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Abstract: This paper presents the design and analysis of Switched Fractional Order Model Reference
Adaptive Controllers (SFOMRAC) for Multiple Input Multiple Output (MIMO) linear systems with
unknown parameters. The proposed controller uses adaptive laws whose derivation order switches
between a fractional order and the integer order, according to a certain level of control error. The
switching aims to use fractional orders when the control error is larger to improve transient response
and system performance during large disturbed states, and to obtain smoother control signals, leading
to a better control energy usage. Then, it switches to the integer order when the control error is
smaller to improve steady state. Boundedness of all the signals in the scheme is analytically proved,
as well as convergence of the control error to zero. Moreover, these properties are extended to the case
when system states are affected by a bounded non-parametric disturbance. Simulation studies are
carried out using different representative plants to be controlled, showing that fractional orders and
switching error levels can be found in most of the cases, such as when SFOMRAC achieves a better
balance among control energy and system performance than the non-switched equivalent strategies.

Keywords: fractional calculus; switched controller; fractional order adaptive control; multivariable
linear time invariant systems; control energy

1. Introduction

In the context of energy efficiency of today’s world, one of the challenges that industry
needs to address is related to the use of automatic control strategies that not only prioritizes
improvements in the process behavior, but also takes into account the energy used to
make it controlled. In this searching for improvements in controlled systems, fractional
operators (e.g., integrals and derivatives of real orders [1]) have started being used in
the design and implementation of control strategies, resulting in generalized controllers
with reported advantages such as better management of noise [2], better behavior under
disturbances and improvements in transient responses [3,4], among others, as compared to
the non-fractional equivalent strategies. Smoother control signals have been also reported
as an advantage of using fractional operators inside controllers, which is often related to a
lower control energy. We can cite, for instance, the work [5], where authors reported that
the use of a Fractional Order Proportional Integral Derivative (FOPID) controller produced
a significantly smaller control signal than the classic Proportional Integral Derivative (PID)
controller, which would save energy for the actuator. Also, in [6], authors reported a lower
control energy used when a Fractional Order Sliding Model Control (FOSMC) was applied
to an energy harvesting system, compared to the classic non-integer case. In [7], on the
other hand, Model Reference Adaptive Control (MRAC) schemes were presented, using
orders for the adaptive laws in the interval (0, 1], which were obtained through Particle
Swarm Optimization. Results showed that when the control energy was included in the
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objective function, the resulting orders were fractional or combinations of fractional and
integer orders, suggesting that the use of fractional adaptive laws could play an important
role in the control energy management.

However, when comparing fractional order controllers to their equivalent integer order
controllers, trade-offs usually arise among some system performance metrics. For instance,
when FOPID are used, a faster response in the transient state with lower overshoots and
higher flexibility to parameter variations has been reported, compared to those obtained
with the classic PID controller. However, the steady state can be deteriorated with the
FOPID, while the PID usually gives good steady state performance (see [8–10] and the
references therein). To deal with these trade-offs, switched controllers have been proposed,
where the PID (or PI) controller is used in steady state and the FOPID (or FOPI) controller
is used during the transient stage, aiming to take advantage of each controller’s strengths.
The design, tuning and application of these switched controllers have been reported in [8]
to regulate the DC-link voltage of a single phase active power filter and in [9,10] to extract
maximum power under fluctuating wind speed for grid connected wind energy conversion
system. In all cases, the switching mechanism is based on the current value of the control
error. Boundedness of the signals and convergence of the control error to zero are not
analytically proved in any case.

When dealing with Fractional Order Model Reference Adaptive Controllers (FOM-
RAC), it has been observed that the use of fractional order adaptive laws can lead to lower
control energy, compared to the classic Model Reference Adaptive Control (MRAC), but
the convergence speed of the control error tends to decrease, deteriorating the steady state
(see [7,11] and the discussion and references therein). In an attempt to overcome this
trade-off, a Switched Fractional Order Model Reference Adaptive Control (SFOMRAC)
scheme was proposed (see, for instance, [11]) to control linear time invariant systems. The
adaptive laws to estimate controller parameters were fractional order differential equations
whose derivation order switched between a real number in the interval (0, 1) and 1, at
some time instant of the transient response (time-based switching), which can be seen as
switching between a SFOMRAC scheme and an MRAC scheme. The work in [11] presented
exhaustive simulation studies, using time-based SFOMRAC schemes to control first or-
der plants (stable and unstable). The controller parameters were tested in wide ranges:
fractional orders in the whole interval (0, 2), switching times selected across the entire
transient, different values of adaptive gains γ and fast and slow reference models. The
analysis of the results showed that for every plant and reference model tested, SFOMRAC
controlled systems have better performance with respect to indices that emphasize and
penalize longer-lasting and larger errors than the non-switched cases, and many times,
they also demonstrated lower control energy consumption. As far as the authors know,
no other works have been published dealing with SFOMRAC schemes, apart from those
published by the authors of this paper.

As promising as these results may seem, still, there are two main drawbacks of the
schemes proposed in [11]. First, a time-based switching is difficult to design in practice
because the system is unknown in advance, and thus, the choice of the switching time
becomes arbitrary. The condition for switching should depend on system variables that can
be measured and represent how well the control is doing. Second but not least, analytical
proof of stability and convergence in [11] relies on the fact that only one switch is allowed,
imposing conditions in advance on an unknown system. These drawbacks are addressed
in this paper, leading to its main contributions as stated in the following.

• This paper proposes an error-based switching mechanism in the design of SFOMRAC
schemes for LTI systems. The switching uses the value of the control error to decide
whether to use the fractional order or the integer order in the controller parameters
adaptive laws. Compared to the previous work [11], the error-based switching is more
appealing in practice because it allows for making decisions based on a system signal
that can be measured and used as a metric of system performance and stability.
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• The SFOMRAC is proposed in this paper for multivariable systems. This is an im-
provement regarding previous works ([11] and references therein), where only single
input, single output systems were considered.

• A complete and thorough analytical proof of stability and convergence of the re-
sulting design is provided in this paper, where the controller will not be limited in
advance to switching by a finite amount, as it was in previous works ([11] and some
references therein).

• The design and analysis is also carried out for cases when system states are affected
by a bounded non-parametric disturbance. This non-ideal case was not addressed in
any of the previous works.

• Exhaustive simulation studies are conducted, and numerical results show that the
SFOMRAC allows for obtaining a better balance among performance indicator ITAE
(Integral of the Time weighted Absolute value of the Error) and control energy ISI
(Integral of the Squared Control Signal) for some switching error levels, leading to
an improved control strategy compared to the classical non-switched integer-order
(MRAC) and fractional-order (FOMRAC) schemes.

The paper is organized as follows. Section 2 introduces some basic definitions, lemmas
and theorems used within the paper. Section 3 presents the control problem, the proposed
SFOMRAC scheme and the analytical proof of stability and convergence of the signals
in the controlled scheme. Section 4 presents the results of exhaustive simulation studies,
using the proposed SFOMRAC scheme for different first order LTI systems, and varying
several design parameters in a wide range, leading to discussion and conclusions about
their influence in the control energy and the system behavior.

2. Basic Concepts

This section presents definitions, lemmas and theorems that are used within the paper.

2.1. Notation and Basic Definitions

In this note, R>(≥)0 is the set of positive (non-negative) real numbers, and Rn is the
Euclidean space of dimension n. For x ∈ Rn and A ∈ Rn×n, a positive definite matrix,
|x|A := x⊤Ax defines a norm. We extend this definition to matrices, i.e., |B|A := B⊤AB for
B ∈ Rn×n.

2.2. Elements of Fractional Calculus

Fractional calculus is a generalization of traditional calculus by considering integrals
and derivatives of orders that can be any real or complex numbers [1]. The Riemann-
Liouville fractional integral of a function f : R → R is one of the main concepts of fractional
calculus, defined as follows.

Definition 1 (Riemann–Liouville fractional integral [12]).

Iα
a f (t) :=

1
Γ(α)

t∫
a

(t − τ)α−1 f (τ)dτ, (1)

where α > 0 and Γ(α) =
∞∫
0

tα−1e−tdt is the Gamma function [1].

Referring to definitions of fractional derivatives, different alternatives can be found
in technical literature. This paper uses the Caputo definition for the fractional derivative,
which corresponds to

Definition 2 (Caputo fractional derivative [12]).

Dα
a f (t) := Im−α

a Dm f (t), (2)
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where α > 0 and m = ⌈α⌉.

2.3. Analytical Tools

Property 1. For any continuous function f : [0, ∞) → R, any real numbers a, α, β > 0, and for
any real number t > 0, the following holds [12]:

Iα
a Iβ

a f (t) = Iα+β
a f (t), (3)

and

Iα
a Dα

a f (t) = f (t)− f (a). (4)

The following result establishes existence and uniqueness in the set of continuous
functions for the solutions of a kind of fractional equation.

Theorem 1 ([13]). Consider the system of fractional order integral equations

y(t) = p(t) + Iα[ f (., y(.))](t), (5)

where α is to be seen as a vector with components αi, and y, f , p are vectors of components yi, fi, pi,
respectively, for i = 1, . . . , n. If p : [0, T] → Rn is a continuous function and fi(., .) are continuous
functions in their first variable and Lipschitz continuous functions in their second variables for
i = 1, . . . , n, then

i. There exists a unique continuous solution y ∈ C[0, T] for system (5).
ii. y ∈ C[0, T] is a solution for system (5) for

pi(t) :=
⌈α⌉−1

∑
k=0

tk
k!

y(k)i0
(6)

if and only if each of its components yi is a solution to Dαi yi = fi(t, y) with initial condition
y(k)i (0) = y(k)i0

for k = 1, . . . , ⌈α⌉ − 1 and i = 1, . . . , n.

Finally, a useful property for the derivative of composite functions is presented.

Theorem 2 ([14]). For a given x ∈ Rd, let u ∈ {x}+ Iα
0+C([0, T]),Rd and V : Rd → R satisfies

the following conditions

• The function V is convex on Rd and V(0) = 0.
• The function V is differentiable on Rd.

Then, the following inequality holds for all t ∈ [0, T]:

Dα
0+V(u(t)) ≤ ⟨∇V(u(t)), Dα

0+u(t)⟩. (7)

3. Problem Statement and Proposed Control Scheme

Although most of the real processes that need to be controlled are nonlinear and time
varying, linearization around operating points is still widely used to deal with the design
of control strategies [15,16]. This is because it is very common for industrial processes
to operate in certain regions where their behavior can be approximated as linear and
time invariant. For this reason, the development of control strategies for LTI systems is
still widely addressed. In what follows, the problem of controlling an LTI system with
unknown parameters is presented, together with the proposed switched fractional order
controller structure.
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3.1. Control Problem

Let us consider a multi-input, multi-output linear time invariant plant described by

ẋp(t) = Apxp(t) + Bpu(t), xp(0) = xp0 ∈ Rn, (8)

where Ap ∈ Rn×n and Bp ∈ Rn×q are unknown constant matrices, u ∈ Rq is the input of
the system and xp ∈ Rn is the state, which is assumed to be accessible.

An asymptotically stable reference model is specified by the linear time-invariant
system described by

ẋm(t) = Amxm(t) + Bmr(t), xm(0) = xm0 ∈ Rn, (9)

where r ∈ Rq is a bounded C1 reference input, Am ∈ Rn×n, Bm ∈ Rn×q are known matri-
ces and Am is a Hurwitz matrix, e.g., a square matrix whose eigenvalues have negative
real parts.

The control problem corresponds to defining a control signal u such that xp asymp-
totically follows xm and all the closed-loop signals remain bounded. The reference model
of course is a designer choice and will be selected such as its state xm(t) will represent the
desired trajectory for the plant state xp(t).

To ensure the solvability of this problem, we make the following assumptions deal-
ing with the controllability of the system (8). The first one is known as the matching
condition [15].

Assumption 1. There exist constant matrices L∗ ∈ Rq×q and K∗ ∈ Rq×n such that

Bm = BpL∗, Ap + BpK∗ = Am. (10)

The second one is the generalization of requesting the control direction constant
and known.

Assumption 2. L∗ is either positive or negative definite, the sign of which is assumed known and,
without loss of generality, taken positive.

Both Assumptions 1 and 2 are standard in the literature [15]. Though our contribution
is not to relax them, we indicate that the second can be weakened using Nussbaum gains.

This control problem has been solved in the past using several control strategies, such
as direct MRAC, indirect algebraic MRAC, indirect dynamic MRAC, combined MRAC [16],
among others. In these cases, the control signal usually uses parameters that are estimated
using adaptive laws in the form of integer order differential equations. Fractional order
generalizations of some of these control strategies have been proposed as well (see for
instance [3]), where the main difference is that adaptive laws are in the form of fractional
order differential equations and the tracking error has not been proved to converge to zero
without an additional hypothesis on r. More recently, switched fractional order adaptive
laws have been proposed as well [11] in an attempt to achieve a better balance among
system behavior and control energy, while the error is shown to converge to zero. However,
the proposed switching strategy is not practical because it does not depend on a measurable
system variable. Also, it imposes some restrictive conditions on the number of switching
without deeper analysis. In what follows, an alternative switching strategy is proposed,
which aims to overcome those drawbacks.

3.2. Proposed Control Strategy

Let us choose the certainty equivalent control structure defined as

u(t) = K(t)xp(t) + L(t)r(t), t ≥ 0 (11)
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with K, L estimations of K∗, L∗ adjusted by using the following switched fractional order
adaptive law.

Dα(t)
a(t)K(t) = −γ1BmPe(t)xp(t)

⊤, K(0) = K0

Dα(t)
a(t) L(t) = −γ2BmPe(t)r(t)⊤, L(0) = L0

(12)

where e(t) = xp(t)− xm(t) is the control error, P ∈ Rn×n is a symmetric positive definite
matrix such that AT

mP + PAm = −Q, with Q ∈ Rn×n being an arbitrary positive definite
matrix. The existence of such P is ensured by the Hurwitz property of Am. The fractional
order α(t) is varied using the following switched strategy for any t > 0 with

α(t) =


α0 i f ∥e(t)∥ > ϵ and h(t)

1 i f otherwise
, (13)

where ϵ > 0 and α0 ∈ (0, 1) are designer choices, and it is implicit that the switch occurs
whenever L ∈ Rq×q and K ∈ Rq×n, as, otherwise, the solution is not defined. The function
h(·) is a logic function (i.e., taking true/false values) encoding, on the one hand, a hysteresis
mechanism to avoid Zeno solutions, and on the other, a mechanism stressing the spirit
behind (13), namely, that in disturbed or transient stages (∥e∥ > ϵ), the adaptation with α0
is needed, and conversely, that when staying close to the aim (∥e∥ < ϵ), the lesser should
be the need of switching to α0.

In detail, by fixing a small enough δ > 0, the hysteresis will be implemented by
switching from the integer mode to the fractional mode only when ∥e(ti)∥ = ϵ+ δ, while the
switching from the fractional mode to the integer mode will occur only when ∥e(tj)∥ = ϵ.
For the second mechanism, we define the largest interval of time in which the fractional
mode is active at time t as

T (t) := max
j

{|tj+1 − tj| : tj+1 ≤ t & α(tj) = α0}.

Then, for any t ∈ [ti, ti+1), we define

h(t) =


False i f

(
i > C, ∥e(t)∥ < ϵ + δ and T (t) ≤ i · δ

)
True i f otherwise

, (14)

where C ≥ 1 is a designer constant ensuring that both mechanisms are triggered after a
finite number C of switches to let the transient be as unaffected as possible. The condition
T (t) ≤ i · δ means that the transitions to the fractional mode remain active as long as
the fractional mode is needed, as measured in terms of time quantity T and relative to a
measure of the overall time given by i · δ, where we use the same δ, but it can be chosen
differently. Without disturbances and when the number of switching increases (i takes
higher values), the condition T (t) ≤ i · δ should be easier to fulfill and then the switching
to the fractional order will stop.

The gains γ1,2 > 0 are constant in each switching interval and used to manipulate the
speed of (12) and to normalize. Specifically, for any t ∈ [ti, ti+1) and some designer chosen
sequence of real numbers {γi}i∈N with 0 < γi < γ0,

γ1(t) =
γi

1 + tr[K(ti)K(ti)⊤]
, γ2(t) =

γi

1 + tr[L(ti)L(ti)⊤]
.

The differential Equation (12) is understood in the resetting mode; that is, every time
a switch occurs, the initial time a of the fractional operator is set equal to the switching
time ti. This defines the initial time function a = a(t) in (12). Moreover, every time a switch
occurs, K(ti) = K(t−i ) and L(ti) = L(t−i ) are set, so discontinuities are avoided.
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In summary, the control strategy proposed in this paper to control plant (8) is given
by (9), (11), (12), (13) and (14).

3.3. Closed-Loop Description

In order to analyze the boundedness of the signals in the control scheme and conver-
gence of the control error to zero, let us derive the set of equations describing the controlled
system dynamics.

Since the control error e(t) = xp(t)− xm(t), if the parameter error is defined as the
difference between the controller estimated parameters and the real unknown controller
parameters

K̃(t) = K(t)− K∗, (15)

and
L̃(t) = L(t)− L∗, (16)

then, subtracting (9) from (8) and using (11), (15) and (16), it can be obtained that

ė = Ame + BmL∗−1(K̃xp + L̃r), e(0) = e0. (17)

Equation (17) describes the evolution of the control error in time. On the other hand,
according to (16), it holds that Dα(t)K̃ = Dα(t)K, Dα(t) L̃ = Dα(t)L and, consequently, the
parameter error evolution in time is described by the differential equation

Dα(t)
a(t) K̃(t) = −γ1BmPe(t)xp(t)

⊤, K(0) = K0

Dα(t)
a(t) L̃(t) = −γ2BmPe(t)r(t)⊤, L(0) = L0

(18)

together with (13) and (14). Thus, Equations (17) and (18) completely describe the con-
trolled system.

3.4. Main Results

The following result states the boundedness of the signals and convergence of the
control error in the control scheme.

Theorem 3. Consider system (8) under Assumptions 1 and 2. Then, control (11) guarantees the
boundedness of all closed loop signals, and the asymptotic tracking limt→∞(xp(t)− xm(t)) = 0.

Proof of Theorem 3. The proof consists of proving several claims, each one revealing
technical aspects of the dynamics.

i. There exists Ti ∈ R≥0 ∪ {+∞} such that the existence and uniqueness of continuous
solutions holds on [ti, ti + Ti), where ti is any switching time.

Proof of claim i. It is easy to see that the right hand of (17) and (18) is locally Lipschitz
continuous (they are multiplications of the variables of the system, and r is bounded). Then,
we can find small enough Ti such that the right hand side is Lipschitz continuous when
considering that its elements belong to the space of continuous functions. Since in each
switching time ti the solution must be defined according to (13), which means that the
initial conditions are component-wise real numbers, the application of Theorem 1 yields
the claim by noting that the solutions to (17) and (18) can be written, in its integral form, as
in (5) (see [13] for details in the fractional mode).

ii. The fractional mode, i.e., α = α0 < 1, can only be activated on time intervals of
finite lengths.

Proof of claim ii. The statement is understood in the interval where the solutions exist.
Consider, thus, that the fractional mode is active in the interval [ti, ti + Ti) with Ti ∈
R≥0 ∪ {+∞}. Due to part (i), we can work with continuous solutions therein and then
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apply the properties of Section 2.2. Since (18) works in the resetting mode, the fractional
derivatives must be started in each ti. For notation convenience, we set Iα

i = Iα
ti

and
Dα

i = Dα
ti

.
Applying Theorem 2 on Equations (17) and (18), we obtain

d
dt
(e⊤Pe) ≤ −λQ|e|2 + 2e⊤PBmL∗−1(K̃xp + L̃r)

1
γ1

Dα0
i tr[K̃⊤ΓK̃] ≤ 1

γ1
2tr[K̃⊤ΓDα0

i K̃]

1
γ2

Dα0
i tr[L̃⊤ΓL̃] ≤ 1

γ2
2tr[L̃⊤ΓDα0

i L̃] (19)

where λQ is the smallest eigenvalue of Q and Γ is a constant positive definite matrix to be cho-
sen. Using properties of the trace operator, we obtain e⊤PBmL∗−1K̃xp = tr[x⊤p K̃⊤L∗−1B⊤

m Pe]
= tr[K̃⊤L∗−1B⊤

m Pex⊤p ] and e⊤PBmL∗−1 L̃r = tr[r⊤ L̃⊤L∗−1B⊤
m Pe] = tr[L̃⊤L∗−1B⊤

m Per⊤].
The similitude with the right-hand side of (19) suggests the idea of choosing Γ = L∗−1 > 0.

Using this choice and applying Properties 3 and 4 on (19), we obtain for any t ∈
[ti, ti + Ti)

|e(t)|2P − |e(ti)|2P ≤− I1−α0
i Iα0

i λQ|e|2(t) + I1−α0
i Iα0

i 2tr[K̃⊤L∗−1B⊤
m Pex⊤p ]+

+ I1−α0
i Iα0

i 2tr[L̃⊤L∗−1B⊤
m Per⊤](t)

1
γ1

tr(|K̃(t)|Γ)−
1

γ1
tr(|K̃(ti)|Γ) ≤− 2Iα0

i tr[K̃⊤L∗−1B⊤
m Pex⊤p ](t)

1
γ2

tr[|L̃(t)|Γ]−
1

γ2
tr[|L̃(ti)|Γ] ≤− 2Iα0

i tr[L̃⊤L∗−1B⊤
m Per⊤](t). (20)

From this we obtain the following bounds

I1−α0
i Iα0

i λQ|e|2(t) ≤

 |e(ti)|2P + I1−α0
i Iα0

i 2tr[K̃⊤L∗−1B⊤
m Pex⊤p ](t)+

+I1−α0
i Iα0

i 2tr[L̃⊤L∗−1B⊤
m Per⊤](t)

 (21)

 Iα0
i 2tr[K̃⊤L∗−1B⊤

m Pex⊤p ](t)+

+Iα0
i 2tr[L̃⊤L∗−1B⊤

m Per⊤](t)

 ≤ 1
γ1

tr[|K̃(ti)|Γ] +
1

γ2
tr[|L̃(ti)|Γ], (22)

and thus,

I1−α0
i Iα0

i λQ|e|2(t) ≤ |e(ti)|2P + I1−α0
i

(
1

γ1
tr[|K̃(ti)|Γ] +

1
γ2

tr[|L̃(ti)|Γ]
)
(t), (23)

which implies

I1−α0
i

(
Iα0
i λQ|e|2 −

1
γ1

tr[|K̃(ti)|Γ]−
1

γ2
tr[|L̃(ti)|Γ]

)
≤ |e(ti)|2P . (24)

We claim that inequality (24) implies the existence of t < ∞, t ≥ ti such that ∥e(t)∥ = ϵ.
By contradiction and recalling that we are in the fractional mode, if ∥e(t)∥ > ϵ for all
t ≥ ti, then the left-hand side goes to +∞ since the integrand of I1−α0

i goes to +∞. This
contradicts inequality (24). Therefore, the existence of t < ∞ such that ∥e(t)∥ = ϵ is
guaranteed, meaning that the integer mode is triggered some finite time after the fractional
mode started. This proves claim (ii).

iii. There is no finite escape time in each mode of operation.
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Proof of claim iii. We must prove the statement in the fractional mode, as in the inte-
ger mode, it can be easily proved by constructing a Lyapunov function V = e⊤Pe +
tr[ 1

γ1
K̃⊤ΓK̃ + 1

γ2
L̃⊤ΓL̃] that holds V̇ ≤ 0 from the set of inequalities (19) when evaluating

α = 1. To this aim, we note from part (ii) that after finite time, the switching condition
∥e(ti+1)∥ = ϵ must hold. From part (i), the existence of continuous solutions is guaran-
teed. Then, e, being continuous and taking bounded values in each extreme, must remain
bounded on each subset of the finite length interval [ti, ti+1]. Since xp = e + xm and xm
is bounded, xp also remains bounded on each subset of [ti, ti+1]. Since r is bounded by
definition, it follows from (12) that the norm of fractional derivatives of K, L are upper
bounded on each subset of [ti, ti+1]. We claim that K, L are component-wise upper and
lower bounded by functions that grows or decays at most in order tα. Indeed, since it is
component-wise and since the norm is bounded, there exists constant c1, c2 such that

Dα0
i kµν ≤ c1 Dα0

i lµν ≤ c2

and
Dα0

i kµν ≥ −c1 Dα0
i lµν ≥ −c2,

where kµν and lµν are generic components of K, L, respectively. Applying the comparison
principle for fractional equations (see [14]), we obtain

kµν(t) ≤ c1(t − ti)
α0 + kµν(ti), lµν(t) ≤ c2(t − ti)

α0 + lµν(ti)

and
kµν(t) ≥ kµν(ti)− c1(t − ti)

α0 , lµν(t) ≥ lµν(ti)− c2(t − ti)
α0 .

Then, K, L are bounded by well-defined functions on each switching interval of [ti, ti+1].
Therefore, (e, K, L) are defined on the whole [ti, ti+1], and the claim is proved.

iv. There exists a finite number of switches, after which the mode becomes integer. In
particular, there is no Zeno solution.

Proof of claim iv. From part (ii), if the number of switches is finite, then the final mode
is necessarily integer and there is no Zeno solution. So, it remains to be proven that the
number of switches is finite. To this aim, we claim that the function T used in (14) is
uniformly bounded, meaning that we can find a bound for it that does not depend on
the switching interval. Indeed, given relationship (24), we can find an upper bound for
T by setting |e(t)| in the lowest value possible at the fractional mode, i.e., |e(t)| = ϵ, and
enlarging the term 1

γ1
tr[|K̃(ti)|Γ] + 1

γ2
tr[|L̃(ti)|Γ. By the choice of the normalizing factors in

γ1,2, the following bounds are obtained

γ1tr[|K̃(ti)|Γ] ≤ γ0
tr[|K(ti)|Γ + |K∗|Γ]
1 + tr[K(ti)K(ti)⊤]

≤ γ0(
tr[γ|K(ti)|]

1 + tr[K(ti)K(ti)⊤]
+

tr[|K∗|Γ]
1 + tr[K(ti)K(ti)⊤]

)

≤ γ0(γ + |K∗|Γ),

where the existence of constant γ > 0 in the first inequality is due to the equivalence of
matrix norms in finite dimension spaces. Similarly,

γ2tr[|L̃(ti)|Γ] ≤ γ0(γ + |L∗|Γ).

Since |e(ti)|2P ≤ γp∥e(ti)∥ = γp(ϵ + δ) due to the choice of the hysteresis function h and
the equivalence of norms to find constant γp > 0, we conclude that T is bounded by a
constant that does not depend on i. Hence, there exists a large enough i such that T (t) ≤ iδ
for any t > 0. Again, due to the hysteresis choice, this means that h becomes false after
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finite switches and the fractional mode is no longer activated. This shows that the number
of switches is finite and the claim follows.

v. All closed-loop signals remain bounded and the tracking error converges to zero.

Proof of claim v. From claims (iii) and (iv), it is enough to prove the statement for the
integer mode, which is a known fact [16] (e.g., by using V as in the proof of claim (iii),
V̇ ≤ −|e(tJ)|P and using Barbalat Lemma, where tJ is the time at which the last switch
occurred).

This completes the proof of Theorem 3.

Remark 1. Since K∗ and L∗ are unknown, a bound for the total number of switches cannot be
known in advance. Moreover, the number of (finite) switches is also unknown, by which such a
number can be considered another variable that will be adapted to the specific plant. Therefore, since
the switching in (13) is determined by measurable variables, the two issues found in the literature,
as described in the third paragraph of the Introduction, have been solved by the proposed solution.

Remark 2. Theorem 3 remains true if the adaptive gains are chosen without the normalization
factor during a finite amount of switches. This points to having a pure form of the switching law
(without the hysteresis mechanism) during the transient stage.

Besides transient effects, the advantages of switching the derivation order are to be
found in a large disturbed stage, where the fractional mode operates as per (13). This stage
appears naturally when disturbances or unmodelled dynamics affect system (8), which are
not explicitly counteracted by the adaptive control design. Since parametric disturbances
can be managed in a similar way than before, the natural question is whether we can provide
performance guarantees for the general problem of handling non-parametric disturbances.

Consider the modification of (8) given by

ẋp(t) = Apxp(t) + Bpu(t) + ν(t),

where ν is an unknown bounded time-varying vector function of suited dimensions, with
|ν| ≤ ν0 for a real positive number ν0. The same choice of control function (11) leads to the
error equation

ė = Ame + BmL∗−1(K̃xp + L̃r) + ν. (25)

We look for a modification of the adaptive laws for K, L that preserves the convergence
of control error e, already proved when ν ≡ 0 but guarantees a bounded behavior otherwise.
The following considerations are in order.

Observation 1. Due to the switching mechanism, it is not enough that both the fractional
and the integer modes have a modification that preserve the boundedness when ν ̸= 0,
in a similar way in that a switching between asymptotically stable systems can give rise
to instabilities. One way to circumvent this difficulty is ensuring a global bound for K, L,
regardless of the initial condition. Since the switching transition always ensures the same
bounds for the error e, it is enough that each mode ensures bounded error, with a bound
independent of the switching interval, which must be stated only on the fractional order
mode due, again, to the switching transition conditions.

Observation 2. Notice that when ν ≡ 0, if upper bounds on |K∗|, |L∗| are available, then a
bound on T , a bound on the maximum number of switches, and upper bounds on |K̃|, |L̃| and
on |L|, |K| could be estimated. Thus, the violation of those bounds would mean that ν ̸= 0. The
assumption of such a bound is common in the adaptive literature and, in particular, underlies
robust techniques and the projective modification of adaptive algorithms. By this fact, no
modification is needed until the upper bound is reached, and if the upper bound is reached, it
does not make sense that K, L goes out of the region where K∗, L∗ lie.
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Consider the modification of (12), given by

Dα(t)
a(t)K = Proj(K,−γ1BmPex⊤p , FK)

Dα(t)
a(t) L = Proj(L,−γ2BmPer⊤, FL),

(26)

where Proj is the Projection Operator for matrices as defined in [17] with FK = FK(K)
and FL = FL(L), two vectors’ functions, whose components are convex functions f K

i and
f L
j such that both f K

i (·) ≤ 1 and f L
j (·) ≤ 1 defines a bounded set for i = 1, . . . , n and

j = 1, . . . , n. a(t) = tl whenever tl designs the time such that K(tl) or L(tl) reaches the
boundary f K,L

i (·) = 1, where the notation f K,L
i,j means f K

i or f L
j . A choice for FK,L is given

in Equation (10) in [17].
Since Proj(K,−γ1BmPex⊤p , FK) = −γ1BmPex⊤p and Dα(t)

a(t) L = Proj(L,−γ2BmPer⊤, FL)

= −γ2BmPer⊤ when K and L remains inside f K,L
i,j (·) < 0, if f K,L

i,j are chosen such that they
contain the estimated bounds when ν ≡ 0, in the sense of Observation 2, the above adaptive
laws (26) ensure all previous claims stated when ν ≡ 0 remain true. Moreover, since each
f K,L
i,j is convex, we can apply Theorem 2 on each of them to obtain a similar expression

for Dα0 f K,L
i,j as the obtained for ḟi in the proof of Lemma 9 in [17], the difference being

only in that equality is now inequality. In particular, since a(t) = tl (i.e., the fractional
derivative resets its memory each time the boundary f K,L

i,j = 1 is reached for some i), and

since ∇ f K,L
i,j

⊤
Proj(K,−γ1BmPex⊤p , FK,L) = 0 when f K,L

i,j = 1 (see the proof of Lemma 9

in [17]), K, L cannot escape from region f K,L
i,j ≤ 1, which means that K, L remain bounded

when K(0), L(0) are in f K
i ≤ 1 and f L

i ≤ 1. Since the boundary f K,L
i,j = 1 is independent

of K(0), L(0), we obtain the first part of Observation 1 by noting that the above holds for
α0 ∈ (0, 1]. The second part of Observation 1 is covered by the following result.

Theorem 4. Assume that the initial conditions K(0), L(0) for (26) are in the region defined by
f K
i < 0 and f L

j < 0 for all i = 1, . . . , n and j = 1, . . . , n. By using the adaptive law (26) in the
same control structure (11), e remains bounded.

Proof of Theorem 4. Following Observation 1, it remains to be proven that e is bounded
in the fractional mode. Before that, we prove that no finite escape time exists. Since K, L are
bounded and xp = e + xm, we can bound the error dynamic starting from (25) by

d
dt
(e⊤Pe) ≤ −λQ|e|2 + 2e⊤PBmL∗−1(K̃xp + L̃r) + ΛP|e|ν0,

so that
d
dt
(e⊤Pe) ≤ C1|e|2 + C2,

where ΛP is the largest eigenvalue of P, C1, C2 are constant and we use 2|e|ν0 ≤ |e|2 + ν0.
Then, |e|2 can be bounded by a function depending on the exponential and the integral of
an exponential, which means that it would take to |e| an unbounded interval of time to
diverge. In particular, there is no finite escape time for the solutions.

To prove that e is bounded, we recall another property of the projection operator
given in Lemma 8 in [17], which is based only on the underlying convexity and not on the
dynamics. For any matrix Θ and Θ∗ such that fi(Θ∗) < 1, it holds that

tr[(Θ − Θ∗)⊤Proj(Θ, Y, F)− Y] ≤ 0,

which implies, from the facts that Γ > 0 and X⊤ΓY ≥ λΓX⊤Y, that

tr[(Θ − Θ∗)⊤Γ(Proj(Θ, Y, F)− Y)] ≤ 0.
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The relevance of this property is that since DαK̃ = ΓProj(K, Y, FK) with Y = −γ1BmPex⊤p
(and similar for L), and since the trace operator is linear, the two last inequalities in (20)
still hold for (26), while the first is modified after (25), namely,

|e(t)|2P − |e(ti)|2P ≤

 −I1−α0
i Iα0

i λQ|e|2(t) + I1−α0
k Iα0

k 2tr[K̃⊤L∗−1B⊤
m Pex⊤p ]+

+I1−α0
k Iα0

k 2tr[L̃⊤L∗−1B⊤
m Per⊤](t) +

∫ t
ti

ΛP|e|ν0


1

γ1
tr[|K̃(t)|Γ]−

1
γ1

tr[|K̃(tk)|Γ] ≤ −2Iα0
k tr[K̃⊤L∗−1B⊤

m Pex⊤p ](t)

1
γ1

tr[|L̃(t)|Γ]−
1

γ2
tr[|L̃(tk)|Γ] ≤ −2Iα0

k tr[L̃⊤L∗−1B⊤
m Per⊤](t), (27)

where tk accounts for the resetting time when K or L reach the boundary, besides the time
in which the fractional mode starts.

Let us assume that for switching interval [ti, ti+1], a time sequence ηk of a boundary
reaching instants exists with η1 = ti. We must prove that e is bounded, and obviously, the
critical case is when ti+1 = ∞. So, we assume k can go to ∞.

Let t ∈ [ti, ti+1] and k̄ such that ηk ≤ t for any k ≤ k̄. For Θ = K̃, L̃, let us define

I1−α
k (|Θ̃(ηk+1)|2Γ − |Θ̃(ηk)|2Γ) =

∫ ηk+1

ηk

(ηk+1 − τ)α(|Θ̃(τ)|2Γ − Θ̃(ηk)|2Γ)dτ.

For each 1 ≤ k < k̄, let us apply the operator I1−α
ηk

on the two last inequalities of (27)
and evaluate them at ηk. By adding up and recalling Property 3, we obtain

|e(t)|2P − |e(ti)|2P ≤

 −
∫ t

ηk
λQ|e|2 + 2

∫ t
ηk

tr[K̃⊤L∗−1B⊤
m Pex⊤p ]+

+2
∫ t

ηk
tr[L̃⊤L∗−1B⊤

m Per⊤] +
∫ t

ti
ΛP|e|ν0

 (28)

∫ t

ηk

2Iα0
k tr[L̃⊤L∗−1B⊤

m Per⊤] + 2Iα0
k tr[K̃⊤L∗−1B⊤

m Pex⊤p ] ≤ −Σ(t, η1) (29)

where Σ(t, η1) = ∑k̄
k=1 I1−α

k (|K̃(ηk+1)|2Γ − |K̃(ηk)|2Γ) + ∑k̄
k=1 I1−α

k (|L̃(ηk+1)|2Γ − |L̃(ηk)|2Γ) +
(|K̃(t)|2Γ − |K̃(ηbark)|2Γ) + (|L̃(t)|2Γ − |L̃(ηbark)|2Γ).

Then,

|e(t)|2P +
∫ t

η1

λQ|e|2 ≤ |e(η1)|2P +
∫ t

η1

ΛP|e|ν0 − Σ(t, η1). (30)

Now if e is unbounded, and since it necessarily needs to take an unbounded interval
to diverge, then we have that |e(t)|2P eventually dominates |e(η1)|2P and

∫
λQ|e|2 eventually

dominates both
∫

ΛP|e|ν0 and the sum of Σ(t, η1) since K̃, L̃, ν are bounded. This yields a
contradiction with the above inequality. Then, e is bounded on the fractional mode, with a
bound obtained with the largest possible value for |K|, |L| and, hence, is independent of
the switching interval. Therefore, e is bounded.

4. Influence of Controller Parameters in the Resulting Control Energy and System
Performance: Simulation Studies

The main goal of this section is to provide simulation studies of how the controller
design parameters affect the controlled system performance. That is the reason why these
simulation studies consider the simplest application of the proposed control strategy, where
the plant to be controlled is a first order single input, single output (SISO) under ideal
conditions, e.g., with no disturbances or noise. Specifically, focus is put only on how
controller parameters α, λ, ϵ influence the system performance and control energy.
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4.1. Performance Indices to Evaluate a Controlled System

Performance of the controlled system is evaluated through the Integral of the Time
weighted Absolute value of the control Error (ITAE), given by

ITAE =

T∫
0

t|e|(t)dt, (31)

where T corresponds to the simulation time, used in this work as T = 500 s, while e is the
tracking error. This performance index allows for significantly taking into account steady
state errors or slow convergence, as well as the initial and usually larger transient errors.

To evaluate the control energy used by the control in the adaptive schemes, the Integral
of the Squared Input (ISI) is employed, given by

ISI =
T∫

0

u2(t)dt, (32)

where u(t) corresponds to the control signal in (11).

4.2. Simulation Details

For these simulation studies, the plants to be controlled and the reference models were
selected as first order LTI systems. Two stable and two unstable plants were used, while
the reference models were selected with different convergence speeds, as can be observed
in Table 1. In all cases, the plant and reference model initial conditions were xp0 = 0 and
xm0 = 0, while the reference signal to follow was a unit step.

Table 1. Plants and reference models used in simulation studies.

Ap Bp Am Bm

Plant 1 −1 1 Reference model 1 −0.5 0.5
Plant 2 −10 10 Reference model 2 −1 1
Plant 3 1 1 Reference model 3 −5 5
Plant 4 10 10 Reference model 4 −10 10

Fractional order α0 for the switched adaptive law was varied in the whole interval
α0 ∈ (0, 2). Although the proof of boundedness and convergence in this paper has been
given for the interval (0, 1) due to difficulties encountered to prove it in (1, 2), the results
for α0 > 1 are also included here for completeness. Specifically, the fractional orders used
in the simulation were

α0 =

{
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

}
.

Initial values for the adjustable parameters are K0 = 0 and L0 = 0.
The adaptive gain γ0 was selected in the interval γ ∈ (0, 10] since in previous work [11],

it was observed that no significant changes in system behavior and control energy were
obtained with γ > 10.

Last but not least, the switching error level ϵ must be chosen. In order to do that,
for every set Ap, Bp, Am, Bm, γ, α0 used, the non-switched cases are simulated first. From
them, the maximum value for the control error was found (Emax), defining in that way
the interval where the switching error level ϵ would be selected (0, Emax). After that, the
following conditions were established to select the values ϵ to be tested in simulations:

• If the Emax ≤ 1, then the set of switching error levels ϵ to be tested in simulations was
selected within a 0.025 difference among them in the whole interval (0, Emax).
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• If the 0.1 < Emax ≤ 4, then the set of switching error levels ϵ to be tested in simulations
was selected within a 0.05 difference among them in the whole interval (0, Emax).

• If the Emax > 4, then the set of switching error levels ϵ to be tested in simulations was
selected within a 0.125 difference among them in the whole interval (0, Emax).

Note that using the maximum error values of the non-switched fractional case to select
the interval where the parameter ϵ will be tested is made only to have switched controllers
whose operation in the fractional mode can be compared to the non-switched fractional
order cases. In practice, defining the switching error level can be more challenging. If a
model of the system is available, offline optimization can be carried out to find the optimal
ϵ to be used, according to a certain metric. If not, one can, for instance, define an admissible
error magnitude and use it as the switching error level parameter. This will be strongly
dependent on the application and the control goals since that admissible error level will
determine how much energy use and non-smooth control signals the designer is willing to
tolerate before switching to the fractional order.

Parameters C, δ of the hysteresis function (14) in these simulation studies were used as
C = 100 and δ = 0.005. The implementation and running of exhaustive simulation studies
were made using the NInteger Toolbox [18] for Matlab/Simulink, specifically, using the
NID block and the Crone approximation for the fractional operator.

4.3. Analysis of the Results Obtained from Simulation Studies

The following analysis is made based on the results obtained from all simulations
carried out. The switched strategy proposed in this paper is referred to as SFOMRAC, the
classic integer order non-switched scheme is called IOMRAC, while the fractional order
non-switched scheme is referred to as FOMRAC.

To analyze system behavior and control energy at the same time, both functionals (31)
and (32) need to be combined into one performance index. Thus, the following performance
index is used:

J = w1 ISI + w2 ITAE, (33)

where w1, w2 are weighting factors that allow for giving more or less importance to ISI
or ITAE in (33), respectively. Since magnitudes of ITSE and ISI are very different, their
resulting values were normalized, first, for all plants and reference models, then used
in (33). Normalization was carried out using the following expressions:

ISI =
ISI − min (ISI)

max (ISI)− min (ISI)
, (34)

ITAE =
ITAE − min (ITAE)

max (ITAE)− min (ITAE)
, (35)

where max(ISI), min(ISI), max(ITAE) and min(ITAE) are the maximum and minimum
values of ISI and ITAE, respectively.

Table 2 presents the resulting values of J for different weighting factors w1, w2 for stable
plants. The values used for the weighting factors are also included in the table, and it can
be observed that they were selected such that the first and second combination corresponds
to the lowest ISI and lowest ITAE, respectively, while third to fifth combination weights
equally or more with one functional than the other. For those cases where the SFOMRAC
scheme was the one with the lowest J, the maximum value of the control error (Emax)
has been also included in the table (ninth column) to show how far from that value the
switching error level selected for the best behavior was. Based on Table 2, as well as in the
detailed results for every simulated case, the following conclusions can be drawn regarding
the behavior of ISI and ITAE for stable plants (Plant 1 and 2):
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Table 2. Details of the schemes obtaining the lowest values for functional J for stable plants, using
different weighting factors w1, w2.

Plant 1: Stable with pole in s = −1

Bm Am w1 w2 min J Controller γ α0 α Emax ϵ ISI ITAE

0.5 −0.5

1 0 0 FOMRAC 1 0.1 - - 436.156 3435.24
0 1 0 SFOMRAC 10 0.5 0.0897 0.05 498.243 0.235

0.5 0.5 0.297 SFOMRAC 1 0.1 0.381 0.15 459.518 918.165
0.3 0.7 0.228 SFOMRAC 1 0.1 0.381 0.30 481.697 177.248
0.7 0.3 0.263 SFOMRAC 1 0.1 0.381 0.05 444.048 2129.20

1 −1

1 0 0 FOMRAC 1 0.1 - - 437.463 3403.41
0 1 0 SFOMRAC 10 0.5 0.161 0.05 500.033 0.346

0.5 0.5 0.297 SFOMRAC 1 0.1 0.461 0.15 460.725 896.975
0.3 0.7 0.226 SFOMRAC 1 0.1 0.461 0.30 480.037 219.197
0.7 0.3 0.264 SFOMRAC 1 0.1 0.461 0.10 445.614 2083.60

5 −5

1 0 0 FOMRAC 1 0.1 - - 438.530 3370.86
0 1 0 SFOMRAC 10 0.3 0.387 0.05 502.547 0.301

0.5 0.5 0.274 SFOMRAC 1 0.1 0.721 0.20 470.487 511.406
0.3 0.7 0.201 SFOMRAC 1 0.1 0.721 0.30 481.916 192.159
0.7 0.3 0.258 SFOMRAC 1 0.1 0.721 0.05 447.679 2008.66

10 −10

1 0 0 FOMRAC 1 0.1 - - 438.661 3336.77
0 1 0 SFOMRAC 10 0.3 0.541 0.05 503.534 0.298

0.5 0.5 0.276 SFOMRAC 1 0.1 0.815 0.15 465.228 765.521
0.3 0.7 0.201 SFOMRAC 1 0.1 0.815 0.30 484.020 157.073
0.7 0.3 0.259 SFOMRAC 1 0.1 0.815 0.05 448.148 1990.14

Plant 2: Stable with pole in s = −10

0.5 −0.5

1 0 0 FOMRAC 1 0.1 - - 435.101 3456.47
0 1 0 SFOMRAC 10 0.9 0.5185 0.05 497.045 0.104

0.5 0.5 0.317 SFOMRAC 1 0.1 0.352 0.15 458.488 895.718
0.3 0.7 0.249 SFOMRAC 1 0.1 0.352 0.25 475.929 262.677
0.7 0.3 0.273 SFOMRAC 1 0.1 0.352 0.05 442.999 2123.50

1 −1

1 0 0 FOMRAC 1 0.1 - - 436.386 3418.62
0 1 0 SFOMRAC 10 0.6 0.588 0.05 498.551 0.049

0.5 0.5 0.314 SFOMRAC 1 0.1 0.377 0.15 459.609 879.322
0.3 0.7 0.244 SFOMRAC 1 0.1 0.377 0.30 479.012 196.760
0.7 0.3 0.273 SFOMRAC 1 0.1 0.377 0.05 444.543 2077.013

5 −5

1 0 0 FOMRAC 1 0.1 - - 431.396 3390.67
0 1 0 SFOMRAC 10 0.4 0.157 0.15 499.800 0.008

0.5 0.5 0.317 SFOMRAC 1 0.1 0.447 0.15 462.557 788.290
0.3 0.7 0.243 SFOMRAC 1 0.1 0.447 0.25 475.490 294.819
0.7 0.3 0.279 SFOMRAC 1 0.1 0.447 0.05 446.567 2002.01

10 −10

1 0 0 FOMRAC 1 0.1 - - 437.528 3387.29
0 1 0 SFOMRAC 10 0.5 0.311 0.05 499.963 0.009

0.5 0.5 0.321 SFOMRAC 1 0.1 0.524 0.15 464.131 735.770
0.3 0.7 0.243 SFOMRAC 1 0.1 0.524 0.25 477.619 250.128
0.7 0.3 0.281 SFOMRAC 1 0.1 0.524 0.05 447.013 1982.203

Every time the ISI and ITAE are considered in J, the best resulting controller is a
SFOMRAC. This supports the idea of using switched schemes in order to obtain a better
balance among system behavior and control energy.

The best resulting controller is a FOMRAC only in those cases where the control energy
is the only element taken into account (w1 = 1 and w2 = 0). This is also according to
what has been reported in previous works, regarding the advantages of using fractional
controllers to improve control energy.

Looking at the cases when the control energy is not considered (w1 = 0 and w2 = 1), it
can be seen that the adaptive gains always take the highest value (γ = 10) and the fractional
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order takes higher values than when ISI is considered. Also, the values for the fractional
order in these cases increase, as the reference model is faster. This is combined in most of
the cases with switching error levels that are very small, which implies that the fractional
order will be active during almost the whole transient. To have a visual idea of what
happens in these cases, plots in the first column of Figure 1 present the plant output and
control signal for Plant 1, when Reference Model 3 is used in the SFOMRAC, FOMRAC and
IOMRAC with the lowest ITAE, that is, when control energy is not taken into consideration.
As can be observed, since the main goal in these cases is prioritizing the ITAE, having
higher adaptive gains with fractional orders under 1 in the SFOMRAC will improve the
transient, taking advantage of the speed of response obtained with this combination γ, α0.
Then, once the output is close to the reference model output, SFOMRAC will switch to the
integer order case to avoid the slower convergence rate due to the fractional order. Note
that due to the overshoot on system output, the fractional order will be active again in
the SFOMRAC, which allows for obtaining a very small overshoot, compared to the best
non-switched schemes. Although the control energy is not taken into account in this case
to select the best behavior, note that the magnitude of the oscillations in the control signal
for the SFOMRAC are the lowest among three controllers, which is also an improvement.

Figure 1. Evolution of plant output and control signal for Plant 1 when controlled using the SFOM-
RAC, FOMRAC and IOMRAC, with the best results for three different scenarios, using Reference
Model 3.

On the other hand, every time the control energy is considered (w1 ̸= 0) in the
functional (33), the lowest J is obtained with the lowest adaptive gain tested (γ = 1) and
the lowest fractional order tested (α0 = 0.1), with the switching error level ϵ being the
only difference among cases. Specifically, as the relative importance of ISI increases (w1
increases), the switching error level in the best cases decreases. Plots in the second and third
columns of Figure 1, which correspond to cases with w1 = w2 = 0.5 and w1 = 1 and w2 = 0,
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respectively, also help to understand this behavior. As can be observed, having the lowest
fractional order and the lowest adaptive gain in the SFOMRAC allows for having a very
slow and smooth control signal, which also produces a very slow system response during
transient, taking advantage of the fractional order to improve ISI. After that, the SFOMRAC
switches to the integer order case to also improve convergence speed. As the importance of
ISI increases (middle to right plots), the lower switching error level allows the SFOMRAC
to use the fractional order for a larger time interval, with the non-switched fractional order
case (equivalent to zero switching error level) being the one with the lowest ISI.

Moving to the analysis results in Table 3, corresponding to those cases when plants to
be controlled are unstable, it can be observed that some differences arise.

When only ITAE is considered and also when both ISI and ITAE are considered, the
SFOMRAC is not always the best controller, as it happened to be for stable plants. As can
be observed, for Plant 3 with Reference Models 1 and 2, the controllers with the best ITAE
and best combined cases are FOMRAC. In order to explain this issue, let us look at Figure 2,
where the cases with the lowest ITAE, lowest ISI and balanced case have been plotted for
Plant 3 using Reference Model 2. As can be observed from the left plots, where the best
ITAE cases are presented, the best IOMRAC (γ = 10) is very oscillatory in the transient
stage and convergence also takes a while. Note that this is not an odd issue since controlling
unstable plants is usually more challenging than controlling stable plants. Thus, the best
SFOMRAC (γ = 10, α0 = 0.9, ϵ = 0.05) does not have to take advantage of IOMRAC so
much since once it switches to α0 = 1, the reset, together with the high adaptive gain, does
not allow it to converge quickly but presents oscillations in a time that leads to higher
ITAE than the FOMRAC. When both ISI and ITAE are considered, it can be seen from the
middle plots that the control signal for the best SFOMRAC has higher initial magnitudes
than the control signal for the FOMRAC, which together with the behavior of the system
output, makes the FOMRAC to also be the best in these cases.

When only ISI is considered, the FOMRAC does not always result in the lowest J as in
the case of stable plants. As can be observed from Table 3, that happened only for Plant 3
when using Reference Models 1 and 2, while for all the other cases considering only ISI,
the switched scheme resulted with the lowest J. To analyze this behavior, let us observe
the last column of Figure 3, where the controllers with the lowest ISI have been used to
control Plant 3 with Reference Model 3. As can be observed from Table 3, the SFOMRAC
was the controller with the lowest ISI. From Figure 3, it can be seen that the control signal
for SFOMRAC presents a lower initial overshoot than the control signal for the FOMRAC,
but it also remains oscillating around −1 during a large time window (not seen in the
figure in order to see transient, but it is up to t = 110 s). These oscillations make the control
signal have a lower magnitudes, which adds to the lower ISI. Even when the SFOMRAC
presented the lowest ISI, it must be clarified that the oscillatory behavior of the control
signal is usually not desirable in control schemes; thus, from a practical point of view, the
FOMRAC would probably be considered the controller with the best control signal.

In summary, when controlling stable plants, the use of switched schemes resulted in
better behavior than non-switched schemes every time the system behavior (ITAE) and
control energy (ISI) were considered. When dealing with unstable plants, that was not
always the case since the FOMRAC resulted in the best behavior for some combinations
of the plant and reference model used. Still, the fractional operator led to better results,
which enforces the idea of using these operators in control systems to improve system
performance. Nevertheless, the use of switched schemes, where the adaptive gain γ can
also switch along with the fractional order and different values of α0 can be used for every
component of the adaptive laws, could lead to even better results for SFOMRAC and are
worth further investigation.
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Table 3. Details of the schemes obtaining the lowest values for functional J for unstable plants, using
different weighting factors w1, w2.

Plant 3: Unstable with pole in s = 1
Bm Am w1 w2 min J Controller γ α0 α Emax ϵ ISI ITAE

0.5 −0.5

1 0 0 FOMRAC 10 0.7 - - 496.808 5.841
0 1 0 FOMRAC 10 0.8 - - 496.872 2.882

0.5 0.5 0.0001 FOMRAC 10 0.7 - - 496.808 5.841
0.3 0.7 0.00014 FOMRAC 10 0.7 - - 496.808 5.841
0.7 0.3 0.00006 FOMRAC 10 0.7 - - 496.808 5.841

1 −1

1 0 0 FOMRAC 10 0.7 - - 498.921 5.706
0 1 0 FOMRAC 10 0.9 - - 500.300 2.529

0.5 0.5 0.00011 FOMRAC 10 0.7 - - 498.921 5.706
0.3 0.7 0.00015 FOMRAC 10 0.7 - - 498.921 5.706
0.7 0.3 0.00006 FOMRAC 10 0.7 - - 498.921 5.706

5 −5

1 0 0 SFOMRAC 10 0.5 0.447 0.05 502.681 7.637
0 1 0 SFOMRAC 10 0.8 0.553 0.05 505.226 1.105

0.5 0.5 0.00023 SFOMRAC 10 0.5 0.447 0.05 502.681 7.637
0.3 0.7 0.00033 SFOMRAC 10 0.5 0.447 0.05 502.681 7.637
0.7 0.3 0.00014 SFOMRAC 10 0.5 0.447 0.05 502.681 7.637

10 −10

1 0 0 SFOMRAC 4 0.5 0.736 0.05 503.248 69.481
0 1 0 SFOMRAC 10 0.8 0.719 0.05 506.839 0.921

0.5 0.5 0.0017 SFOMRAC 6 0.5 0.684 0.05 503.395 14.353
0.3 0.7 0.0014 SFOMRAC 6 0.5 0.684 0.05 503.395 14.353
0.7 0.3 0.0015 SFOMRAC 4 0.5 0.736 0.05 503.248 69.481

Plant 4: Unstable with pole in s = 10

0.5 −0.5

1 0 0 SFOMRAC 7 0.3 0.053 0.05 497.173 52.706
0 1 0 SFOMRAC 10 0.8 0.491 0.35 497.227 0.346

0.5 0.5 0.00012 SFOMRAC 10 0.7 0.231 0.2 497.198 0.554
0.3 0.7 0.00008 SFOMRAC 10 0.7 0.231 0.2 497.198 0.554
0.7 0.3 0.00016 SFOMRAC 10 0.7 0.231 0.2 497.198 0.554

1 −1

1 0 0 SFOMRAC 9 0.3 0.05 0.05 498.704 28.036
0 1 0 SFOMRAC 10 0.8 0.51 0.5 498.761 0.286

0.5 0.5 0.00011 SFOMRAC 10 0.7 0.234 0.2 498.726 0.601
0.3 0.7 0.00008 SFOMRAC 10 0.7 0.234 0.2 498.726 0.601
0.7 0.3 0.00014 SFOMRAC 10 0.7 0.234 0.2 498.726 0.601

5 −5

1 0 0 SFOMRAC 10 0.2 0.089 0.075 499.862 6.280
0 1 0 SFOMRAC 10 0.9 0.791 0.75 500.154 0.216

0.5 0.5 0.00026 SFOMRAC 10 0.4 0.157 0.15 499.900 1.609
0.3 0.7 0.00023 SFOMRAC 10 0.4 0.157 0.15 499.900 1.609
0.7 0.3 0.00025 SFOMRAC 10 0.2 0.089 0.075 499.862 6.280

10 −10

1 0 0 SFOMRAC 10 0.2 0.162 0.15 500.00 1.399
0 1 0 SFOMRAC 10 0.8 0.761 0.75 500.364 0.168

0.5 0.5 0.00008 SFOMRAC 10 0.2 0.162 0.15 500.00 1.399
0.3 0.7 0.00012 SFOMRAC 10 0.2 0.162 0.15 500.00 1.399
0.7 0.3 0.00005 SFOMRAC 10 0.2 0.162 0.15 500.00 1.399
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Figure 2. Evolution of plant output and control signal for Plant 3 when controlled using the SFOM-
RAC, FOMRAC and IOMRAC, with the best results for three different scenarios, using Reference
Model 2.

Figure 3. Evolution of the plant output and control signal for Plant 3 when controlled using the SFOM-
RAC, FOMRAC and IOMRAC, with the best results for three different scenarios, using Reference
Model 3.
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5. Conclusions

The design and analysis of an error-based SFOMRAC scheme has been presented in
this paper, where the order of the adaptive laws used to estimate the controller parameters
switches between a fractional value α0 ∈ (0, 1) and 1, according to the value of the control
error. The proposed technique has been formulated for LTI systems, with multiple inputs
and multiple outputs, also considering the case when system states are affected by a
bounded non-parametric disturbance.

Analytical results indicate that the proposed control scheme ensures the boundedness
of all closed-loop signals and convergence of the control error to zero, with a robust
response to non-parametric disturbances. Furthermore, numerical results in the context of
exhaustive simulation studies have shown that when the proposed scheme is used, a better
balance among performance indicator ITAE and control energy ISI can be obtained for some
switching error level, compared to classical non-switched integer-order and fractional-order
adaptive laws.

Future work considers extending the problem to the control of LTI multivariable
systems whose states are not all accessible, but only its outputs.
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