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Abstract: In this article, we develop a compact finite difference scheme for a variable-order-time
fractional-sub-diffusion equation of a fourth-order derivative term via order reduction. The proposed
scheme exhibits fourth-order convergence in space and second-order convergence in time. Addi-
tionally, we provide a detailed proof for the existence and uniqueness, as well as the stability of
scheme, along with a priori error estimates. Finally, we validate our theoretical results through
various numerical computations.
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1. Introduction

In recent years, fractional calculus has become a pivotal mathematical tool in various
scientific and engineering disciplines. It is particularly noteworthy for its ability to effec-
tively capture the historical memory and holistic relevance of intricate dynamic systems,
phenomena, or structures. However, contemporary studies increasingly reveal that these
systems’ memory or non-local characteristics can evolve over time, space, or under varying
conditions [1,2]. Constant-order fractional calculus is not very effective in describing such
changes. In contrast, variable-order fractional calculus offers a more nuanced approach
to capturing the memory and hereditary properties inherent in many physical phenom-
ena and processes. Therefore, variable-order fractional calculus is a sensible and useful
option for accurately describing complex biological systems and processes [3]. Since then,
variable-order fractional differential equations have become better known for their ability
to simulate various phenomena [4–9].

Due to the intricate nature and analytical difficulty of equations involving variable-
order derivatives, developing effective numerical methods stands as a major challenge.
Chen et al. [10] investigated a variable-order anomalous subdiffusion equation and devel-
oped a numerical scheme characterized by first-order temporal and fourth-order spatial
accuracy. Concurrently, they employed Fourier analysis techniques to rigorously ana-
lyze their numerical scheme’s convergence, stability, and solvability. In [11], Zhao et al.
crafted two second-order approximation formulas specifically for the variable-order Ca-
puto fractional-time derivatives. They also provided a comprehensive error analysis
to support their formulations. Shivanian [12] introduced a meshless local radial point
interpolation method specifically designed for solving two-dimensional fractional-time
convection–diffusion–reaction equations. Liu et al. [13] developed optimal piecewise-linear
and piecewise-quadratic finite element methods for solving space-time fractional diffu-
sion equations, which have a 2 − γ order temporal accuracy. Liu et al. [14] explored a
Galerkin mixed finite element method combined with a time second-order discrete scheme,
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but its spatial accuracy is less than second-order. Zhao et al. [15] have developed an im-
plicit scheme tailored for time-space fractional diffusion equations. They demonstrate the
scheme’s convergence in the L2-norm, achieving an order of O(τ2 + h2). El-Sayed and
Agarwal [16] employed shifted Legendre polynomials to construct the numerical solution
for multiterm variable-order fractional differential equations. Hajipour et al. [17] described
a precise discretization method that can be used to solve variable-order fractional reaction–
diffusion problems. Their scheme is characterized by a third-order accuracy in time.
However, the equations do not involve a fourth-order derivative term. Du et al. [18] de-
scribed two discrete difference methods that can solve multidimensional variable-order
time fractional-sub-diffusion equations. These methods have second-order accuracy in
time and second-order and fourth-order accuracy in space, respectively. Gu et al. [19] put
forward an implicit finite difference scheme for a time-fractional diffusion equation with
a time-invariant type variable fractional order. This scheme achieves an accuracy order
of O(τ + h2). Garrappa et al. [20] contextualized Scarps’s concepts within the modern
framework of General Fractional Derivatives and Integrals, predominantly based on the
Sonine condition. They explore the fundamental characteristics of the resulting variable-
order operators. For mobile–immobile variable-order time-fractional diffusion equations,
Zhang et al. [21] developed a robust fast method, while Sun et al. [22] introduced a fast
and memory-efficient numerical scheme. Both methods are of accuracy-order O(τ + h2).
Xu et al. [23] crafted an improved backward substitute method to model variable-order
time-fractional advection–diffusion–reaction equation. However, within numerical research
focusing on variable-order fractional partial differential equations, studies that attain a
second-order temporal accuracy while incorporating higher-order derivative terms remain
relatively scarce.

Inspired by this, this article aims to present a high-order, stable numerical scheme for
fourth-order variable-order-time fractional-sub-diffusion equations as follows:

C
0 Dα(t)

t u(x, t) + uxxxx(x, t) + qu(x, t) = f (x, t), x ∈ (0, L), t ∈ (0, T],

u(0, t) = 0, u(L, t) = 0, t ∈ [0, T],

uxx(0, t) = 0, uxx(L, t) = 0, t ∈ [0, T],

u(x, 0) = φ(x), x ∈ [0, L],

(1)

where f (x, t), φ(x) are given sufficiently smooth functions; q is a positive constant. The

expression C
0 Dα(t)

t w(t)
[16]

represents the α(t)-order time-fractional Caputo derivative of the
function w(t), and its definition is

C
0 Dα(t)

t w(t) =


w(t)− w(0), α(t) = 0,

1
Γ(1 − α(t))

∫ t

0
w′(s)(t − s)−α(t)ds, 0 < α(t) < 1,

w′(t), α(t) = 1.

(2)

The fourth-order fractional diffusion Equation (1) has extensive applications across
a diverse array of scientific disciplines, such as wave propagation in complex media,
anomalous diffusion, and heat conduction in materials with memory [4]. The intrinsic
challenges in numerically solving these equations stem from the non-local properties
inherent in fractional derivatives and their overall elevated complexity. To address these
challenges, this study adopts an innovative approach. We employ the technique of order
reduction to simplify these high-order differential equations into forms that are more
amenable to analysis. Furthermore, we approximate the Caputo fractional derivative
using a finite difference method, enabling a more manageable and effective computational
strategy to tackle these equations.

The structure of the paper is as follows. We present the compact difference scheme,
which has temporal second-order precision and spatial fourth-order accuracy, in Section 2,
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along with various notations. We examine the fully discrete scheme’s existence and unique-
ness in Section 3. We give the step-by-step convergence and stability analysis in Section 4.
We perform some numerical calculations in Section 5 to confirm our theoretical findings. A
brief conclusion is included in the next part.

2. The Compact Finite Difference Scheme

This section uses the order reduction method to derive a compact finite difference scheme.
Before deriving the difference scheme, we provide some helpful lemmas and notations.
Divide the interval [0, L] into M equal parts and [0, T] into N equal parts. Take the

spatial step length h = L
M and the time step length τ = T

N . Let xi = ih (0 ≤ i ≤ M) and
tn = nτ (0 ≤ n ≤ N); Ωh = {xi | 0 ≤ i ≤ M}, Ωτ = {tn | 0 ≤ n ≤ N}.

Let Vh = {u | u = (u0, u1, ..., uM), u0 = uM = 0} be the grid function on Ωh. For any
grid functions u, v ∈ Vh, we introduce the following symbols:

δxui+ 1
2
=

1
h
(ui+1 − ui), δ2

xui =
1
h2 (ui+1 − 2ui + ui−1),

Aui =

(
I +

h2

12
δ2

x

)
ui =

1
12

(ui−1 + 10ui + ui+1),

(u, v) = h
M−1

∑
i=1

uivi, (δxu, δxv) = h
M−1

∑
i=0

(δxui+ 1
2
)(δxvi+ 1

2
),

∥u∥ =
√
(u, u), |u|1 =

√
(δxu, δxu).

Let

σn = σ(tn), tn+σn = tn + σnτ, αn+σn = α(tn + σn).

Here, σ(tn) ∈ (1
2 , 1) is the unique root of the equation σ = 1 − 1

2 α(tn + στ), 0 ≤ n ≤
N − 1 ([18]).

For u = {uk|0 ≤ k ≤ N} defined on Ωτ , we introduce following notation:

un+σn = σnun+1 + (1 − σn)un.

Lemma 1 ([18]). If u ∈ C3[0, tn+1], let rn =C
0 Dα(t)

t u(t)|t=tn+σn −Dαn+σn u(tn+σn), we have

|rn| ≤
Mσ

−αn+σn
n

Γ(1 − αn+σn)
[

1
12

+
σn

6(1 − αn+σn)
]τ3−αn+σn ,

where M = max
0≤t≤tn+1

|u′′′
(t)|.

Lemma 2 ([18]).

Dαn+σn u(tn+σn) =
τ−αn+σn

Γ(2 − αn+σn)

n

∑
k=0

c(n,α)
n−k [u(tk+1)− u(tk)]

= βn

n

∑
k=0

c(n,α)
k [u(tn−k+1)− u(tn−k)],
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where βn = τ−αn+σn
Γ(2−αn+σn )

. When n = 0 , c(n,α)
0 = σ

1−αn+σn
n ; when n ≥ 1 ,

c(n,α)
l =



1
2 − αn+σn

[
(1 + σn)

2−αn+σn − σ
2−αn+σn
n

]
− 1

2

[
(1 + σn)

1−αn+σn − σ
1−αn+σn
n

]
,

l = 0,
1

2 − αn+σn

[
(l + σn + 1)2−αn+σn − 2(l + σn)

2−αn+σn + (l + σn − 1)2−αn+σn
]

− 1
2

[
(l + σn + 1)1−αn+σn − 2(l + σn)

1−αn+σn + (l + σn − 1)1−αn+σn
]
,

1 ≤ l ≤ n − 1,

− 1
2 − αn+σn

[
(l + σn)

2−αn+σn − (l + σn − 1)2−αn+σn
]

+
1
2

[
3(l + σn)

1−αn+σn − (l + σn − 1)1−αn+σn
]
, l = n.

Lemma 3 ([24]). Suppose g ∈ C6[xi−1, xi+1]; then, we have

1
12

[
g
′′
(xi−1) + 10g

′′
(xi) + g

′′
(xi+1)

]
=

1
h2 [g(xi−1)− 2g(xi) + g(xi+1)] +O(h4).

Let

v(x) = uxx(x, t);

then, we obtain an equivalent form of (1) as follows:

C
0 Dα(t)

t u(x, t) + vxx(x, t) + qu(x, t) = f (x, t), x ∈ (0, L), t ∈ (0, T], (3)

v(x, t) = uxx(x, t), x ∈ (0, L), t ∈ (0, T], (4)

u(0, t) = α1(t), u(L, t) = α2(t), t ∈ [0, T], (5)

v(0, t) = γ1(t), v(L, t) = γ2(t), t ∈ [0, T], (6)

u(x, 0) = φ(x), x ∈ [0, L]. (7)

Define the grid functions U and V on Ωh × Ωh:

Un
i = u(xi, tn), Vn

i = v(xi, tn), 0 ≤ i ≤ M, 0 ≤ n ≤ N.

Now, considering Equations (3) and (4) at the points (xi, tn+σn), we have

C
0 Dα(tn+σn )

t u(xi, tn+σn) + vxx(xi, tn+σn) + qu(xi, tn+σn) = f (xi, tn+σn),

1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1,

v(xi, tn+σn) = uxx(xi, tn+σn), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1.

Applying the compact operator A to both sides of the above equations, we obtain

AC
0 Dα(tn+σn )

t u(xi, tn+σn) +Avxx(xi, tn+σn) + qAu(xi, tn+σn) = A f (xi, tn+σn),

1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (8)

Av(xi, tn+σn) = Auxx(xi, tn+σn), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1. (9)

Using the Lemmas 1 and 2, we obtain

AC
0 Dα(tn+σn )

t u(xi, tn+σn) = βn

n

∑
k=0

c(n,α)
k A(Un−k+1

i − Un−k
i ) +O(τ3−αn+σn ). (10)



Fractal Fract. 2024, 8, 112 5 of 14

By the technique in [18] and Lemma 3, we obtain

Avxx(xi, tn+σn) =A(σnvxx(xi, tn+1) + (1 − σn)vxx(xi, tn) +O(τ2))

=σnδ2
xVn+1

i + (1 − σn)δ
2
xVn

i +O(τ2 + h4)

=δ2
x(σnVn+1

i + (1 − σn)Vn
i ) +O(τ2 + h4)

=δ2
xVn+σn

i +O(τ2 + h4). (11)

Similarly, we have

Au(xi, tn+σn) = AUn+σn
i +O(τ2), (12)

Av(xi, tn+σn) = AVn+σn
i +O(τ2), (13)

Auxx(xi, tn+σn) = δ2
xUn+σn

i +O(τ2 + h4). (14)

Substituting (10)–(14) into (8) and (9) arrives at

βn

n

∑
k=0

c(n,α)
k A(Un−k+1

i − Un−k
i ) + δ2

xVn+σn
i + qAUn+σn

i = A f n+σn
i + Rn+σn

i ,

1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (15)

AVn+σn
i = δ2

xUn+σn
i + Sn+σn

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (16)

where there exists a constant c such that

|Rn+σn
i | ≤ c(τ2 + h4), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (17)

|Sn+σn
i | ≤ c(τ2 + h4), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1. (18)

|δxRn+σn
i | ≤ c(τ2 + h4), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (19)

|δxSn+σn
i | ≤ c(τ2 + h4), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1. (20)

Omitting the small terms Rn+σn
i and Sn+σn

i , substituting Un
i with un

i , and noticing
boundary conditions

Un
0 = 0, Un

M = 0, 0 ≤ n ≤ N, (21)

Vn
0 = 0, Vn

M = 0, 0 ≤ n ≤ N, (22)

U0
i = φ(xi), 1 ≤ i ≤ M − 1, (23)

we arrive at the compact finite difference scheme as follows:

βn

n

∑
k=0

c(n,α)
k A(un−k+1

i − un−k
i ) + δ2

xvn+σn
i + qAun+σn

i = A f n+σn
i ,

1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (24)

Avn+σn
i = δ2

xun+σn
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (25)

un
0 = 0, un

M = 0, 0 ≤ n ≤ N, (26)

vn
0 = 0, vn

M = 0, 0 ≤ n ≤ N, (27)

u0
i = φ(xi), 1 ≤ i ≤ M − 1. (28)

3. Existence and Uniqueness

The solvability of the difference scheme (24)–(28) is covered in this section.
First, we present some useful lemmas.
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Lemma 4 ([25]). For any α(t)(0 < α(t) < 1) and {c(n,α)
l (0 ≤ l ≤ n, n ≥ 1)}, it holds that

c(n,α)
0 > c(n,α)

1 > · · · > c(n,α)
n−1 > c(n,α)

n > 0, (29)

c(n,α)
n >

1 − αn+σn

2
(n + σn)

−αn+σn > 0. (30)

Lemma 5 ([25]). Let Vh be an inner product space, and ⟨·, ·⟩∗ is the inner product with the induced
norm ∥ · ∥∗. For any grid function vn ∈ Vh, 0 ≤ n ≤ N, suppose {c(n,α)

n } satisfies (29); we have

n

∑
k=0

c(n,α)
k ⟨vn−k+1 − vn−k, σnvn+1 + (1 − σn)vn⟩∗ ≥

1
2

n

∑
k=0

c(n,α)
k (∥vn−k+1∥2

∗ − ∥vn−k∥2
∗).

Lemma 6 ([24]). For any u, v ∈ Vh, we have

(u, δ2
xv) = −(δxu, δxv).

For any u, v ∈ Vh, we define

(u, v)A = (Au, u), ⟨u, v⟩A = (Au, − δ2
xu);

then, ⟨u, v⟩A, (u, v)A are the inner product on Vh. So, we denote

∥u∥2
A = (u, v)A, |u|21,A = ⟨u, v⟩A.

Theorem 1. The difference scheme (24)–(28) is uniquely solvable.

Proof. We use mathematical induction to prove it. By (26)–(28), the value of u0 and v0 are
determined. If {uk| 0 ≤ k ≤ n} and {vk| 0 ≤ k ≤ n} have already been given, then we
consider the corresponding homogeneous systems about un+1 and vn+1:

βnc(n,α)
0 Aun+1

i + δ2
xvn+1

i + qAun+1
i = 0, 1 ≤ i ≤ M − 1, (31)

Avn+1
i = δ2

xun+1
i , 1 ≤ i ≤ M − 1. (32)

Making an inner product with un+1 on both sides of (31), we obtain

βnc(n,α)
0 ∥un+1∥2

A + (δ2
xvn+1, un+1) + q∥un+1∥2

A = 0. (33)

Taking an inner product of (32) with vn+1, we obtain

∥vn+1∥2
A = (δ2

xun+1, vn+1). (34)

Using Lemma 6, we have

(δ2
xvn+1, un+1) = (δ2

xun+1, vn+1).

Combining Equation (33) with Equation (34) arrives at

(βnc(n,α)
0 + q)∥un+1∥2

A + ∥vn+1∥2
A = 0.

It yields ∥un+1∥2
A = ∥vn+1∥2

A = 0, which follows un+1 = vn+1 = 0. This completes
the proof.

4. Convergence and Stability Analysis

The convergence of the difference scheme (24)–(28) is first explored in this section, and
stability is assessed using the Lax Equivalency Theorem.



Fractal Fract. 2024, 8, 112 7 of 14

Lemma 7. Denote
c0 = max

0≤t≤T

[
tα(t)Γ(1 − α(t))

]
;

we have

1

c(n,α)
n βn

≤ 2c0.

Proof. By Equation (30) in Lemma 4 and the definition of βn, we have

1

c(n,α)
n βn

<
2(n + σn)αn+σn

1 − αn+σn

Γ(2 − αn+σn)τ
αn+σn

=Γ(2 − αn+σn)
2(n + σn)αn+σn

1 − αn+σn

=2tα(t)Γ(1 − α(t))|tn+σn

≤2c0.

Lemma 8. For any u ∈ Vh, we obtain

2
3
|u|21 ≤ |u|21,A ≤ |u|21;

it results in the equivalence of the norms |u|21,A and |u|21 on Vh.

Proof.

|u|21,A = (Au, − δ2
xu) =

(
(1 +

h2

12
δ2

x)u,−δ2
xu
)
= (u,−δ2

xu)− h2

12
(δ2

xu, δ2
xu).

By the inverse estimate |u|21 ≤ 4
h2 ∥u∥2, we have |δxu|21 ≤ 4

h2 ∥δxu∥2, so

|u|21,A =|u|21 −
h2

12
|δxu|21

≥|u|21 −
1
3
∥δxu∥2

=
2
3
|u|21.

This completes the proof.

Theorem 2. Suppose {un
i | 0 ≤ i ≤ M, 0 ≤ n ≤ N} and {vn

i | 0 ≤ i ≤ M, 0 ≤ n ≤ N} are the
solutions of the difference scheme below

βn

n

∑
k=0

c(n,α)
k A(un−k+1

i − un−k
i ) + δ2

xvn+σn
i + qAun+σn

i = Fn+σn
i ,

1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (35)

Avn+σn
i = δ2

xun+σn
i + Gn+σn

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (36)

un
0 = 0, un

M = 0, 0 ≤ n ≤ N, (37)

vn
0 = 0, vn

M = 0, 0 ≤ n ≤ N, (38)

u0
i = φ(x), 1 ≤ i ≤ M − 1. (39)
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Then, we obtain

|un|21,A ≤ |u0|21,A + 2c0 max
0≤s≤n−1

(
3
4q

∥δxFs+σs∥2 +
3
4
∥δxGs+σs∥2), 0 ≤ n ≤ N. (40)

Proof. Taking an inner product of (35) with −δ2
xun+σn , we obtain

(βn

n

∑
k=0

c(n,α)
k A(un−k+1 − un−k

i ),−δ2
xun+σn) + (δ2

xvn+σn ,−δ2
xun+σn)

+ (qAun+σn ,−δ2
xun+σn) = (Fn+σn ,−δ2

xun+σn). (41)

Taking an inner product of (36) with −δ2
xvn+σn , we have

(Avn+σn ,−δ2
xvn+σn) = (δ2

xun+σn ,−δ2
xvn+σn) + (Gn+σn ,−δ2

xvn+σn). (42)

Combine Equation (41) with Equation (42), and we obtain

(βn

n

∑
k=0

c(n,α)
k A(un−k+1 − un−k),−δ2

xun+σn) + (qAun+σn ,−δ2
xun+σn)

+ (Avn+σn ,−δ2
xvn+σn) = (Fn+σn ,−δ2

xun+σn) + (Gn+σn ,−δ2
xvn+σn). (43)

For the first item on the left-hand side of (43), using Lemma 5, we have

(βn

n

∑
k=0

c(n,α)
k A(un−k+1 − un−k

i ),−δ2
xun+σn) ≥ βn

2

n

∑
k=0

c(n,α)
k (|un−k+1|21,A − |un−k|21,A). (44)

By Lemma 8, the other items on the left-hand side of (43) arrive at

(qAun+σn ,−δ2
xun+σn) = q|un+σn |21,A ≥ 2q

3
|un+σn |21, (45)

(Avn+σn ,−δ2
xvn+σn) = |vn+σn |21,A ≥ 2

3
|vn+σn |21. (46)

Substituting (44)–(46) into (43), and using a Cauchy–Schwarz inequality, we obtain

βn

2

n

∑
k=0

c(n,α)
k (|un−k+1|21,A − |un−k|21,A) +

2q
3
|un+σn |21 +

2
3
|vn+σn |21

≤∥δxFn+σn∥∥δxun+σn∥+ ∥δxGn+σn∥∥δxvn+σn∥

≤ 3
8q

|Fn+σn |21 +
2q
3
|un+σn |21 +

3
8
|Gn+σn |21 +

2
3
|vn+σn |21;

that is,

βn

2

n

∑
k=0

c(n,α)
k (|un−k+1|21,A − |un−k|21,A) ≤

3
8q

|Fn+σn |21 +
3
8
|Gn+σn |21.

Transform the above equation and apply Lemma 7; we have

c(n,α)
0 |un+1|21,A ≤

n−1

∑
k=0

(c(n,α)
k − c(n,α)

k+1 )|un−k|21,A + c(n,α)
n |u0|21,A +

1
βn

(
3
4q

|Fn+σn |21 +
3
4
|Gn+σn |21).

≤
n−1

∑
k=0

(c(n,α)
k − c(n,α)

k+1 )|un−k|21,A + c(n,α)
n

[
|u0|21,A + 2c0(

3
4q

|Fn+σn |21 +
3
4
|Gn+σn |21)

]
.
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It is easy to know that (40) is true when n = 0, so we use mathematical induction
to prove (40). Assume (40) is valid for 0 ≤ n ≤ l; now we proved that (40) is valid for
n = l + 1.

c(l,α)0 |ul+1|21,A ≤
l−1

∑
k=0

(c(l,α)k − c(l,α)k+1 )|u
l−k|21,A + c(l,α)l

[
|u0|21,A + 2c0(

3
4q

|Fl+σl |21 +
3
4
|Gl+σl |21)

]

≤
l−1

∑
k=0

(c(l,α)k − c(l,α)k+1 )

(
|u0|21,A + 2c0 max

0≤s≤l
(

3
4q

|Fs+σs |21 +
3
4
|Gs+σs |21)

)
+ c(l,α)l

[
|u0|21,A + 2c0(

3
4q

|Fl+σl |21 +
3
4
|Gl+σl |21)

]
≤
[

l−1

∑
k=0

(c(l,α)k − c(l,α)k+1 ) + c(l,α)l

][
|u0|21,A + 2c0 max

0≤s≤l
(

3
4q

|Fs+σs |21 +
3
4
|Gs+σs |21)

]

≤c(l,α)0

(
|u0|21,A + 2c0 max

0≤s≤l
(

3
4q

|Fs+σs |21 +
3
4
|Gs+σs |21)

)
.

From the above inequality, we have

|ul+1|21,A ≤ |u0|21,A + 2c0 max
0≤s≤l

(
3
4q

|Fs+σs |21 +
3
4
|Gs+σs |21).

This completes the proof.

Theorem 3. Suppose u(x, t), v(x, t) is the solution of (1) and {un
i , vn

i | 0 ≤ i ≤ M, 0 ≤ n ≤
N} is the solution of the difference scheme (24)–(28). Denote

en
i = Un

i − un
i , ẽn

i = Vn
i − vn

i , 0 ≤ i ≤ M, 0 ≤ n ≤ N; (47)

then, there exists a constant C such that

∥en∥∞ ≤ C(τ2 + h4), 0 ≤ n ≤ N.

Proof. Subtracting (24)–(28) from (15)–(16) and (21)–(23), we obtain the system of
error equations:

βn

n

∑
k=0

c(n,α)
k A(en−k+1

i − en−k
i ) + δ2

x ẽn+σn
i + qAen+σn

i = Rn+σn
i ,

1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1,

Aẽn+σn
i = δ2

xen+σn
i + Sn+σn

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1,

en
0 = 0, en

M = 0, 0 ≤ n ≤ N,

ẽn
0 = 0, ẽn

M = 0, 0 ≤ n ≤ N,

e0
i = 0, 1 ≤ i ≤ M − 1.

Applying Theorem 2, we know

|en|21,A ≤ |e0|21,A + 2c0 max
0≤s≤n−1

(
3
4q

∥δxRs+σs∥2 +
3
4
∥δxSs+σs∥2), 0 ≤ n ≤ N.

Noticing (19) and (20), we know

|en|1,A ≤ c0(
3
2q

+
3
2
)
√

Lc(τ2 + h4), 0 ≤ n ≤ N.
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According to Lemma 8, we obtain

|en|1 ≤
√

3
2
|en|1,A ≤ (

3
2
)

3
2 c0(

1
q
+ 1)

√
Lc(τ2 + h4), 0 ≤ n ≤ N.

By the inverse estimate ∥u∥∞ ≤
√

L
2 |u|1, we obtain

∥en∥∞ ≤ C(τ2 + h4), 0 ≤ n ≤ N,

where

C = (
3
2
)

3
2 c0(

1
q
+ 1)

L
2

c.

It completes the proof.

Theorem 4 (The Lax Equivalence Theorem [26]). For a consistent finite difference scheme,
stability is equivalent to convergence.

Theorem 5. In accordance with Theorem 3 and Theorem 4, the solution of the compact finite differ-
ence scheme (24)–(28) is stable with respect to initial value u0 and the source term f , and we have

|un|21,A ≤ |u0|21,A + 2c0 max
0≤s≤n−1

(
3
4q

|A f s+σs |21), 0 ≤ n ≤ N.

5. Numerical Results

In this section, the compact scheme (24)–(28) will be utilized to address problem (1).
On a computer with Intel(R) Core(TM) i5-8265U CPU@1.60GHz 1.80 GHz and 8.00GB
RAM, we offer two numerical instances to confirm that the theoretical analysis is accurate
via Python 3.9.0.

Denote

E(h, τ) = max
0≤k≤N

∥Uk − uk∥∞,

orderτ = log2
E(h, 2τ)

E(h, τ)
. orderh = log2

E(2h, 4τ)

E(h, τ)
.

Example 1. For Problem (1), we consider the initial condition u0(x) = sin x, and the source term is

f (x, t) =

(
6t3−α(t)

Γ(4 − α(t))
+

6t2−α(t)

Γ(3 − α(t))
+ 2(t3 + 3t2 + 1)

)
sin x.

Take L = π, T = 1, q = 1. The exact solution is given by u(x, t) = (t3 + 3t2 + 1) sin x.

In Table 1, we take the fixed spatial step size h = 1
500π and verify temporal step τ from

1/10 to /160. Table 1 displays the maximum error and corresponding convergence order of
the compact difference scheme for different values α(t) = 1 − 1

2 t2, e−t, 1−2sint
4 . The numerical

results in Table 1 show that the difference scheme is second-order convergent in time.
The maximum error and accompanying spatial convergence order of the compact

difference scheme with varying step sizes are presented in Table 2. According to Table 2,
the spatial convergence order of the scheme varies about around order 4. The convergence
orders in space and time that have been observed align with the theoretical outcomes found
in Theorem 3.
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Table 1. The maximum error and convergence order in time for h = π/500 for Example 1.

α(t) τ E(h, τ) orderτ

1 − 1
2 t2 1/10 8.794433 × 10−3

1/20 2.184325 × 10−3 2.0094
1/40 5.435953 × 10−4 2.0066
1/80 1.354184 × 10−4 2.0051

1/160 3.361582 × 10−5 2.0102

e−t 1/10 6.611430 × 10−3

1/20 1.647638 × 10−3 2.0046
1/40 4.103318 × 10−4 2.0055
1/80 1.019858 × 10−4 2.0084

1/160 2.554354 × 10−5 1.9973
1+2 sin t

4 1/10 9.074528 × 10−3

1/20 2.261408 × 10−3 2.0046
1/40 5.626816 × 10−4 2.0068
1/80 1.400681 × 10−4 2.0062

1/160 3.467035 × 10−5 2.0144

Table 2. The maximum error and convergence order in space for Example 1.

α(t) h τ E(h, τ) orderh

1 − 1
2 t2 π/5 1/10 6.585513 × 10−3

π/10 1/40 4.278681 × 10−4 3.9441
π/20 1/160 2.650930 × 10−5 4.0126
π/40 1/640 1.646259 × 10−6 4.0092
π/80 1/2560 1.024713 × 10−7 4.0059

e−t π/5 1/10 4.405910 × 10−3

π/10 1/40 2.884598 × 10−4 3.9330
π/20 1/160 1.791444 × 10−5 4.0092
π/40 1/640 1.114702 × 10−6 4.0064
π/80 1/2560 6.960226 × 10−8 4.0014

1+2 sin t
4 π/5 1/10 6.852871 × 10−3

π/10 1/40 4.471970 × 10−4 3.9377
π/20 1/160 2.768960 × 10−5 4.0135
π/40 1/640 1.718657 × 10−6 4.0100
π/80 1/2560 1.069261 × 10−7 4.0066

Example 2. Take L = π, T = 1, q = 1. The exact solution is given as

u(x, t) = (t5 + 4t3 + 1) sin x.

Based on the exact solution, we know the source term and the initial value

f (x, t) =

(
120t5−α(t)

Γ(6 − α(t))
+

24t3−α(t)

Γ(4 − α(t))
+ 2(t5 + 4t3 + 1)

)
sin x,

u0(x) = sin x.

In Tables 3 and 4, we show the error and convergence for various α(t) for Example 2.
Additionally, it shows a near consistency between the theoretical and numerical results.
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Table 3. The maximum error and convergence order in space for Example 2.

α(t) h τ E(h, τ) orderh

1 − 1
2 t2 π/5 1/10 2.409320 × 10−2

π/10 1/40 1.549210 × 10−3 3.9590
π/20 1/160 9.445871 × 10−5 4.0357
π/40 1/640 5.794117 × 10−6 4.0270
π/80 1/2560 3.576473 × 10−7 4.0180

e−t π/5 1/10 1.816586 × 10−2

π/10 1/40 1.186513 × 10−3 3.9364
π/20 1/160 7.299520 × 10−5 4.0228
π/40 1/640 4.512097 × 10−6 4.0159
π/80 1/2560 2.803956 × 10−7 4.0083

1+2 sin t
4 π/5 1/10 2.560157 × 10−2

π/10 1/40 1.647386 × 10−3 3.9580
π/20 1/160 1.000595 × 10−4 4.0412
π/40 1/640 6.117342 × 10−6 4.0318
π/80 1/2560 3.767160 × 10−7 4.0214

Table 4. The maximum error and convergence order in time for h = π/500 for Example 2.

α(t) τ E(h, τ) orderτ

1 − 1
2 t2 1/10 2.740388 × 10−2

1/20 6.789080 × 10−3 2.0131
1/40 1.677644 × 10−3 2.0168
1/80 4.144795 × 10−4 2.0171

1/160 1.023590 × 10−4 2.0177

e−t 1/10 2.135416 × 10−2

1/20 5.336100 × 10−3 2.0007
1/40 1.325432 × 10−3 2.0093
1/80 3.285335 × 10−4 2.0124

1/160 8.168648 × 10−5 2.0079
1+2 sin t

4 1/10 2.893380 × 10−2

1/20 7.180678 × 10−3 2.0106
1/40 1.771918 × 10−3 2.0188
1/80 4.368764 × 10−4 2.0200

1/160 1.075720 × 10−4 2.0219

6. Conclusions

In this article, we proposed a novel and efficient compact finite difference scheme
for variable-order-time fractional-sub-diffusion equations of the fourth order. The core of
our method is to use the reduced-order method to simplify the equation and implement
a second-order temporal discretization formula to develop the difference scheme. The
robustness of our proposed scheme is thoroughly validated through rigorous theoretical
analysis. We have comprehensively proven the solvability, stability, and convergence of
the scheme, ensuring that it is effective and reliable for practical applications. Numerical
tests further demonstrate the scheme’s efficacy. Looking ahead, integrating cutting-edge
high-order temporal methodologies, mainly designed for time-fractional equations as in
reference [27], into our framework offers a promising avenue for enhancing accuracy.
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