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Abstract: Symmetric derivatives and integrals are extensively studied to overcome the limitations of
classical derivatives and integral operators. In the current investigation, we explore the quantum
symmetric derivatives on finite intervals. We introduced the idea of right quantum symmetric
derivatives and integral operators and studied various properties of both operators as well. Using
these concepts, we deliver new variants of Young’s inequality, Holder’s inequality, Minkowski’s
inequality, Hermite-Hadamard’s inequality, Ostrowski’s inequality, and Gruss—-Chebysev inequality.
We report the Hermite-Hadamard'’s inequalities by taking into account the differentiability of convex
mappings. These fundamental results are pivotal to studying the various other problems in the field
of inequalities. The validation of results is also supported with some visuals.
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M.Z.; Awan, M.U.; Dragomir, S.5.; The theory of convex functions has diverse applications in several fields of science but
Zidan, AM. Properties and its impact on the growth of inequalities is very significant. Most of the fundamental results
Applications of Symmetric Quantum  related to inequalities are derived through convex mappings.

Calculus. Fractal Fract. 2024, 8, 107. Several innovative and novel techniques are utilized to derive new counterparts of
https://doi.org/10.3390/ fundamental results of inequalities. One of them is §;-calculus because it has advantages
fractalfract8020107 over classical concepts. In the perspective of §;-calculus one can obtain the quantum

derivatives of piecewise discontinuous mappings. Meanwhile symmetric calculus is ap-
plied to study the non-differentiable mappings for example absolute functions. Quantum
symmetric calculus is also a very interesting and intriguing aspect of mathematical analysis.
It generalizes the classical symmetric concepts by q; — 1.
In Ref. [1] Sudsutad et al. explored the various famous inequalities over finite intervals.
In 2018, Alp et al. [2] explored the correct version of Hermite-Hadamard inequality by
utilizing the differentiability of convex functions and several other important inequalities.
Bin-Mohsin et al. [3] explored the error boundaries for an open method known as the
Milne rule implementing the Mercer inequality and quantum calculus. In Ref. [4], Kunt
and his fellows gave the idea of right-sided quantum derivatives and integral operators
This article is an open access article ~and provided a detailed discussion about these operators. In Ref. [5], Nwaeze and Tameru
distributed under the terms and  €Xamined the unified integral inequalities through 5-convex functions. Different values of
conditions of the Creative Commons 1] and other parameters involved in identity produced innovative results. Asawasamrit
Attribution (CC BY) license (https:// et al. [6] reported some new integral inequality results concerning Hahn quantum operators.
creativecommons.org/licenses/by/  The results produced in the paper can be reduced to integral inequalities established via
40/). well-known quantum operators defined on finite intervals. Kunt et al. [7] provided the
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quantum Montgomery equality and concluded some of Ostrowski’s type bounds. In the
sequel, Kalsoom et al. [8] devoted their efforts to come up with Ostrowski estimates by
invoking the notion of higher order n-polynomial preinvex functions. In Ref. [9], Ali
and his colleagues purported new variants of both midpoint and trapezoidal rule via
quantum concepts. In Ref. [10], the authors presented the trapezium-type inequalities in
a more general form and deduced some inequalities for comparative study with existing
outcomes. In Ref. [11], the authors focused on establishing the post-quantum analogues
of trapezium inequality via generalized m-convex mappings. Duo et al. [12] analyzed
some quantum estimates through a unified approach to obtain several type inequalities
by specifying the values for parameters. In Ref. [13], Khan and his co-authors developed
the trapezium type inequalities by taking into account the green functions via quantum
calculus and have investigated the post-quantum analogues of Hermite-Hadamard type
involving generalized m-convexity. Saleh et al. [14] derived quantum dual Simpson-type
error estimates involving convex functions and presented some implications as well. In
Ref. [15], the authors utilized the majorization approach and quantum calculus to develop
new counterparts of Hermite-Hadamard—-Mercer type inequalities. In Ref. [16], Alomari
derived the quantum variant of Bernoulli’s inequality and its consequences. In Ref. [17],
Alp and Sarikaya established the quantum integral inequalities based on newly developed
quantum operators known as second sense quantum integral operators. Nosheen et al. [18]
studied Ostrowski’s type variants through s-convex mappings and quantum symmetric
calculus. For further details, see Refs. [19-21].

The principal inspiration of the current study is to investigate the right symmetric
derivative and integral operator. To accomplish this study, we divide our complete study
into three parts. In the first part of the study, we provide some essential facts and a literature
review related to the problem. In successive segments, we introduce the notions of right
quantum symmetric operators and explore their essential properties as well. In the third
part, we discuss the applications of newly studied concepts in previous sections to integral
inequalities. Later on, concluding remarks and future insights are provided. We hope this
will create new venues for the investigation.

2. Preliminaries

Let us report the notion of convex mappings:
Definition 1 ([22]). Any mapping Z : [C1,Ca] — R is referred to be a convex mapping if,
Z(A-tx+ty) <1 -1)Z(x) +12(y), Yxy € (G, C ©)
where T € [0,1].

The geometrical interpretation of convex mapping is described as if the chord line join-
ing the point (C1, Z(C1)) and (Ca, Z(C3)) always lies on or above the graph of a mapping.
In addition, any mapping is convex if and only if its epigraph is a convex set.

Now we recall a famous consequence of convex mappings, which is known as trapez-
ium inequality proved by Hermite and Hadamard separately and is demonstrated as:

Let Z : [C1,C2] — R be a convex mapping, then

Z (%) < oo Jo? Z(x)dx < 2G1ZG)
This inequality serves as criteria for convex mappings and it is widely utilized to determine
the error bounds of both mid-point and trapezoidal rules. Moreover, it determines the
bounds of the average mean integral. Several studies have been carried out regarding this
inequality. For further detail, one may consult the following Refs. [23-25].

Now we will recollect some facts regarding symmetric quantum calculus.

Let §; € (0,1) and let I be arbitrary interval of R containing 0,
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Ig, = {g,x|x € I}.
Clearly I C I.

Definition 2. ([26]). Let Z : I — R. Then the symmetric quantum derivative operator is described as:
2(q')-2
Di Z 1— 0.
320 ="y T

Additionally, D%Z(O) = Z'(0),t = 0 provided that Z is differentiable at T = 0. If Z is
differentiable mapping at T € I, then limy DEIZ(T) = Z'(1).

Theorem 1. Suppose that Z and g are two §,-symmetric differentiable on 1°, then for any
c,my,ny € Randt € Iz,

1. DjZ(1)=0%Z=c.

2. D§1 (M Z(t) +mG(1)] = mlD?hZ(T) + nlD?hZ(T).

3. D 2(0)G(t) = G(a;1)D Z2(7) + Z(q;lT)Dglg(r).

Moreover, In 2023, Khan et al. [27] explored the concept of left quantum symmetric
derivatives and integrals over finite intervals. Assume that ] = [C,C2] C R, 0 € J and
0 < gy < 1, then the left quantum symmetric derivative is described as:

Definition 3 ([27]). Let Z : ] — R be a continuous mapping, then

s _ 2@ 't+(-47")C) - 2 (4 T+(1-4,)C1)
D3 2(1) = (@ 1-q;)(t—C1) TG

And ¢, D;lz(cl) =limg 1 ¢, Dglz(r), if limit exist. If C = O then o Df Z = Dj Z.

Theorem 2. Suppose that Z,G : | — R is quantum symmetric differentiable mapping, then
L D (mZ(t)+nmG(1)] = mlchglz(r) + nlchﬁhz(T).
2. D5 2(1)G(t) = G(@y T+ (1= ;)C1)¢, D Z2(1) + 2(f; 't + (1 -3, 1)Ci)e, D, G(7).

Similarly, they investigated the corresponding symmetric quantum integral, which is
stated as:

Definition 4. Suppose Z : | — R is a continuous mapping, then

Cy 0
| 2@ d = @ - —a) L aiz@rrie + (1-grhey
1 —

o)

= (G2~ C)(1-4q7) Zb 2@+ (1-g7"th)e).

If C; = 0, then it reduces to classical symmetric quantum integrals in Ref. [26]. To get
more information about quantum symmetric differences, one may consult Ref. [28].

3. Main Findings

In the following perspective, we introduce the idea of right quantum symmetric
derivative and integral operators, which is stated as:

Definition 5. Let Z : | — R be a continuous mapping, then

Capys Z(gT+(1- ql)Cz) Z(gy ' t+(1-q; )Cz)
D§, 2(7) = (@ a1 TG



Fractal Fract. 2024, 8, 107 40f21

And CZD;:;lz(cZ) = limy 1 © D% Z(t), if limit exist. If C; = 0 then G2 D; 2 =D Z.
Example 1. If Z(7) = (C, — 7)", then

(C—gT—(1-8)C)" — (G —q 't (1-4;)C)"
@' -q)(C 1)
4 (G —1)" - g " (G- 1)
@' -a)C—1)

AL A
= ((}1,1 ql,\ )(CZ - T)ail'

“D; Z(1)=

Now, we discuss the algebraic properties of ©2Ds .
Ell

Theorem 3. Suppose that Z,G : | — R is a right quantum symmetric differentiable mapping, then
QDs [mZ(t) 4+ nG(1)] = mCZD§]Z(T) + nC2Dglg(T).
D3 [Z(1)G(1)] = GayT + (1~ ,)C2)D3, Z(v) + (37t + (1 - 47 1)C2)2D, 6(x).

“Dg [2(1)G(7)] = Z(@y7+ (1 - §;)C2)D5, G(7) + G(3; '+ (1 — 47 1)C2) D5, Z(7).
Cps [zm] _ 9@t (1=)C)2D; Z(1)—Z(@7+(1-,)C2) 2D, 6(7)
1

G(a; 'r+(1-4; 1)) G (0 T+(1-01)C2) ’

Proof. We omit the proof for interested readers. []

Based on the right symmetric quantum derivative, we construct the quantum symmet-
ric definite integral. For this purpose, we define a new shifting operator

Eq,s2(1) = Z(q17+ (1 - 4))C2)
Additionally,

B3, 2(0) = 2@ T+ (1= 471)Co)

Similarly,
E% o= Eq,s(Eq 52 (1))

=Eqs(Z2(q17+ (1—4)C2))
= Z(q;(q17+ (1 -q;)C2) + (1 —§;)Ca)
= Z(git+ (1-47)C2).

Applying mathematical induction, we gain
EL Z(7) = Z(@T+ (1 - 4})C).
Moreover, we note that
BBy 1, 2(0) = Z2(q7 1T+ (187 1)C)

= Z(q,(q; '+ (1= g7 "C) + (1—41)C) (2)
= Z(71)

From (2), we have
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Utilizing this fact, the notion of the right quantum symmetric derivative can be trans-

formed as:

41,8 ) z (T)
(@' =a)(T=C)

Then right quantum symmetric can be defined as:

G(0)(a4;' —q)(t1—C)

E._1 —E
(Ey,

g(r) =

Z(1)=
th’l,s qu,s
G0 @) (T~ C)Eqys
- _ 2
1 EQl's

_ ~ -1
L= @)Eq (1B ) (1 —C)G(7)
= (4" = G)(Eqys + E§ s + E3 s+ ) (T = C2)G()

= (@' —q) Y B3 (T - C)G(7)

n=0

=@ —a) Y @t + (1-g" e - 0)G(E T+ (1 - g TG
n=0

=@ —a)(t—C) Y @"g@ M+ (1- "))
n=0

[e°]

(1 _ ql T— Cz 2 2n+1 T+ (1 . q%n+l)c2)'

Our next definition is the definite right quantum symmetric integral operator.

Definition 6. Assume that Z : | — R is a continuous mapping, then

o)

Cs
/C ( )CZdS = (CZ . Cl o Ch E n+lZ A2n+lC1 + ( q%nnLl)C )
1 —

[e9)

:(Cz Z 2nZ 2n+1c +( A2n+1)cz)

Clearly, a mapping is said to be right quantum symmetric integrable if
Yo 0@ Z(g3 e + (1 - §3"T)Cy) converges.

Further, we explore some fundamental properties of both right and left quantum
symmetric integrals.

Theorem 4. Assume that Z : | — R is a continuous mapping and my,ny € R, then

2 [m 2 (1) + mG(0)] e, df, T = my [$2 Z(0)o 8, T+ my [52G (0, T
fo Tcz+ (1-1)C)d T = oler fccf (u)e, &, 1
fQ ¢, D3, 2 (u)e, dg u=Z(t)
oD%, Jo, Z(w)e di u= Z(1)
S D8 2(1)g 3 T = Z(C2) — Z(e), e € (C1, Ca).

SARELEEE I .

Proof. From the definition of the right quantum symmetric integral, we have
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[ im0+ Gl i

=(Cz—C1)(1—fﬁ)iql [mZ((g"r+ (1 - g7 1)C) + mG (" T+ (1-§7" 1))

n=0
mi(C—C)(1—a7) Y a"Z2((g" 't + (1—g7"they))
n=0
+11(C— C1)(1 - &) Z q" M+ (1-afther))

C2 C2
—m /C1 Z(t),dy T+ m /C1 G(t)e,d5, .

For the second property, we again consider the definition of the right symmetric quantum
integral,

1
/0 Z(tC+ (1—-1)C)dy T
1 _ql Z ZnZ n+1cz+( q%n-&-l)cl)

T G-q /c (e, dg, v

For the third property, we consider Definitions 3 and 4, then

/ G fh Cl ql

:/ Z(4; u+<1—q11>cl>—Z<q1u+(1—q1)cl>} !
C1

@' - a)u—0c) Gt
t*Cl) ~2n+1 , o -
=L e o 2@ a0 -ae)

(q @+ (1= e + (1-4,)01 )|

) i Z( 2n+2t+ 1_q2n+2)cl>

0 ( n=0
(ai

M4 (1-g cl) iz( 21t 4 ( 1—q1”)C1)

n=1

[
Mz

3
I

Z

[
hgh

I
o

n

ﬁ

t).

Again, we consider the Definitions 3 and 4, then

ot
s Cy 35
o D4, /Clz(”) 2dg,

G 211 ((]7 —qy)(t=C1) Z;) 2n+1Z q2"+1t+(1_q%n+1)cl):|

_ @t -gha ) e d 2@ @+ (- )0 + (-8 G
(t=0C)
(@t (-4 - C) S a7 2@ (@t (1-4)G) + (1 -4
(t—0C1)

2n+ZZ A2n+2t + (1 _ q%n+2)cl)

2@+ (-

I
e
»—\I:)

3
Il
o

a2 @ (- aen

I
e
»—\Ii)

"Z(Qtt+(1—

I
S
N1
=
=
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Now we prove our last property by using simple facts,

C C e
/g ClD?l1Z(T)C1da1T = /O C1D211Z(T)0d‘§h’r_ 0 ClD%1Z(T)Oda1T
= Z(Cp) — Z(e).

Hence the result is achieved. [

Theorem 5. Assume that Z,G : ] — R be a continuous mapping and m,n € R, then

1[G mE () + G0 T = m [$ (1) T+ n [C G0 T
2. fol (TCz +(1- T)Cl)1d§ T = 82171 Cclz Z(u )Czdzl
3. @Dy, (u)c ~Z(t)
4. [ CZDS Z(u)e,di u=—Z(t)
5. sz CzDs (T)C Z(Cy) — Z(e).
6. fC] (47 T—I—(l—q1 )CZ)CZDS G(t )Cst
= Z(c)G(c) - Z(C fc 47+ (1—y7)C2)C2D; Z(T)CnglT

Proof. The proofs of Properties 1 and 2 are straightforward from Definition 6.
Now we prove the third property,

1
/ Z(1C + (1-1)Cr) g, T
0

Z&”% — @+ @)

— ]' CZ Cz S
- o=z, /C1 Z(u)%d3, u

For the fourth property, we consider Definitions 5 and 6, then

C2
Co s Cr 38
/t D3 Z(u)™2dg u

C
-

Z(q 't (1-§;1)C) — Z(quu+ (1 - %)62)1@(15 .
(@' =) (u—C2) o
(C2— )" -
z n+lt 4 1— ~2n+1 C 4 1— 1 C
A2n+1t+( q2n+1)cz) _CZ { (ql (ql ( qq ) 2) ( qJ1 ) 2)
L@ (1= a1 ) + (1-4)C2)|

2n+2t+ A2n+2 CZ) i (q%nH_ (1-4 ”)Cz)

n=|

\MS
,Q)

I
3
gM% —_
o

|
i MS

n=0

2(a
( Bt (1- ")) — iz( 2t (1-")C2)
()
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Again, we consider Definitions 5 and 6, then
C2
Co s Cr 38
D3, /t Z(u)%d3, u

— CzD?h (ql—l A Cz _ t Z 2n+1Z n+1t + (1 _ éﬁ"“)Cz)

_ (G —q = - ) Ere @ T 2 g 4 (1 - g NC) + (1 - a7t Co)

(f — Cz)
- (C2—qut — (1-4)C) Lo oqanZ(qan(‘ht +(1-4)C)+(1- 2"“)62)
(t - Cz)
_ 2 A1n+23(fﬁn+2f—|— (1 A2n+2 2 ZnZ q%nt‘i‘ 1 _qln)cz)
n=0
= ZqZ”Z(q1”t+(1— Zq%”Z @+ (1-g")C)

n=0

3
\ |

|

|
SN
—~
—
~—~

Now lastly, we prove the integration by parts formula. For this purpose, we consider the
product rule property, which is proved in Theorem 4.

CD: [2(1)G(1)] = G(ayT + (1 - &)C2) %Dy, Z(1) + Z(d; 't + (1 - 4;)C2) D3, 6(7)

Applying the right quantum symmetric integral operator on the above expression with
respect to T over [C1,c] C [C1, (), then

C2 S CZ S
/C D [2(0)6(7) e, v
C C
= /C (4 T+ (1—-8,)C)Dg Z(7) 2dy 7+ /le<q;1r+ (1—-4;")C2)2Dg G(7) 2dg T
This implies that
¢ ~—1 ~—1 Co s Cy 38
L @ T (1 47)C) D 6(1) v
C
= 2(0)9(c) ~ 2(@1)9(C) — [ g(@T+(1—4,)C)D5, Z(v) 2y T
1
Hence, the result is acquired. [

Lemma 1. For « € R — {1}, then

O
fC ( C1) ) qlbl* (;hh ql)(T_Cl)(x-‘rl‘

i

Proof. Let Z(u) = (u—Cy)*"!, then

A (at1) a1

oD Z(u) = (M) (r—cy)®

9 —D

Now applying the left symmetric integral operator with respect to u over [Cy, T], then we
acquired our desired outcome. [



Fractal Fract. 2024, 8, 107

9 of 21

Lemma 2. For« € R — {—1}, then

C2 aCyqs o [ G4’ a+1
f'r (Cz—u) qulu = <qi,x_1q%>(C2—T) .

Proof. Let Z(u) = (C, —u)*"?, then
Af(DH»l)_ux 1
CzD?hZ(u> — (Ch — Aqﬁ >(C2 _ Ll)“

Now, by applying the right quantum symmetric integral operator with respect to u over
[t,Cy], we have acquired our desired outcome. [

Now we give the quantum symmetric analogue of Young’s inequality.

Theorem 6. For C1,C, > 0and % + 1 =1withp,§; > 1, then

CiC < 9l 4 &b
-2 = [P}ql,s [V]eh,s

1
Proof. Consider y = xP~! and x = y#~1 for p > 1 and % + % =1, let us draw the graph of

y = xP~! as shown in Figure 1,

_ (Cop—1 g5 . _ CF
Sl—fo xP odChX—

[P]ql,s )

And .

C 51 G’
s2=[y%y? 10d§hy = 7[?];,5'
According to the graph, we have
14 r
C1Cr <s1+s = [;ﬁ; + [r(]j;

18 15

Hence, the proof is completed.

y b

%]

y=2Z(x)

I X
Figure 1. This figure shows the graph of Z(x) = xP~L.

O
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Theorem 7. Let x € [C1,C],0 < §y < land p,r > 1 such that % + % =1, then

ffz \Z(T)Q(T)\Czd?hﬂf < (fxcz 1Z(0)| Czdzhr)? <fsz G(0)[" Czdf%T) r

Proof. Considering the Definition of the right quantum symmetric integral operator,

we have

/xcz |Z(0)G(7)|2d3 T

=(1-4)(C—x%) Zq (@ + (1= )G (" x + (1 - g )G
141 1@ 1.1
<-g) T (C-x T Y @) IZ@E - (- e
n=0
1G(a7" " x + (1 - 4i" )G
1
((1—611 )(C2 —x) Z (g7 e+ (1 ﬁ"*l)c)lp)
R 1
((1—(11 )(C2 = x) 2 (@1G(g7" +(1—5ﬁ”+1)cz)|r>
1 1
Cy P Cy T
- ([T 1zorad) </x lg<r>mdaf)-
This completes the proof. [
Theorem 8. Assume that Z,G : | — R are continuous mappings, then
1 1 1
1 c T 1
(Je 2@+l ey ) < (J 1201 @dg )" (e 191 dg T) ",
where % + % =1
Proof. From the following expression, we have
C
L 120+ G iy x
= [ 120+ 6@ 20 +6(0) i
S/cz\ (1) +G(0)P 1 2(7)| “2dg f+/ )+ G ()P HG (1) “dy T
1

Implementing the classical Holder’s inequality on the above relation

-Cy C2
Jo 12@+ 6@ 2@ Syt 1200+ G060 7

< (/:2| (1) +G(r)["" Y Gy )1(/:23(7)|”Czd§ihf>;
[Pz 0, )3(/:2|g(7)|pczd%ﬁ>;
- (/:z| (1) +G(r)[""V ey )} [</sz|Z(T)|pczd%1T>;lv+ (/(:ZIQ(T)WczdgllT)’l’]_
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After simple computations, we obtain our required result. [J

Now, we give the Hermite-Hadamard’s inequalities involving new quantum sym-
metric calculus. To prove the Hermite-Hadamard’s inequalities, we draw the following
Figure 2.

Z(x)

hix)

kix}

ha(x)
0 —

a2
3] ¢ + ¢ply

1+ 82

/

Figure 2. This figure presents the secant and tangent lines of convex mapping.

ha(x)

Theorem 9. Assume that Z:] — R is a differentiable convex mapping on (C1,Cz) and
4, € (0,1), then

=z C1q% +2C2 B 4, (Cz —A Cl)Z, Clq% +2C2 < 1 /Cz Z(x)CZdSA N
1+ 1+4q 1+¢2 C2—C1 Je o

cQZ2@)+( +4i - CAh)Z(Cz)_
- 1+

Proof. From the given assumption, Z is a differentiable convex mapping on (Cy,Cz), so

A2
there exists a tangent line for point Cllqiizzcz € (C1,Cy) and the equation of the tangent line
1

_ o[ ad+C /[ C1@d+C _ GG
h(u) = Z( L > +2 ( v - )
As Z is convex mapping, then h(u) < Z(u). Now taking the right quantum symmetric
integral on both sides of the preceding inequality, we have

is given as:



Fractal Fract. 2024, 8, 107 12 of 21

Cz S
dq1”

c £2 A2 A2
e G143 fZCZ =y G197 ‘f:zc2 "y G147 ‘f:Zcz
g 1+ 1+ 1+
A2 A2 C G52
=(C-C)Z G4 +G —1:202 + Z' G4+ -i:zcz / - aq+6 —1:202 CZdz] u
1 + ql 1 + ql Cl 1 + q1 1

a2 52 b 2
=(C—-C)Z2 <w> + 2z <w> (/C udg u— (G - cl)w>

1+q% 1+Cﬁ 1 1—1—61%
=(C—C)Z Cid1 +C (C—C)Z CQAR+C\ [((1+a)C-4,(—C) Cia+G
L L+ 1+ 1+
= (CZ_CI) Z M —Z, Clq%+62 ql(cz—61)
1+4] 1+47 1+
< CZ Z(u)CZdﬁ u.
—Jg q1

In addition, due to convexity of Z then secant lines k(u) joining the points (C1, Z(C;)) and
(Ca, Z(Cp)) always lies on or above the graph of Z, so Z(u) < k(u), where k(u) is given as:

k(u) = Z(Cl) + %(u — Cl),Vu S [CerZ]'
Now, implementing the right quantum symmetric integral operator, we have
'CZ
/C1 Z(u)CZdiihu

b Cy 35
2
< / k(u) dg,u

- [ {z(cl) L2 =2, Cl)}@dfihu

C—C )

(G- C)EE) + (2(Cy) - 2 [ L2 d(@-C)
1+47

G- [fhzwﬂ (- éh)zwz)]'

1+4;
In the following manner, we reach our desired result. [

Example 2. We consider Z : [0,2] — R such that Z(x) = x? is a differentiable convex functions,
then applying Theorem 9 for §; € (0,1), we have

4 — 8 < 4+ 461% _ 8G < 4(1+6ﬁ76h).
(1+q2)” (1+a)(+ap) — TE+E - 1+ — 0 1+Q

For §, = 0.6, we obtain
—1.70667 < 1.5619 < 2.4.

For graphic visualization, we use §; € (0, 1) as the variable. Figure 3 gives a validation
of Theorem 9.
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Figure 3. This figure validates the accuracy of Theorem 9.

Theorem 10. Assume that Z :] — R is a differentiable convex mapping on (C1,Cp) and
4, € (0,1), then

o DA
S CEL A IR LTARTIE 2 DR Y LA CIRIIES SNET]
1+4; +4i 1+4; G =G ! 1+4;

Proof. From the given assumption Z is a differentiable convex mapping on (C1,Cy), so there
C1+bg?
1+42

_ Cl-‘rqu / C1+bq2 _ Cl+bq2
hy(u) _Z(Hq{ +Z Tve J\ e )

As Z is convex mapping, then h1(u) < Z(u), Now, taking the right quantum symmetric
integral on both sides of the preceding inequality, we have

exists a tangent line for point

€ (C4,C;) and the equation of the tangent line is given as:

C2
/Cl hl(u)CZdalu
C 2
- [7|z Cﬁ{?g pz (Y, Gth) ey,
¢ 1+4g 1+q] 1+q] 1
C 2
(G -C)Z C1+bq Cl-l-bq /2 u_Cl-FbZ Czd%u
G 1+4q7 1
Cl+bq C1+bq /b O s C1 + bg?
= (C—C) 248 1 — (Cp — C 4
@ ( ) < R @
Cl+bq Cl+bq (14+a)C—§,(C2—C1)  Ci+bg?
:(62*0 CZ* ~2 B A2
+47 1+4q; 1+4q;

_ (-0 2 C1+b;7 Y Cl+b;7 (1_q1)(CA22_Cl)
1+47 1+47 1+4;

C
< / ’ Z(u)CZd%lu

C

Now, comparing (3) and (4), we achieve our desired result. [J

Example 3. We consider Z : [0,2] — R such that Z(x) = x? is a differentiable convex functions,
then applying on Theorem 10 for §, € (0,1), we have

41 83(1-q) 4ai 8 4044-q)
a+a)’ (g’ T IHarRa 1k T g

For 4, = 0.6, we obtain
0.903114 < 1.43729 < 2.23529.
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For graphic visualization, we take §; € (0,1) as the variable. Figure 4 gives a valida-
tion of Theorem 10.

Z@)

1// °
L L L L a

0.2 0.4 0.6 0.8 %

Figure 4. This figure validates the accuracy of Theorem 10.

Theorem 11. Assume that Z :] — R is a differentiable convex mapping on (Cq,Cp) and
4, € (0,1), then

A2 ~

Z(Cl +Cz) N (1443 —2q12562_61)z/<C1 +Cz) < /Cz Z(x)c2d% X
2 2(1+¢2) 2 € '

L W2+ (1+3-3)2(C)

- 1+4;

Proof. From the given assumption, Z is a differentiable convex mapping on (Cy,Cz), so
there exists a tangent line for point % € (C1,Cy) and the equation of tangent line is

given as:
ha (1) = Z(qu@) +Z/(clgc2) (u _ ‘71;02).

As Z is convex mapping, then 71 (u) < Z(u). Now, taking the right quantum symmetric
integral on both sides of the preceding inequality, we have

C Cy 38

/(31 ha(u)~2d3 u

. G Cl+C ,(C1+Co Ci+C Cy 15

A e R G o I e s I

B C1+C (C1+C\ [ Ci+C\¢
(cz—cl)z( )+z<2 )/C] w97 %) egy

b
= (€ —a)z(cl +C2> +z’<w) </ WCrds u— (G —cl)w)

+

N

2 2 & 2 )
Ci+C Ci+C 1+8)0—§,(C—C1) G +C
_(Cz—C1)Z( 12 2>+(C2—C1)Z'( 12 2)<( 4i) i—i_%( 2—C1) 12 2)
— (G -0 Z(M)+Z/(61+Cz><1+q%—2q1><cz—cl>
2 2 (1+3)2

C2
Cr 38
S/c Z(u)72dg u.

1

Now, comparing (3) and (5), we achieve our desired result. [

Example 4. We consider Z : [0,2] — R such that Z(x) = x? is a differentiable convex function,
then applying Theorem 11 for 4, € (0,1), we have

14 20442 9] 8 40441-q)
(1+4g)) = 7 1+ai+a) 14a 0 14q
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For §, = 0.6, we obtain
1.23529 < 1.43729 < 2.23529.

For graphical visualization, we take §4; € (0,1) as the variable. Figure 5 gives a
validation of Theorem 11.

Z@,)
3.5
3.0
25

2.0

i)
w

M.S

. . . G- LS
0.2 0.4 0.6 0.8 !

Figure 5. This figure validates the accuracy of Theorem 11.

Now we give an analytical proof of Hermite-Hadamard’s inequality.

Theorem 12. Suppose that Z : | — R is a convex mapping, then

2(442) < I8 20t I 2ot o] < 20052

Proof. Since Z is a convex mapping and for x,y € | such that x = 7C; + (1 — 7)C; and
y = (1-1)C + 1Cy, we have

Z(#) <HZ((1—1)C +1C) + Z(C + (1 - 1))

Now, by applying the quantum symmetric integration with respect to T over [0, 1], then

/ Z(clzcz%dgl < 121 =7)C +7C) + Z(C1 + (1 - 7)C2)]od (6)

In addition, note that

/01 (1 - 7)C1 +TC2)odt,

1 i Aznz( A2n+1)c + q2n+1cz) (7)

! : Z(x)p S
T G-G /Cl (e, dg,

Additionally,
1 C
Jo Z2(tC1+ (1= 1)C2)od, = e Jo! Z2(x)%dj x. (8)

Inserting the values of (7) and (8) in (4), we obtain the left inequality.
To prove the right inequality, we utilize the convexity of Z

Z((A=1)C1+1C)+2(xC1+(1-1)C)  Z(C1)+Z(Cr)
2 = 2 :

By implementing the quantum symmetric integration with respect to T over [0, 1], we get
the right side inequality. [
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Example 5. We consider Z : [0,2] — R such that Z(x) = x? is a differentiable convex functions,

then applying on Theorem 12 for 4, € (0,1), we have

443 49
1<2 L <D,
ST hEE  wa S
For g, = 0.6, we obtain

1<1202<2.

For graphical visualization, we take §q; €
validation of Theorem 12.

(0,1) as the variable. Figure 6 gives a

Z(@,)
RS
8L
6 M.S
LS

0.2 0.4 0.6 0.8

= 4
Figure 6. This figure validates the accuracy of Theorem 12.

Next, we compute another quantum symmetric analogue of Ostrowski’s inequality.

Theorem 13. Assume that Z : | — R is a continuous and symmetric quantum differentiable
mappings, then

\zm—czicl /:22( s T \ (”CZD ')

G-+ 1+ -4)(Q -]
+4f

Proof. We start with the following expression and make use of the Lagrange mean value
theorem,

Cy 1 Cy
. Cy 35 _ Cr 38
‘Z(x) /C1 Z0Z(0%dT = ¢ /C1 (2(1) — 2(x)Cdy, T
1 G c
< _ 248
S~ /Cl |2(x) - Z(v)[C2dy T
D3

Co
<7ql/ — 7]C2gs
(G —C1) g T
- 1%Dg | U x

C-Cr) Cl)

GE=C)° (148 -8)C-"]

+4i 1+43

Cy
- T)Czdﬁzhr + /x (Cy — x)Cdeth}

~ (G2 —Cy)
Hence, we have achieved our desired result. [J

Here, we present Korkine’s identity, which is beneficial in determining the Guss—
Chebysev inequality.
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Lemma 3. Assume that Z,G : | — R is a continuous mapping on J, then
@ (G Cr 35 ,Car3s
2 L (B0~ Z0)(G) ~6() 2, x iy
Cz Cz S Cz C2 S CZ Cz S
:(cz_cl)/c1 Z(x)G(x) @dg, x - /c1 Z(x)Cdg x /C1 G(x)Cd x ).
Proof. Utilizing the notion of the right quantum symmetric integral operator,
€ G G233 xC2gs
L (20 - 200G - () @y x gy
1 1
G 6 Cr3s ,C2gs
1;Cﬂﬂﬂﬂ—ZwayfﬂWQ@+Z@W@ﬂZ%ﬂz%ﬂ

(Cz _ Cl ZnZ A2n+1C1 + ( q%n-&-l)cz)g(éﬁn-&-lcl + (1 A2n+1)62)

2 HMS

"G + (1 - g

agk
e}
jary O

+(C2— )’ (1-47) 2 G 2@ G+ (1-4")C)

3
Il
o

+(C - 1) )Y @2 e+ (1- g G)

n=0

A2ng(A2n+1cl + (1 o q%n-&-l)cz)

[\18

3
i
o

+(C—C1)*(1-a)) Z A Z(qP e+ (1—-a7" ) C)G (a7 e+ (1— 47" ) C).

We obtain

L7720 - 20060 - 900 g 1o

crcl)/ x) G2 x 2(/:22( x) C2d x )(/:g(x)Cnglx).

Hence, the proof is achieved. [J

Here, we prove the Cauchy-Bunyakovsky-Schwarz integral inequality for double
integrals.

Theorem 14. Assume that Z,G : | — R is continuous mapping on J, then
C2
C C
A / xy»Z%yZﬁy
2 CZ S CZ S CZ 2 C2 S Cz B} %
s//nydd / 9T y)dg e gy

Proof. To prove our result, we consider the following double symmetric quantum integral,

€ Cr3s ,.Cr3s ?
[/c / G(x,y)) 2dg x 2dqu]

— [(1 _ ql C2 _ Cl Z 2 n+2mZ((q%n+lcl + (1 o q%nJrl)Cz)’

Z(@ma+a ﬁmﬂco
Xg(( 2n+1cl+(1_ 2n+l)C2) ( 2m+1c +( A2m+1)02))}2.

Now, employing the discrete Cauchy-Schwarz inequality, we have
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l(l o ql Cz o Cl Z Z q n+2mZ A2n+1cl + ( q%n-i-l)c ), Z((ﬁm-&-lcl + (1 . q%m+1)cz))
2
XG0+ (1 - gl )Ca), Z(g" 10+ (1 - "))

g[(l—ql (€= 1 3 @z (e + (- e,

n=0m=

2@+ q%’"+1>cz>)

x (1 _ql) (Ca —Cl Z Z A2n+2mg2< 2n+1c1 +(1 q%n+1)cz),

n=0m=

2
2@+ (1" )0y) )|
1
2 Cz S Cz S Cz 2 Cz S Cz S 2
://nydqlxd //gxyd da,y| -
Hence, the proof is obtained. U
Theorem 15. Assume that Z,G : | — R is two Lipschitzian continuous mappings on |, then

1 /Cz z(x)g(x)czds Y ;/Cz Z(x)CZdS X ;/Cz g(x)Cst X
C—C Gy G C—C Gy % C—C G G
LiLogi(C2 — G1)°

< s .
(1+47+47)(1+47)

Proof. Since both Z, G are Lipschitzian continuous mappings, then for any Ly, L, € R,
we have

[2(x) = Z2(y)| < Lilx — |
G(x) =G (W)| < La|x —yl.
Then
(2(x) = ZW)(2(x) = ZW)| < LiLa(x — y)° ©)
Now, applying the double right quantum symmetric integral operator on both sides of (9), then
@ G Cr 35 ,C2 38
L @0 - 20200~ 2()| g oy
C, G
s Lle /C1 /C1 (x B y)z Cngll xCZd%]y

Cy C
= L1L2/C /c ’ (x? = 2xy + y?) CzdaGCZdaly
1 1

G G 2
_ 2Cy g5 Cy 35
= L1L,2 |:/C1 X qulx - (‘/Cl qul ) ]

Moreover, by taking into account the definition of the right quantum symmetric integral
operator, we have

(10)
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- 2
= (@-0)1-a) Y @' (G-a" (e -0))
n=0
= (G-C)1-8) L & (G2 +a" (0 - 0)’ - @3 G(G - ) gy
n=0
¢? | G(C-0) 24,6(C—C
(cz_cl)u_qg)ll{ﬁql(lz A61) 2g i(_Z% 1)]
q 4 qi
20— oy B 2G(G - C)°
L+gi+ap 1+&
Additionally,
Cz Cz S
/(,’1 X dqlx
= (G- -4) L 4" (o~ 4" (€2 - Ca) 12)
n=0
N 2
q;(Cr — (1)
= Cy(Cy— ) — 2T
R

Introducing the values of (11) and (12) in (10) results the following inequality,

/cfz /sz (Z2(x) = Z)(2(x) - Z())] “dg x2dyy

2L Lt (G — Gy (13)
f— N N N 2 .
(1+at+q)1+4)
Now from Korkine equality and inequality (13), we have
Cy C2 G
‘(Cz —-C) /Cl Z(x)Q(x)Czdfihx — (/C1 Z(x) Czdf?hx) </C] g(x)czdzhx>
1 @ (G Cr3s ,C2gs
- §~/C1 ~/C1 (Z(X) B Z(y))(g(x) N g(y)) qulx 2dCAhy
(14)

1 & G c c
<3 [ 1E@ - 2060 - 6] “dix iy
2L1 L3 (Cr — C)*
_ 241 L.
(1447 +47)(1+47)

By dividing both sides of (14) by (C, — C1)?, we attain our desired result. [J

Example 6. We consider Z,G :[0,2] — R such that Z(x) = "2—2 and G(x) = 5 are two
continuous Lipschitzian mappings, then applying on Theorem 15 for §, € (0,1), we have

4]1+4} -39 3¢ i C(2+28}-2q)) (2444 +287 4
3| 1+ 1+ +4t (1+ah1+d) Ba+q)) \ 1+a+q 1+
84}

—_ N N N 2'
31+4f+41)(1+4a)

For §; = 0.6, we obtain
0.0801305 < 0.125437.
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References

For graphical visualization, we take §; € (0,1) as the variable. Figure 7 gives a
validation of Theorem 15.
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Figure 7. This figure validates the accuracy of Theorem 15.

4. Conclusions

In this study, we introduced the novel concepts of right analogues of symmetric
operators and examined some key properties. Additionally, we presented the quantum
symmetric analogues of several well-known inequalities, such as Hermite-Hadamard’s,
Young’s, Ostrowski’s, and Holder’s inequalities. Moreover, we have proposed the geomet-
rical and analytical proof of Hermite-Hadamard’s inequality. Furthermore, the correctness
of the results is verified through numerical examples and visuals. These operators will play
a significant role in the study of non-differentiable mappings. In the future, we will try to
develop new symmetric analogues of Hermite-Hadamard—-Mercer inequality, Simpson’s
inequality, and Newton’s inequality associated with various generalizations of convex
functions. In addition, based on these derivative operators, new integral operators can be
established. Furthermore, we will extend these results for set-valued mappings and will
also establish necessary and sufficient conditions for the differentiability of interval-valued
mapping. We hope that these results will play a significant contribution to the development
of inequalities and optimization theory.
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