ)

∫ ρ

x3

(
1

b1(ξ)

∫ ∞

ξ
n(t)B

β
α
2 (t, x2, c1)∆t)∆ξ]∆ρ. (26)

On the other hand, by (18) in Lemma 2, one has

y(x) ≤ y(x2) + b2(x2)y∆(x2)A2(x, x2) + b1(x2)[b2(x2)y∆(x2)]
∆ A1(x, x2)A2(x, x2),

x ∈ [x2, ∞)T.
(27)

Equations (26) and (27) lead to a contradiction with (22). So, the proof is complete.

Next we establish the Kamenev and Philos-type oscillation criteria for Equation (3).
To this end, define D = {(x, t)|x ≥ t ≥ x0}, and H ∈ Crd(D,R) satisfying

H(x, x) = 0, x ≥ x0,
H(x, t) > 0, x > t ≥ x0,
H∆

t (x, t) ≤ 0.
(28)

Theorem 3. Under the conditions of (8)–(10), if, for an arbitrary x∗, it holds that

lim
x→∞

sup
1

H(x, x0)
{
∫ x

x0

H(x, t){c
β
α −1n(t)B

β
α
2 (t, x∗, c)η(t)− b2(t)[η∆(t)]2

4η(t)A1(t, x∗)
}∆t} = ∞, (29)

where η, B2(x, x∗, c) are defined as in Theorem 1; then, the solution w(x) of Equation (3) is
oscillatory or satisfies lim

x→∞
w(x) = 0.

Proof. Suppose w(x) is a non-oscillatory solution of Equation (3). Similar to Theorem 1, all
that is left is to consider the case y∆(x) > 0, x ∈ [x2, ∞)T.

Let ζ(x) be defined as in Theorem 1. Due to (21), one has

c
β
α −1
1 n(x)B

β
α
2 (x, x2, c1)η(x)− b2(x)[η∆(x)]2

4η(x)A1(x, x2)
≤ −ζ∆(x), x ∈ [x3, ∞)T. (30)



Fractal Fract. 2024, 8, 115 10 of 21

So, one has ∫ x

x3

H(x, t){c
β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)−

b2(t)[η∆(t)]2

4η(t)A1(t, x2)
}∆t

≤ −
∫ x

x3

H(x, t)ζ∆(t)∆s = H(x, x3)ζ(x3) +
∫ x

x3

H∆
t (x, t)ζ(σ(t))∆s

≤ H(x, x3)ζ(x3) ≤ H(x, x0)ζ(x3),

where the deduction (28) is used. Then,

∫ x

x0

H(x, t){c
β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)−

b2(t)[η∆(t)]2

4η(t)A1(t, x2)
}∆t

=
∫ x3

x0

H(x, t){c
β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)−

b2(t)[η∆(t)]2

4η(t)A1(t, x2)
}∆t

+
∫ x

x3

H(x, t){c
β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)−

b2(t)[η∆(t)]2

4η(t)A1(t, x2)
}∆t

≤ H(x, x0)ζ(x3) +H(x, x0)
∫ x3

x0

|c
β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)−

b2(t)[η∆(t)]2

4η(t)A1(t, x2)
|∆t.

Moreover,

lim
x→∞

sup
1

H(x, x0)
{
∫ x

x0

H(x, t){c
β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)−

b2(t)[η∆(t)]2

4η(t)A1(t, x2)
}∆t

≤ ζ(x3) +
∫ x3

x0

|c
β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)−

b2(t)[η∆(t)]2

4η(t)A1(t, x2)
|∆t < ∞,

which leads to a contradiction with (29). By taking x∗ = x2, we have finished the proof.

In Theorem 3, if we select H(x, t) = (x − t)l , l ≥ 1, or H(x, t) = ln x
t , then we can

obtain the following corollary.

Corollary 1. Under the conditions of (8)–(10), if, for an arbitrary x∗, either of the following two
conditions holds:

(a).

lim
x→∞

sup
1

(x − x0)
l {

∫ x

x0

(x − t)l{c
β
α −1n(t)B

β
α
2 (t, x∗, c)η(t)− b2(t)[η∆(t)]2

4η(t)A1(t, x∗)
}∆t}

= ∞, l ≥ 1,

(31)

(b).

lim
x→∞

sup
1

(ln x − ln x0)
{
∫ x

x0

(ln x − ln t){c
β
α −1n(t)B

β
α
2 (t, x∗, c)η(t)− b2(t)[η∆(t)]2

4η(t)A1(t, x∗)
}∆t}

= ∞,
(32)

then the solution w(x) of Equation (3) is oscillatory or satisfies lim
x→∞

w(x) = 0.

3. Oscillation Results for Equation (2)

In this section, we research the oscillation of Equation (2) and extend the main results
established in the last section for Equations (3) and (4), as Equation (2) is equivalent to (4).

For the sake of convenience, define Ã1(x, x∗) =
∫ x

x∗

e− v
b1
(t, x0)

b1(t)
∆s.
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For v ∈ R, the exponential function is denoted by ev(x, t). According to ([25], Theo-
rems 5.1 and 5.2), it holds that ev(x, t) > 0 for v ∈ R+, and

[ev(x, x0)]
∆ = v(x)ev(x, x0),

ev(x0, x0) = 1.

For − v
b1

∈ R+, one has e− v
b1
(x, x0) > 0, and one has the following observation

(
b1(x)[b2(x)y∆(x)]∆

e− v
b1
(x, x0)

)∆

=
e− v

b1
(x, x0)(b1(x)[b2(x)y∆(x)]∆)∆ − (e− v

b1
(x, x0))

∆b1(x)[b2(x)y∆(x)]∆

e− v
b1
(x, x0)e− v

b1
(σ(x), x0)

=
b1(x)[b2(x)y∆(x)]∆)∆ + v(x)[b2(x)y∆(x)]∆

e− v
b1
(σ(x), x0)

=
−n(x)wβ(l2(x))
e− v

b1
(σ(x), x0)

.

Furthermore, we have the following two lemmas.

Lemma 3. Assume Equation (4) has an eventually positive solution w(x) satisfying w(x) >
0, w(l1(x)) > 0, w(l2(x)) > 0 on [x1, ∞)T, where x1 ∈ [x0, ∞)T, and x1 > x0. If − v

b1
∈

R+, and
lim

x→∞
Ã1(x, x0) = ∞, (33)

lim
x→∞

A2(x, x0) = ∞, (34)

then

(a). There exists x2 ∈ [x1, ∞)T such that (b1(x)[b2(x)y∆(x)]∆)∆

e− v
b1
(x, x0)

< 0, [b2(x)y∆(x)]∆ > 0

on [x2, ∞)T.
(b). If, furthermore,

lim
x→∞

sup
∫ x

x
[

1
b2(ρ)

∫ ∞

ρ
(

e− v
b1
(ξ, x0)

b1(ξ)

∫ ∞

ξ

n(t)B
β
α
1 (t, c)

e− v
b1
(σ(t), x0)

∆t)∆ξ]∆ρ = ∞, (35)

where B1 is defined as in Lemma 1 satisfying B1(x, c) > 0, x ∈ [x, ∞)T, then either y∆(x) > 0 on
[x∗, ∞)T or lim

x→∞
w(x) = 0, where x∗ is sufficiently large.

Lemma 4. If − v
b1

∈ R+, and w(x) is an eventually positive solution to Equation (4) satisfying

[b2(x)y∆(x)]∆ > 0, y∆(x) > 0on[x∗, ∞)T,

then it holds that

Ã1(x, x∗)b1(x)[b2(x)y∆(x)]∆

b2(x)e− v
b1
(x, x0)

≤ y∆(x)

≤

b2(x∗)y∆(x∗) +
b1(x∗)[b2(x∗)y∆(x∗)]∆

e− v
b1
(x∗, x0)

Ã1(x, x∗)

b2(x)
, x ∈ [x∗, ∞)T,

(36)
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and

y(x) ≤ y(x∗) + b2(x∗)y∆(x∗)A2(x, x∗) +
b1(x∗)[b2(x∗)y∆(x∗)]∆

e− v
b1
(x∗, x0)

Ã1(x, x∗)A2(x, x∗),

x ∈ [x∗, ∞)T.

(37)

The proofs of Lemmas 3 and 4 are similar to those of Lemmas 1 and 2. So, we omitted them here.

Theorem 4. Under the conditions of (33)–(35), if − v
b1

∈ R+, and for an arbitrary x∗, it holds that

lim
x→∞

sup
∫ x

x0

{
c

β
α −1n(t)B

β
α
2 (t, x∗, c)η(t)

e− v
b1
(σ(t), x0)

− b2(t)[η∆(t)]2

4η(t)Ã1(t, x∗)
}∆t = ∞, (38)

where η, B2 are defined as in Theorem 1, then the solution w(x) of Equation (4) is oscillatory or
satisfies lim

x→∞
w(x) = 0.

Proof. Suppose w(x) is a non-oscillatory solution of Equation (3), and assume w(x) >
0, w(l1(x)) > 0, w(l2(x)) > 0 on [x1, ∞)T without loss of generality. Furthermore, there
exists x2 ∈ [x1, ∞)T such that b1(x)[b2(x)y∆(x)]∆ is positive and decreasing on [x2, ∞),
and either y∆(x) > 0, x ∈ [x2, ∞)T or lim

x→∞
w(x) = 0.

If y∆(x) > 0, x ∈ [x2, ∞)T, there exists c1 > 0 such that y(x) ≥ c1, y(l−1
1 (l2(x))) ≥ c1

on [x2, ∞)T, and similar to Theorem 1, wα(l2(x)) ≥ B2(x, x2, c1)y(l−1
1 (l2(x))) > 0, x ∈

[x3, ∞)T. Furthermore, one can deduce that

(
b1(x)[b2(x)y∆(x)]∆

e− v
b1
(x, x0)

)∆ =
−n(x)wβ(l2(x))
e− v

b1
(σ(x), x0)

≤
−n(x)B

β
α
2 (x, x2, c1)y

β
α (l−1

1 (l2(x)))
e− v

b1
(σ(x), x0)

≤
−c

β
α −1
1 n(x)B

β
α
2 (x, x2, c1)y(l−1

1 (l2(x)))
e− v

b1
(σ(x), x0)

.

(39)

Let ζ(x) = η(x)
y(x) [

b1(x)(b2(x)y∆(x))∆

e− v
b1
(σ(x), x0)

]. Following a similar process to that of Theorem 1,

one can obtain that

ζ∆(x) ≤
−c

β
α −1
1 n(x)B

β
α
2 (x, x2, c1)η(x)

e− v
b1
(σ(x), x0)

+
b2(x)[η∆(x)]2

4η(x)Ã1(x, x2)
, x ∈ [x3, ∞)T. (40)

Moreover,

∫ x

x3

{
c

β
α −1
1 n(t)B

β
α
2 (t, x2, c1)η(t)

e− v
b1
(σ(t), x0)

− b2(t)[η∆(t)]2

4η(t)Ã1(t, x2)
}∆t ≤ ζ(x3)− ζ(x) ≤ ζ(x3),

which is a contradiction of (38). Then, the proof is complete.

Similar to Theorems 2 and 3, we can obtain the following two theorems.
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Theorem 5. Assume − v
b1

∈ R+. Under the conditions of (8)–(10), furthermore, suppose for

an arbitrary x2 and x3 ∈ [x2, ∞)T, it holds that B2(x, x2, c) > 0, x ∈ [x3, ∞)T, where c is an
arbitrary constant, and B2 is defined as in Theorem 1. If

lim
x→∞

sup{

∫ x

x3

[
1

b2(ρ)

∫ ρ

x3

(
e− v

b1
(ξ, x0)

b1(ξ)

∫ ∞

ξ

n(t)B
β
α
2 (t, x2, c)

e− v
b1
(σ(t), x0)

∆t)∆ξ]∆ρ

A1(x, x2)A2(x, x2)
} = ∞, (41)

then the solution w(x) of Equation (4) is oscillatory or satisfies lim
x→∞

w(x) = 0.

Theorem 6. Under the conditions of (33)–(35), if − v
b1

∈ R+, and for an arbitrary x∗, it holds that

lim
x→∞

sup
1

H(x, x0)
{
∫ x

x0

H(x, t){
c

β
α −1n(t)B

β
α
2 (t, x∗, c)η(t)

e− v
b1
(σ(t), x0)

− b2(t)[η∆(t)]2

4η(t)Ã1(t, x∗)
}∆t} = ∞, (42)

where H is defined as in Theorem 3, then the solution w(x) of Equation (4) is oscillatory or satisfies
lim

x→∞
w(x) = 0.

Remark 2. We will make a comparison between our results and the existing results. Firstly,
the critically used Riccati transformation function denoted by ζ(x) in the last two sections is
designed to be adapted to certain delay dynamic equations of fractional order, which is different
from [15–23]. As a result, the oscillation criteria established above are essentially different from those
existing results. Secondly, for the research into the oscillation of super-linear dynamic equations,
in [24], the authors considered a non-fractional second-order delay dynamic equation on time scales
with a super-linear term as follows:

(a(x)(z(x) + p(x)zα(x))∆)∆ + q(x)zβ(φ(x)) = 0.

We note that the third-order dynamic equations with a super-linear term denoted by Equations (1)–(4)
are different from above. In the establishment of Kamenev and Philos-type oscillation criteria in [24],
a critic inequality is unsuitably used (see (4.13)–(4.14) in [24]), which leads to the invalidity of
part of the oscillation results. In fact, after changing the form of the Riccati functions suitably,
corresponding Kamenev and Philos-type oscillation criteria can also be obtained. Moreover, it is
worthy of note that these provided results are not only an extension of those in [24] from a second-
order case to a third-order case, as the proof processes for the third-order case here are essentially
different from those for the second-order case in [24]. And the oscillation criteria described in the
theorems above are new results in the literature to the best of our knowledge.

4. Applications

As applications for the oscillation criteria established above, we will propose some
examples. For the examples with T = R, we also give the numerical computation results
demonstrated in graphics under the given initial value condition. Comparison of the
oscillatory behavior between the equation without the damping term and the equation
with the damping term are also given in the first two examples.

First, we consider the following nonlinear third-order delay differential equation
involving a local fractional derivative with a super-linear neutral term:

Example 1.

D
1
2 [x

1
6 D

1
2 (x

7
24 D

1
2 [w(x) + x2w3(

x
4
)])] + x

29
12 w5(

x
2
) = 0, x ∈ [1, ∞). (43)
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Compared with (1) and (3), one has T = R, b1(x) = x
2
3 , m(x) = x2, n(x) = x

23
12 , b2(x) =

x
19
24 , l1(x) = x

4 , l2(x) = x
2 , α = 3, β = 5, and x0 = 1. Then, one can see (8) and (9) hold from

the following analysis:

lim
x→∞

A1(x, x0) =
∫ ∞

x0

1
b1(t)

∆t =
∫ ∞

1

1

t
2
3

dt = ∞,

and
lim

x→∞
A2(x, x0) =

∫ ∞

x0

1
b2(t)

∆t =
∫ ∞

1

1

t
19
24

dt = ∞.

Furthermore, as B1(x, c) = 1
m(l−1

1 (l2(x)))
[1 − c

1
α −1

m
1
α (l−1

1 (l−1
1 (l2(x))))

] = 1
4x2 [1 − c−

2
3

(8x)
2
3
], one

can find a sufficiently large x ∈ R such that B1(x, c) ≥ 1
8x2 , x ∈ [x, ∞). Then, one has

∫ ∞

x
[

1
b2(ρ)

∫ ∞

ρ
(

1
b1(ξ)

∫ ∞

ξ
n(t)B

β
α
1 (t, c)∆t)∆ξ]∆ρ

=
∫ ∞

x
[

1

ρ
19
24

∫ ∞

ρ
(

1

ξ
2
3

∫ ∞

ξ
t

23
12 B

5
3
1 (t, c)dt)dξ]dρ

≥ 1

8
5
3

∫ ∞

x
[

1

ρ
19
24

∫ ∞

ρ
(

1

ξ
2
3

∫ ∞

ξ
t−

17
12 dt)dξ]dρ

=
12

8
5
3 5

∫ ∞

x
[

1

ρ
19
24

∫ ∞

ρ
ξ−

13
12 dξ]dρ =

144

8
5
3 5

∫ ∞

x

1

ρ
21
24

dρ = ∞,

which shows that (10) is satisfied.
Moreover, as A1(x, x∗) = 3[x

1
3 − (x∗)

1
3 ], A2(x, x∗) = 24

5 [x
5

24 − (x∗)
5
24 ], according to the

definition of B2(x, x∗, c) in Theorem 1, one has

B2(x, x∗, c) =
1

4x2 [1 −
k1x

13
24 + k2x

5
24 + k3

(8x)
2
3

],

where ki, i = 1, 2, 3 are constants related to x∗. Then, we can find a sufficiently large x3 ∈ [x∗, ∞)

satisfying A1(x, x∗) ≥ 3
2 x

1
3 and B2(x, x∗, c) ≥ 1

8x2 > 0 on x ∈ [x3, ∞).

Select η(x) = x, and then, one has

∫ x

x3

[c
β
α −1n(t)B

β
α
2 (t, x∗, c)η(t)− b2(t)[η′(t)]2

4η(t)A1(t, x∗)
]dt

≥
∫ x

x3

[
c

2
3

8
5
3
(

1

t
5

12
)− 1

6t
13
24
]dt =

∫ x

x3

(
c

2
3

8
5
3
)

1

t
5
12
[1 − (

8
5
3

6c
2
3
)

1

t
3

24
]dt.

If x3 is selected as sufficiently large, then one can see the above integral tends to infinity when x
tends to infinity. So, (19) is also satisfied in the case of T = R. Due to Theorem 1, one can deduce
that the solution w(x) of Equation (43) is oscillatory or satisfies lim

x→∞
w(x) = 0.

Now, we consider the numerical computation of (43). Denote the step by h, and xi =
x0 + ih, i = 0, 1, 2.... wi denotes the numerical solution of the unknown function w(x) at
the point xi. bi

1 = b1(xi), bi
2 = b2(xi), mi = m(xi), ni = n(xi), i = 0, 1, 2, ....
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For the general form of (43), one can consider (1) or its equivalent form (3). For the
sake of a graphical demonstration, we perform a numerical computation by use of the
simple forward Euler method, and one can obtain the following numerical scheme:

bi+1
1 {bi+2

2 [(wi+3 + mi+3(w(
xi+3

4
))3)− (wi+2 + mi+2(w(

xi+2

4
))3)]

−bi+1
2 [(wi+2 + mi+2(w(

xi+2

4
))3)− (wi+1 + mi+1(w(

xi+1

4
))3)]}

−bi
1{bi+1

2 [(wi+2 + mi+2(w(
xi+2

4
))3)− (wi+1 + mi+1(w(

xi+1

4
))3)]

−bi
2[(w

i+1 + mi+1(w(
xi+1

4
))3)− (wi + mi(w(

xi
4
))3)]}+ ni(w(

xi
2
))5 = 0.

As is known, the local truncating error of the scheme is O(h). In order to fulfill the
numerical computation, we select the node variable i such that xi

4 is equivalent to some

xj, j = 0, 1, 2, .... So, one has 1 + ih
4 = 1 + jh, which implies i = 3

h + 4j, j = 0, 1, 2.... For the

convenience of computing, one can set w(
xi+k

4 ) = w( xi
4 ), k = 1, 2, 3, w(

xi+1
2 ) = w( xi

2 ),
and w(x) = w(x0) for all x < x0.

Selecting h = 0.1 and the initial value condition w(x0) = 0, we obtain the numerical
computation results, which are demonstrated in Figure 1.

5 

4 

3 

2 

1 

。

-1 

-2 

106 

-3 
Fig. 1. Numerical demonstration of the oscillatory behavior of the 

solution of (43) without damping tern飞henx is large enogh 
Figure 1. Numerical demonstration of the oscillatory behavior of the solution of (43) without a
damping term when x is large enough.

From Figure 1, one can see that the solution of Equation (43) is oscillatory if x is
large enough.

Next, we consider the following nonlinear third-order delay differential equation
involving a local fractional derivative with a super-linear neutral term and a damping term.
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Example 2.

D
2
3 [x

1
6 D

2
3 (x−

1
3 (D

2
3 [w(x) + x5w3(

x
4
)]))] + x−

3
2 D

2
3 (x−

1
3 (D

2
3 [w(x) + x5w3(

x
4
)]))

+ x
29
3 w5(

x
2
) = 0, x ∈ [2, ∞).

(44)

Compared with (2) and (4), one has T = R, b1(x) =
√

x, m(x) = x5, v(x) = x−
3
2 , n(x) =

x
28
3 , b2(x) = 1, l1(x) = x

4 , l2(x) = x
2 , α = 3, β = 5, and x0 = 2. Then, µ(x) = 0,

and − v
b1

∈ R+. Considering e− v
a
(x, x0) = e− v

a
(x, 2) = exp(−

∫ x
2

v(t)
b1(t)

dt), one has

1 > exp(−
∫ x

2

v(t)
b1(t)

dt) ≥ 1 −
∫ x

2

v(t)
b1(t)

dt = 1 −
∫ x

2
t−2dt = 1 + [x−1 − 2−1] ≥ 1

2
.

Obviously, A1(x, x∗) = 2[x
1
2 − (x∗)

1
2 ], A2(x, x∗) = x − x∗, which implies (33) and (34)

hold. As

B1(x, c) =
1

m(l−1
1 (l2(x)))

[1 − c
1
α −1

m
1
α (l−1

1 (l−1
1 (l2(x))))

] =
1

(2x)5 [1 −
c−

2
3

(8x)
5
3
],

B2(x, x2, c) =
1

32x5 [1 −
k1x

3
2 + k2x + k3

(8x)
5
3

],

where ki, i = 1, 2, 3 are constants related to x2, then we can find a sufficiently large x3 ∈ R such
that B1(x, c) ≥ 1

64x5 and B2(x, x2, c) ≥ 1
64x5 > 0 on x ∈ [x3, ∞).

For the sake of verifying (35), one can see that

∫ x

x
[

1
b2(ρ)

∫ ∞

ρ
(

e− v
b1
(ξ, x0)

b1(ξ)

∫ ∞

ξ

n(t)B
β
α
1 (t, c)

e− v
b1
(σ(t), x0)

∆t)∆ξ]∆ρ

≥
∫ x

x
[

1
b2(ρ)

∫ x

ρ
(

e− v
b1
(ξ, x0)

b1(ξ)

∫ x

ξ

n(t)B
β
α
1 (t, c)

e− v
b1
(σ(t), x0)

∆t)∆ξ]∆ρ

≥ 1

(64)
5
3 2

∫ x

x
[
∫ x

ρ
(

1√
ξ

∫ x

ξ
tdt)dξ]dρ

=
1

(64)
5
3 2

∫ x

x
[
∫ x

ρ
(

x2 − ξ2

2
√

ξ
)dξ]dρ

=
1

(64)
5
3 2

∫ x

x
[x2(

√
x −√

ρ)− 1
5
(x

5
2 − ρ

5
2 )]dρ

=
1

(64)
5
3 2

[
4

21
x

7
2 − 4

5
x

5
2 x +

2
3

x2x
3
2 − 2

35
x

7
2 ],

which tends to infinity when x tends to infinity. So (35) is satisfied. On the other hand, in order to
verify (41), one has

∫ x

x3

[
1

b2(ρ)

∫ ρ

x3

(
e− v

b1
(ξ, x0)

b1(ξ)

∫ ∞

ξ

n(t)B
β
α
2 (t, x2, c)

e− v
b1
(σ(t), x0)

∆t)∆ξ]∆ρ

A1(x, x2)A2(x, x2)
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≥

∫ x

x3

[
1

b2(ρ)

∫ ρ

x3

(
e− v

b1
(ξ, x0)

b1(ξ)

∫ x

ξ

n(t)B
β
α
2 (t, x2, c)

e− v
b1
(σ(t), x0)

∆t)∆ξ]∆ρ

A1(x, x2)A2(x, x2)

≥ 1

(64)
5
3 2

{
64

105
x

7
2 − x3(x3)

1
2 +

1
3

x2(x3)
3
2 +

1
5

x(x3)
5
2 − 1

7
(x3)

7
2

2(
√

x −
√

x2)(x − x2)
},

which tends to infinity when x tends to infinity. So, (41) holds. Due to Theorem 5, one can conclude
that the solution w(x) of Equation (44) is oscillatory or satisfies lim

x→∞
w(x) = 0.

Similar to the numerical computation in Example 1, one can select the Euler method
to construct a numerical scheme for (44), and the numerical computation results with the
initial value condition w(x0) = 1 are demonstrated in Figure 2.

l 

0.8 

0.6 

0.4 

0.2 

。

-0.2 

-0.4 

-0.6 

-0.8 

1. 106 

Fig. 2. Numerical demonstration of the oscillatory behavior of the 
solutions of (44) with damping tern飞hen x is large enogh 

Figure 2. Numerical demonstration of the oscillatory behavior of the solutions of (44) with a damping
term when x is large enough.

Comparing Figures 1 and 2, one can see that the damping term can lead to an impact
on the oscillatory behavior of the solutions.

Example 3. Next, we consider the following nonlinear third-order delay difference equation involv-
ing a local fractional difference with a super-linear neutral term:

∆
1
3 {x

1
3 ∆

1
3 (x−

2
3 (∆

1
3 [w(x) + x4w3(

x
2
)]))}+ x

8
3 w3(x) = 0, x ∈ [2, ∞)Z, (45)

where ∆
1
3 is the fractional difference operator of 1

3 order on Z.
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Compared with (1) and (3), one has T = Z, b1(x) = x, m(x) = x4, n(x) = x2, b2(x) =
1, l1(x) = x

2 , l2(x) = x, α = β = 3, and x0 = 2. Then, for (8) and (9), one has

lim
x→∞

A1(x, x0) =
∫ ∞

x0

1
b1(t)

∆t =
∞

∑
t=2

1
t
= ∞,

and

lim
x→∞

A2(x, x0) =
∫ ∞

x0

1
b2(t)

∆t =
∞

∑
t=2

1 = ∞.

Furthermore, as B1(x, c) = 1
m(l−1

1 (l2(x)))
[1− c

1
α−1

m
1
α (l−1

1 (l−1
1 (l2(x))))

] = 1
(2x)4 [1−

c−
2
3

(4x)
4
3
],

we can find a sufficiently large x ∈ Z such that B1(x, c) ≥ 1
32x4 , x ∈ [x, ∞)Z. Then, it holds that

∫ ∞

x
[

1
b2(ρ)

∫ ∞

ρ
(

1
b1(ξ)

∫ ∞

ξ
n(t)B

β
α
1 (t, c)∆t)∆ξ]∆ρ

=
∞

∑
ρ=x

[
1

b2(ρ)

∞

∑
ξ=ρ

(
1

b1(ξ)

∞

∑
t=ξ

n(t)B
β
α
1 (t, c))]

≥ 1
32

∞

∑
ρ=x

[
∞

∑
ξ=ρ

(
1
ξ

∞

∑
t=ξ

1
t2 )] ≥

1
32

∞

∑
ρ=x

[
∞

∑
ξ=ρ

(
1
ξ

∞

∑
t=ξ

1
t(t + 1)

)] =
1

32

∞

∑
ρ=x

∞

∑
ξ=ρ

1
ξ2

≥ 1
32

∞

∑
ρ=x

∞

∑
ξ=ρ

1
ξ(ξ + 1)

=
1

32

∞

∑
ρ=x

1
ρ
= ∞.

So (8)–(10) are satisfied. Moreover, as

A1(x, x∗) =
∫ x

x∗

1
t

∆t =
x−1

∑
t=x∗

1
t
≥

∫ x

x∗

1
t

dt = ln x − ln x∗,

A1(x, x∗) ≤
∫ x−1

x∗−1

1
t

dt = ln(x − 1)− ln(x∗ − 1) < ln x,

A2(x, x∗) =
∫ x

x∗
1∆t =

x−1

∑
t=x∗

1 = x − x∗,

one can deduce that B2(x, x∗, c) ≥ 1
(2x)4 [1 − k1x ln x + k2x + k3

(4x)
4
3

], where ki, i = 1, 2, 3 are

constants related to x∗. Therefore, there exists x3 ∈ [x∗, ∞)Z such that A1(x, x∗) ≥ 1
2 ln x and

B2(x, x∗, c) ≥ 1
32x4 on x ∈ [x3, ∞)Z.

Selecting η(x) = x, one has

∫ x

x3

[c
β
α −1n(t)B

β
α
2 (t, x∗, c)η(t)− b2(t)[η∆(t)]2

4η(t)A1(t, x∗)
]∆t

=
x−1

∑
t=x3

[c
β
α −1n(t)B

β
α
2 (t, x∗, c)η(t)− b2(t)[η∆(t)]2

4η(t)A1(t, x∗)
]

≥
x−1

∑
t=x3

(
1

32t
− 1

2t ln t
) =

x−1

∑
t=x3

1
32t

(1 − 16
ln t

),

which tends to infinity when x tends to infinity as long as x3 is sufficiently large. So, (19) satisfies
in the case T = Z. It follows from Theorem 1 that the solution w(x) of Equation (45) is oscillatory
or satisfies lim

x→∞
w(x) = 0.
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Example 4. Now, we research the oscillation of the following nonlinear third-order delay local
fractional γ−difference equation with a super-linear neutral term:

∆
1
2 {
√

x∆
1
2 (x−

1
2 (∆

1
2 [w(x) + x4w3(

x
2
)]))}+ x

5
2 w3(x) = 0, x ∈ [γ, ∞)γZ , (46)

where γ ≥ 2, ∆
1
2 is the fractional γ− difference operator of 1

2 order on γZ.
Due to (1) and (3), one has T = γZ, b1(x) = x, m(x) = x4, n(x) = x2, b2(x) =

1, l1(x) = x
2 , l2(x) = x, α = β = 3, and x0 = γ. Then, one can easily deduce that (8) and (9)

hold. Similar to Example 3, there exists a sufficiently large x ∈ γZ such that B1(x, c) ≥ 1
32x4 on

x ∈ [x, ∞)γZ . So, (10) holds by the following observations:

∫ ∞

x
[

1
b2(ρ)

∫ ∞

ρ
(

1
b1(ξ)

∫ ∞

ξ
n(t)B

β
α
1 (t, c)∆t)∆ξ]∆ρ

≥ 1
32

∫ ∞

x
[
∫ ∞

ρ
(

1
ξ

∫ ∞

ξ

1
t2 ∆t)∆ξ]∆ρ ≥ 1

32

∫ ∞

x
[
∫ ∞

ρ
(

1
ξ

∫ ∞

ξ

1
tσ(t)

∆t)∆ξ]∆ρ

=
1
32

∫ ∞

x
[
∫ ∞

ρ
(

1
ξ
[−1

t
]∞ξ )∆ξ]∆ρ =

1
32

∫ ∞

x
[
∫ ∞

ρ

1
ξ2 ∆ξ]∆ρ ≥ 1

32

∫ ∞

x
[
∫ ∞

ρ

1
ξσ(ξ)

∆ξ]∆ρ

=
1

32

∫ ∞

x

1
ρ

∆ρ = ∞.

Furthermore, letting F∆(t) = f (t), one has∫ x

x∗
f (t)∆t = F(x)− F(x∗)

=
log

x
x∗
γ

∑
k=1

[F(γkx∗)− F(γk−1x∗)] =
log

x
x∗
γ

∑
k=1

[(γkx∗ − γk−1x∗) f (γk−1x∗)].

So,

A1(x, x∗) =
∫ x

x∗

1
t

∆t

=
log

x
x∗
γ

∑
k=1

[(γkx∗ − γk−1x∗)
1

γk−1x∗
] = (γ − 1) log

x
x∗
γ = (γ − 1)(logx

γ − logx∗
γ ),

A2(x, x∗) =
∫ x

x∗
1∆t = x − x∗,

B2(x, x∗, c) =
1

(2x)4 [1 −
k1x logx

γ +k2x + k3

(4x)
4
3

].

Therefore, there exists x3 ∈ [x∗, ∞)γZ such that A1(x, x∗) ≥ γ − 1
2 logx

γ and B2(x, x∗, c) ≥ 1
32x4

on x ∈ [x3, ∞)γZ .
Under the selection η(x) = x, it holds that

lim
x→∞

sup
1

(x − x0)
{
∫ x

x3

(x − t){c
β
α −1
1 n(t)B

β
α
2 (t, x∗, c)η(t)− b2(t)[η∆(t)]2

4η(t)A1(t, x∗)
}∆t}

≥ lim
x→∞

sup
1

(x − γ)

∫ x

x3

(x − t)(
1

32t
− 1

2(γ − 1)t logt
γ

)∆t

= lim
x→∞

sup
1

(x − γ)

∫ x

x3

x − t
32t

(1 − 16
(γ − 1) logt

γ

)∆t = ∞.
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So, (31) is also satisfied with l = 1. Due to Corollary 1, it can be seen that the solution w(x) of
Equation (46) is oscillatory or satisfies lim

x→∞
w(x) = 0.

5. Conclusions

By the use of some inequalities, the Riccati transformation, the integral technique,
and the theory of time scale, we have deduced and proposed some new sufficient con-
ditions on oscillation including some Kamenev and Philos-type oscillation criteria for a
class of nonlinear third-order delay dynamic equations with a super-linear neutral term.
Furthermore, these oscillation criteria are extended to another class of nonlinear third-order
delay dynamic equations with a super-linear neutral term and a damping term. In order to
apply the proposed oscillation results, some examples are given and analyzed. Finally, we
note that the deduction process of the main results in this paper can be extended to other
types of nonlinear high-order delay dynamic equations on time scales, and as α ≤ β here,
the establishment of oscillation criteria in the case α > β is also worthy of further research.
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