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Abstract: This paper aims to incorporate the fractional derivative viscoelastic model into a finite
element analysis. Firstly, based on the constitutive equation of the fractional derivative three-
parameter solid model (FTS), the constitutive equation is discretized by using the Grünwald–Letnikov
definition of the fractional derivative, and the stress increment and strain increment relationship
and Jacobian matrix are obtained by using the difference method. Subsequently, we degrade the
model to establish stress increment and strain increment relationships and Jacobian matrices for the
fractional derivative Kelvin model (FK) and fractional derivative Maxwell model (FM). Finally, we
further degrade the fractional derivative viscoelastic model to derive stress increment and strain
increment relationships and Jacobian matrices for a three-component solid model and Kelvin and
Maxwell models. Based on these developments, a UMAT subroutine is implemented in ABAQUS
6.14 finite element software. Three different loading modes, including static load, dynamic load,
and mobile load, are analyzed and calculated. The calculations primarily involve a convergence
analysis, verification of numerical solutions, and comparative analysis of responses among different
viscoelastic models.

Keywords: viscoelasticity; fractional derivative; 3D constitutive models; numerical modeling

1. Introduction

The fractional derivative viscoelastic model has been extensively studied and proven
to require only a few parameters for the constitutive modeling of viscoelastic materials,
enabling an accurate description of material mechanical properties across a wide frequency
range. Compared with traditional viscoelastic models, this approach offers enhanced preci-
sion in characterizing the viscoelastic behavior of materials. Ronald L. Bagley et al. [1] have
highlighted the suitability of fractional derivatives in describing the dynamic frequency
response process of viscoelastic materials. The solution to fractional calculus is more in-
tricate than integral calculus, primarily influenced by two factors. Firstly, unlike integral
calculus, fractional calculus necessitates storing historical data throughout the entire calcu-
lation period. As time progresses, the accumulation of historical information leads to an
increase in computational workload. Secondly, as time passes, controlling discrete errors
becomes progressively challenging and results in a growing deviation between calculated
results and accurate values [2]. Due to the continuous advancement and refinement of
viscoelastic constitutive theory, numerical calculation methods, and computer hardware,
the finite element method has been widely applied in the mechanical analysis of viscoelastic
structures [3,4]. It is necessary to store the stress–strain history at each Gaussian point to
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implement a fractional derivative viscoelastic model [5]. One approach is to utilize a Com-
mon Block (CB) in Fortran programming, which allows for information exchange between
program units by storing each strain–stress component at every increment. However, after
conducting trial calculations, it was discovered that the CB storage capacity is limited to
2 GB. Alternatively, historical stress–strain data can be stored in a TXT file; however, this
method results in slower program execution speed. Compared with these two methods,
there is a preference for storing historical stress–strain data in CB due to its advantages.
The storage size mainly depends on the number of incremental steps and the number of
Gaussian points (which correlates with grid quantity).

Numerous scholars have extensively researched the numerical computation of frac-
tional derivative viscoelastic models. J. Padovan [6] investigated various finite element
implementation methods for differential operators, deriving implicit, explicit, and pre-
dictive correction transient algorithms for viscoelastic finite element simulation based on
numerical labels assigned to fractional order operators. R.C. Koeller [7] investigated frac-
tional derivative viscoelastic models for genetic integrals and derived creep and relaxation
functions for various fractional calculus models. Mikael Enelund et al. [8] employed the
fractional derivative viscoelastic model of genetic integration in a finite element analysis.
They expanded the constitutive model to encompass the three-dimensional stress states of
isotropic materials. Gioacchino Alotta et al. [5,9] introduced the numerical computation of
a series of isotropic three-dimensional fractional derivative viscoelastic constitutive models
using user-defined material subroutines in ABAQUS software. Li Zhuo et al. [10] presented
the finite element formulation for the viscoelastic fractional derivative and employed a
modal analysis to decouple the equation of motion. The time-domain and frequency-
domain responses of the decoupled single-degree-of-freedom system were computed using
the Laplace transform and its inverse counterpart. Using the fractional derivative Kelvin
model, Liu Linchao et al. [11] formulated the fractional derivative dynamic finite element
equation of a viscoelastic damper subjected to external forces. They obtained the numerical
solution through Newmark’s numerical integration method. It has been demonstrated
that Zhang and Shimizu’s fractional derivative numerical integration method satisfies
the requirements of accuracy, convergence, and stability. Yin Hua et al. [12] incorporated
the fractional derivative three-element model into the finite element model. Using this
constitutive relationship, they derived the finite element scheme for analyzing viscoelastic
structural dynamics. Additionally, a numerical algorithm based on fractional derivative
equations was employed to obtain the numerical solution of the finite element scheme,
with a focus on investigating the dynamic viscoelastic response of two-dimensional asphalt
pavement structures. Hiroshi Nasuno et al. [13] proposed a fractional derivative finite
deformation theory and nonlinear finite element method to assess the dynamic characteris-
tics of viscoelastic bodies employed for vibration reduction. They developed a nonlinear
finite element calculation program for evaluating the vibration characteristics of viscoelas-
tic products. Masataka Fukunaga et al. developed a fractional derivative constitutive
model [14], and commercial finite element (FE) software was employed to solve the dy-
namic problem associated with gel-like materials. Ana Cristina Galucio et al. [15] proposed
a finite element formula for a transient dynamic analysis of sandwich beams containing
embedded viscoelastic materials based on fractional derivative constitutive equations.
The sandwich configuration consists of a viscoelastic core (based on Timoshenko theory)
sandwiched between an elastic surface (based on the Euler–Bernoulli hypothesis). The
viscoelastic model used to describe core behavior is a four-parameter fractional derivative.
Silvio Sorrentino et al. [16] proposed a method to reduce computational complexity when
employing the fractional derivative Kelvin Voigt model for a finite element analysis of
vibrating linear systems, which can be extended to other linear models involving fractional
derivatives. The computation is optimized by transforming the high-dimensional principal
feature problem into two lower-dimensional standard-related feature problems. Fernando
Cortés et al. [17] proposed a finite element formulation designed explicitly for a transient
dynamic analysis of free-layer damping plates, wherein the viscoelastic behavior of the
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damping layer is modeled using a fractional derivative. The efficacy of this approach
was experimentally validated. Giuseppe Catania et al. [18] proposed a compression tech-
nique based on the computation of two reduced-size feature problems, utilizing either
the fractional Zener model or the fractional standard linear entity model as rheological
models, which are also applicable for designing linear models with varying fractional or-
ders. Marcin Kamiński et al. [19] employed the stochastic finite element method (SFEM) to
investigate the natural vibration characteristics of a thin Kirchhoff Love plate supported by
a time-fractional viscoelastic medium, where the mechanical behavior of the support was
described using the Riemann–Liouville fractional derivative. Alba Sofi [20] investigated
the time-domain response calculation of nonlinear beams incorporating fractional deriva-
tive elements subjected to moving loads. It proposed an innovative fractional integration
technique, the Improved Pseudo-force method (IPFM), for solving a specific class of nonlin-
ear fractional differential equations with time-varying generalized coordinates. Giovanni
Malara et al. [21] investigated the problem of efficiently computing the nonlinear response
of a rod with a fractional derivative constitutive model under random excitation. They
proposed an approximate analytical solution based on statistical linearization technology
and developed a boundary element-based method (BEM) to estimate the response statistics
of the rod numerically. Boonme Chinnaboon et al. [22] proposed an analytical model based
on the fractional derivative Kelvin Voigt model of orthotropic plates. They investigated
the influence of viscoelastic foundation parameters and the ratio of the elastic modulus
on the bending response of the foundation. Xu-bing Xu et al. [23] proposed the fractional
derivative Merchant (FDM) model for Shanghai Marine soil, developed a finite element
program in ABAQUS to implement the FDM model, and utilized the program to conduct
creep test simulations. By analyzing the triaxial creep and shear test results of deep artificial
frozen soil, Dongwei Li et al. [24] established a fractional derivative constitutive model
for deep frozen soil based on the Nishihara model. They developed the corresponding
constitutive finite element model. The user subroutine of ADINA commercial finite ele-
ment software was employed to simulate the artificial freezing curtain in a deep coal mine,
and the numerical simulation results exhibited excellent agreement with field-measured
data. The dynamic modulus and semi-circular bending test of an asphalt mixture were
numerically simulated using the fractional Zener model (FZM) and the improved fractional
Zener model (MFZM) in ABAQUS software by Qipeng Zhang et al. [25]. The experimental
results exhibited excellent agreement with the simulation results obtained from MFZM.
Yin Hua et al. [26] developed a two-dimensional finite element model of asphalt pave-
ment structure based on the fractional derivative viscoelastic model of an asphalt mixture.
They conducted a numerical analysis of the interaction between the vehicle and asphalt
pavement coupling system.

In this paper, we derive the stress–strain relationship of the fractional derivative Kelvin
model, fractional derivative Maxwell model, and fractional derivative three-element model
(i.e., four-parameter model). Additionally, we obtain the relationship between stress and
strain and the Jacobian matrix under a three-dimensional stress state. Subsequently, we
develop a UMAT subroutine using the finite element software ABAQUS. As a typical
viscoelastic material, the rubber-modified asphalt mixture has prominent time–temperature
characteristics in its dynamic modulus. Existing classical viscoelastic models cannot suf-
ficiently characterize the time–temperature characteristics of the material. Research has
found that the fractional derivative model can better describe the time–temperature char-
acteristics of the material with fewer parameters, making it easy to analyze and calculate.
This article takes a rubber-modified asphalt mixture as an example and conducts finite
element calculations. Firstly, a convergence analysis is conducted for static, dynamic, and
moving loads based on the fractional derivative three-element model. Next, we apply this
model to degenerate into an integer solution three-element model and verify its numerical
solution. Finally, different types of classical and fractional derivative viscoelastic models
are employed to analyze and calculate three separate finite element models: static, dynamic,
and moving.
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2. Finite Element Method
2.1. Fractional Derivative Viscoelastic Model

Existing literature shows that when calculating fractional derivatives, all scholars
decompose and calculate fractional stress, strain, and other variables using the Grunwald–
Letnikov definition:

Dαx(t) = lim
h→0

[
h−α

N+1

∑
j=1

λjx(t + h − jh)

]
(1)

of which λ1 = 1, λj+1 = (j − 1 − α)λj/j, h = t/N.
The FTS model, the FK model, and the FM model are depicted in Figure 1. These

models comprise springs and Abel’s clay pots.
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To realize the correspondence between the finite element solution and the theoretical
solution, the finite element constitutive equation is defined from the Jacobian matrix of the
theoretical solution. For the isotropic FTS, the constitutive relationship is as follows:

[1 + η/(E1 + E2)dα]σii = E2(E1 + ηdα)εii/(E1 + E2)/(1 + µ)
+3µE2(E1 + ηdα)εh/(E1 + E2)/(1 + µ)/(1 − 2µ)
[1 + η/(E1 + E2)dα]σij = E2(E1 + ηdα)εij/(E1 + E2)/(1 + µ)

(2)

of which εh = (ε11 + ε22 + ε33)/3, i, j = 1, 2, 3(i ̸= j), E1 and E2 are spring parameters, and
η and α are Abel’s parameters.

Starting from the Grünwald–Letnikov definition of the fractional derivative, the above
formula is expanded as follows:

σii(Nh) = Aεii(Nh) + Bεh(Nh) + C
N+1
∑

m=2
λmεii(Nh + h − mh)

+D
N+1
∑

m=2
λmεh(Nh + h − mh)− E

N+1
∑

m=2
λmσii(Nh + h − mh)

σij(Nh) = Aεij(Nh) + C
N+1
∑

m=2
λmεij(Nh + h − mh)− E

N+1
∑

m=2
λmσij(Nh + h − mh)

(3)

of which


A = E2(E1hα + η)/(1 + µ)/[(E1 + E2)hα + η]
B = 3µE2(E1hα + η)/(1 − 2µ)/(1 + µ)/[(E1 + E2)hα + η]
C = E2η/(1 + µ)/[(E1 + E2)hα + η]
D = 3µE2η/(1 − 2µ)/(1 + µ)/[(E1 + E2)hα + η]
E = η/[(E1 + E2)hα + η]

.
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When calculating statics or implicit dynamics, the shear strain is the engineering shear
strain, which can be written as

σii(Nh) = Aεii(Nh) + Bεh(Nh) + C
N+1
∑

m=2
λmεii(Nh + h − mh)

+D
N+1
∑

m=2
λmεh(Nh + h − mh)− E

N+1
∑

m=2
λmσii(Nh + h − mh)

σij(Nh) = Aγij(Nh)/2 + C
N+1
∑

m=2
λmγij(Nh + h − mh)/2 − E

N+1
∑

m=2
λmσij(Nh + h − mh)

(4)

According to Equation (4), the relationship between the stress increment and strain
increment can be obtained as follows:

∆σii = A∆εii + B∆εh + C
N+1
∑

m=2
λm{εii[(N + 1)h + h − mh]− εii(Nh + h − mh)}

+D
N+1
∑

m=2
λm{εh[(N + 1)h + h − mh]− εh(Nh + h − mh)} − E

N+1
∑

m=2
λm{σii[(N + 1)h + h − mh]− σii(Nh + h − mh)}

∆σij = A∆γij/2 + C
N+1
∑

m=2
λm

{
γij[(N + 1)h + h − mh]− γij(Nh + h − mh)

}
/2

−E
N+1
∑

m=2
λm

{
σij[(N + 1)h + h − mh]− σij(Nh + h − mh)

}
(5)

According to formula (5), its Jacobian matrix can be obtained as follows:
c11 = c22 = c33 = (1 − µ)E2(E1hα + η)/(1 + µ)/(1 − 2µ)/[(E1 + E2)hα + η]
c12 = c13 = c23 = µE2(E1hα + η)/(1 + µ)/(1 − 2µ)/[(E1 + E2)hα + η]
c44 = c55 = c66 = E2(E1hα + η)/2/(1 + µ)/[(E1 + E2)hα + η]

(6)

FK and FM can be obtained by degenerating FTS.
When E2 → ∞ , the FTS degenerates into FK; the relation between the stress increment,

strain increment, and the Jacobian matrix is shown as follows:

∆σii = A∆εii + B∆εh + C
N+1
∑

m=2
λm{εii[(N + 1)h + h − mh]− εii(Nh + h − mh)}

+D
N+1
∑

m=2
λm{εh[(N + 1)h + h − mh]− εh(Nh + h − mh)}

∆σij = A∆γij/2 + C
N+1
∑

m=2
λj
{

γij[(N + 1)h + h − mh]− γij(Nh + h − mh)
}

/2

(7)

of which
{

A = (E1hα + η)/(1 + µ)/hα, B = 3µ(E1hα + η)/(1 − 2µ)/(1 + µ)/hα

C = η/(1 + µ)/hα, D = 3µη/(1 − 2µ)/(1 + µ)/hα .


c11 = c22 = c33 = (1 − µ)(E1hα + η)/(1 + µ)/(1 − 2µ)/hα

c12 = c13 = c23 = µ(E1hα + η)/(1 + µ)/(1 − 2µ)/hα

c44 = c55 = c66 = (E1hα + η)/2/(1 + µ)/hα
(8)

When E1 = 0, the FTS degenerates into the FM; the relationship between the stress
increment and strain increment and the Jacobian matrix is shown as follows:

∆σii = A∆εii + B∆εh + A
N+1
∑

m=2
λm{εii[(N + 1)h + h − mh]− εii(Nh + h − mh)}

+B
N+1
∑

m=2
λm{εh[(N + 1)h + h − mh]− εh(Nh + h − mh)} − C

N+1
∑

m=2
λm{σii[(N + 1)h + h − mh]− σii(Nh + h − mh)}

∆σij = A∆γij/2 + A
N+1
∑

m=2
λm

{
γij[(N + 1)h + h − mh]− γij(Nh + h − mh)

}
/2

−C
N+1
∑

m=2
λm

{
σij[(N + 1)h + h − mh]− σij(Nh + h − mh)

}
(9)

of which
{

A = E2η/(1 + µ)/(E2hα + η), B = 3µE2η/(1 − 2µ)/(1 + µ)/(E2hα + η)
C = η/(E2hα + η)

.
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Its Jacobian matrix is
c11 = c22 = c33 = (1 − µ)E2η/(1 + µ)/(1 − 2µ)/(E2hα + η)
c12 = c13 = c23 = µE2η/(1 + µ)/(1 − 2µ)/(E2hα + η)
c44 = c55 = c66 = E2η/2/(1 + µ)/(E2hα + η)

(10)

2.2. Classical Viscoelastic Model

The three-parameter solid model and the Kelvin and Maxwell models are depicted in
Figure 2. These models comprise springs and Newtonian clay pots. In the case of the Abel
clay pot, it degenerates to a Newtonian clay pot when α = 1.
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Figure 2. Several classical viscoelastic models: (a) three-parameter model; (b) Kelvin model;
(c) Maxwell model.

For FTS, when the fractional order α = 1, the model degenerates into the three-
parameter solid model, whose constitutive relation is as follows:

[1 + η/(E1 + E2)d]σii = E2(E1 + ηd)εii/(E1 + E2)/(1 + µ)
+3µE2(E1 + ηd)εh/(E1 + E2)/(1 + µ)/(1 − 2µ)
[1 + η/(E1 + E2)d]σij = E2(E1 + ηd)γij/(E1 + E2)/(1 + µ)/2

(11)

According to Equation (11), the relationship between the stress increment and strain
increment can be obtained as follows:{

∆σii = A∆εii + B∆εh + Cεii + Dεh − Eσii
∆σij = A∆γij/2 + Cγij/2 − Eσij

(12)

of which


A = E2(E1∆t+2η)/(1 + µ)/[(E1 + E2)∆t + 2η]
B = 3µE2(E1∆t+2η)/(1 + µ)/(1 − 2µ)/[(E1 + E2)∆t + 2η]
C = 2E1E2∆t/(1 + µ)/[(E1 + E2)∆t + 2η]
D = 6∆tµE1E2/(1 + µ)/(1 − 2µ)/[(E1 + E2)∆t + 2η]
E = 2(E1 + E2)∆t/[(E1 + E2)∆t + 2η]

.

Its Jacobian matrix is
c11 = (1 − µ)E2(E1∆t+2η)/(1 + µ)/(1 − 2µ)/[(E1 + E2)∆t + 2η]
c12 = E2(E1∆t+2η)/(1 + µ)/(1 − 2µ)/[(E1 + E2)∆t + 2η]
c44 = E2(E1∆t+2η)/2/(1 + µ)/[(E1 + E2)∆t + 2η]

(13)
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When E2 → ∞ , the three-parameter solid model degenerates into the Kelvin model;
the relationship between the stress increment and strain increment and the Jacobian matrix
is shown as follows: {

∆σii = A∆εii + B∆εh + Cεii + Dεh − Eσii
∆σij = A∆γij/2 + Cγij/2 − Eσij

(14)

of which
{

A = (E1∆t+2η)/(1 + µ)/∆t, B = 3µ(E1∆t+2η)/(1 + µ)/(1 − 2µ)/∆t
C = 2E1/(1 + µ), D = 6µE1/(1 + µ)/(1 − 2µ),E = 2

.

Its Jacobian matrix is
c11 = (1 − µ)(E1∆t+2η)/(1 + µ)/(1 − 2µ)/∆t
c12 = µ(E1∆t+2η)/(1 + µ)/(1 − 2µ)/∆t
c44 = (E1∆t+2η)/2/(1 + µ)/∆t

(15)

When E1 = 0, the three-parameter solid model degenerates into the Maxwell model;
the relationship between the stress increment and strain increment and the Jacobian matrix
is shown as follows: {

∆σii = A∆εii + B∆εh − Cσii
∆σij = A∆γij/2 − Cσij

(16)

of which
{

A = 2E2η/(1 + µ)/(E2∆t + 2η), B = 6µE2η/(1 + µ)/(1 − 2µ)/(E2∆t + 2η)
C = 2E2∆t/(E2∆t + 2η)

.

Its Jacobian matrix is
c11 = 2(1 − µ)E2η/(1 − 2µ)/(E2∆t + 2η)
c12 = 2µE2η/(1 + µ)/(1 − 2µ)/(E2∆t + 2η)
c44 = E2η/(1 + µ)/(E2∆t + 2η)

(17)

2.3. Linear Elasticity Model

For FTS, when the fractional order α = 0, the model degenerates into a linear elasticity
model, whose constitutive relation is

[1 + η/(E1 + E2)]σii = E2(E1 + η)εii/(E1 + E2)/(1 + µ)
+3µE2(E1 + η)εh/(E1 + E2)/(1 + µ)/(1 − 2µ)
[1 + η/(E1 + E2)]σij = E2(E1 + η)εij/(E1 + E2)/(1 + µ)

(18)

The elastic modulus is E2(E1 + η)/(E1 + E2 + η), and the Poisson’s ratio is µ.
Similarly, the FK and FM are degraded, and the degradation results are shown in

Table 1.

Table 1. The parameters after the fractional derivative viscoelastic model are degenerated into a
linear elasticity model (α = 0).

Parameter Types FK FM FTS

Elastic modulus E1 + η E2η/(E2 + η) E2(E1 + η)/(E1 + E2 + η)
Poisson’s ratio µ

The UMAT subroutine of ABAQUS can program the constitutive model of fractional
derivative viscoelastic and classical viscoelastic models.

3. Finite Element Calculation under Static Load

This paper uses the general finite element software ABAQUS for simulation calculation,
and ABAQUS external user subroutine UMAT realizes the constitutive relationship.

The first step is to determine the size of each component, and the component uses a
cylindrical specimen with a diameter of 50 mm × 150 mm. The second step is to determine
the structural parameters of the model. The third step is to assemble the components. The
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fourth step is to set the analysis step, and the viscosity analysis step is adopted in Model
1. The fifth step is load application. A 0.1 MPa uniform load is applied on the cylindrical
specimen’s top surface, the cylinder’s bottom is a fixed constraint, and the side is accessible.
The sixth step is grid division. The cylinder specimen and the global size of the grid are
20 mm. The finite element calculation model is shown in Figure 3.
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(c) calculation result.

3.1. Convergence Analysis

FTS was used to analyze the convergence of the numerical solution. E1 was assumed
to be 1560 MPa, µ was assumed to be 0.3, E2 = n1E1, η = n2E1. The influence of time step
values on the convergence of the numerical solution under different values of n1 and n2,
the fractional order, and calculation time was studied.

Assuming n1 = 1 and n2 = 1, the vertical displacement of the center of the upper
surface of the specimen (uz) in different schedules is calculated. The calculation results are
shown in Figure A1. The longitudinal coordinates are of uniform length, the total length is
0.4 × 10−2 mm, and the scale is 0.05 × 10−2 mm. As can be seen from Figure A1, when
t = 1 s and α = 0.9, it is the most unfavorable state of convergence, and h = t/32 can meet
the convergence of two decimal places. Assume n1 = 1 and t = 1 s, and calculate uz different
n2 values. The calculation results are shown in Figure A2. The longitudinal coordinates
are of uniform length, the total length is 0.12 × 10−2 mm, and the scale is 0.02 × 10−2

mm. Figure A2 shows that when n2 = 1 and α = 0.9, it is the most unfavorable state for
convergence, and h = t/32 can satisfy convergence to two decimal places. Assuming that
n2 = 1 and t = 1 s, uz is calculated under different values of n1. The calculation results are
shown in Figure A3. The vertical coordinates are of uniform length, the total length is
0.15 × 10−2 mm, and the scale is 0.05 × 10−2 mm. From Figure A3, it can be seen that
the value of n1 has almost no effect on convergence. According to the above convergence
analysis and calculation results, when t = 1 s and n2 = 1, it is the most unfavorable con-
vergence state, and the larger the α value, the more damaging the convergence. When
α = 0.9 and h = t/32, it can meet the intersection after two decimal places. Therefore, when
h ≤ t/32 is used for calculating under static load, the results converge when α ≤ 0.9 and
other parameters are arbitrary.

3.2. Numerical Solution Verification

When the fractional derivative UMAT subroutine (FUMAT) α = 1, the calculated results
are mutually verified with the integer order UMAT subroutine (IUMAT). Taking uz as an
example, the results are shown in Figure 4.
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From Figure 4, it can be seen that for the subroutines at the center position of the
surface of the cylinder calculated with FUMAT and IUMAT at six different time points, as
the number of incremental steps increases, the results calculated with the two tend to be
consistent.

From the definition of the fractional derivative, α cannot be equal to 0. When α tends
to 0, taking uz as an example, the calculation results of the fractional derivative viscoelastic
and elastic models are shown in Figure 5, and the time step h = 0.01 t is taken. When α = 0,
the fractional derivative viscoelastic model degenerates into a linear elasticity model with
an elastic modulus of 1040 MPa and Poisson’s ratio of 0.3. In this case, uz = 0.0141523 mm.
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Figure 5 shows that when α approaches 0, the vertical displacement time history curve
tends toward a straight line, uz = 0.0141523 mm.

When α = 1 and tends to 0, the uz of FTS is consistent with the uz of the three-parameter
solid model and linear elasticity model, which proves that the computed results of fractional
derivative viscoelasticity in this paper are correct.

3.3. Finite Element Analysis under Several Fractional Derivative and Classical Viscoelastic Models

The dynamic modulus tests of three types of graded rubber-modified asphalt mixtures
were conducted using MTS equipment, yielding the dynamic modulus values at various
temperatures (15 ◦C, 30 ◦C, 45 ◦C, 60 ◦C) and loading frequencies (0.1 Hz, 0.5 Hz, 1 Hz,
5 Hz, 10 Hz, 25 Hz). A sigmoid function was employed to establish the primary curve for
the dynamic modulus. The dynamic modulus principal curves of rubber-modified asphalt
mixtures with three different gradations were fitted using various viscoelastic and fractional
derivative viscoelastic models under varying temperatures, and the corresponding fitting
results are presented in Tables 2 and 3.

Table 2. Classical viscoelastic models’ parameters of rubber-modified asphalt mixtures.

Asphalt
Mixture

Temperature
(◦C)

Fitting Parameters

Kelvin Model Kelvin Model Three-Parameter Solid Model

E η R2 E η R2 E1 E2 η R2

ARHM-13

15 4929.89 2.69 0.4646 12,602.79 957.70 0.8462 3115.43 14,552.65 43.08 0.9262
30 1683.62 1.04 0.5375 4604.64 299.60 0.8195 1031.70 5526.33 13.03 0.9408
45 589.37 0.32 0.5532 1461.25 108.33 0.7521 433.68 1755.65 4.24 0.9391
60 341.00 0.16 0.5339 736.44 67.92 0.6305 305.63 867.06 2.45 0.9332

ARHM-20

15 6659.82 3.21 0.4270 15,638.63 1395.49 0.8229 4740.86 17,698.89 61.16 0.9119
30 2345.27 1.31 0.5056 5999.82 440.16 0.8142 1553.55 7061.87 18.81 0.9335
45 1169.86 0.64 0.5284 2906.24 218.61 0.7767 835.69 3451.10 8.86 0.9358
60 522.61 0.24 0.5192 1123.76 105.48 0.6409 466.50 1314.37 3.86 0.9306

ARHM-25

15 8771.20 4.18 0.4126 20,531.81 1861.68 0.8319 6191.55 23,092.45 83.16 0.9087
30 2933.94 1.70 0.5124 7734.54 537.87 0.8239 1856.92 9148.62 23.51 0.9369
45 1634.33 0.95 0.5394 4249.58 295.72 0.7941 1095.27 5088.36 12.33 0.9398
60 693.00 0.33 0.5386 1557.14 134.24 0.6765 586.32 1843.44 4.97 0.9355

Table 3. Fractional derivative viscoelastic models’ parameters of rubber-modified asphalt mixtures.

Asphalt
Mixture

Temperature
(◦C)

Fitting Parameters

FK FM FTS

E η α R2 E η α R2 E1 E2 η α R2

ARHM-13

15 0.00 3725.60 0.1648 0.9979 4.83 × 104 3893.66 0.2001 1.0000 123.53 4.37 × 104 3782.63 0.2081 1.0000
30 78.77 1113.10 0.1898 0.9999 1.09 × 1026 1189.09 0.1834 0.9997 165.58 3.96 × 104 1042.49 0.2133 1.0000
45 132.81 304.55 0.2000 1.0000 5.06 × 1034 438.42 0.1641 0.9950 133.84 4.15 × 1022 303.35 0.2004 0.9997
60 116.76 153.58 0.1902 0.9999 2.57 × 1020 279.65 0.1328 0.9877 115.29 3.11 × 1029 155.46 0.1886 0.9999

ARHM-20

15 0.00 5262.83 0.1475 0.9972 5.12 × 104 5754.83 0.1853 1.0000 109.51 4.85 × 104 5665.14 0.1901 1.0000
30 53.81 1686.00 0.1708 0.9999 2.76 × 106 1741.71 0.1680 0.9998 219.34 4.06 × 104 1566.38 0.1994 1.0000
45 171.29 702.53 0.1845 1.0000 1.40 × 1020 876.18 0.1631 0.9982 184.66 9.78 × 104 694.44 0.1898 1.0000
60 161.27 255.52 0.1809 1.0000 1.04 × 1019 429.57 0.1317 0.9908 154.04 5.09 × 1020 263.83 0.1776 0.9999

ARHM-25

15 0.00 6911.07 0.1473 0.9954 5.51 × 104 7768.56 0.1952 1.0000 77.09 5.39 × 104 7703.05 0.1978 1.0000
30 30.18 2105.14 0.1757 0.9998 2.25 × 105 2147.92 0.1783 0.9998 281.09 4.36 × 104 1909.56 0.2117 1.0000
45 204.71 983.34 0.1917 1.0000 3.76 × 1044 1189.39 0.1730 0.9986 248.75 6.20 × 105 952.45 0.2047 1.0000
60 214.14 325.49 0.1930 1.0000 1.51 × 1016 553.09 0.1417 0.9901 215.54 1.05 × 1034 323.85 0.1935 0.9999

3.3.1. Several Classical Viscoelastic Models

Taking ARHM-13 as an example, the mechanical response of several classical vis-
coelastic models is calculated, and the incremental step h is t/50. The uz is shown in
Figure 6.
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Figure 6. uz of several classical viscoelastic models under static load and different temperatures
under static load: (a) T = 15 ◦C; (b) T = 30 ◦C; (c) T = 45 ◦C; (d) T = 60 ◦C.

Figure 6 shows that for the Maxwell model, uz tends to infinity as time increases,
resulting in distortion. For the classic Kelvin model, when the calculation time is minimal,
uz is much smaller than the calculation results of the other two models. Through the
comparison of calculation results, it was found that a three-parameter solid model can
better describe uz.

3.3.2. Several Fractional Derivative Viscoelastic Models

Taking ARHM-13 as an example, the mechanical response of several fractional deriva-
tive viscoelastic models is calculated, and the incremental step h is t/50. The uz of several
fractional derivative viscoelastic models under different temperatures is shown in Figure 7.

Figure 7 shows that uz tends to infinity for the FM as time increases, resulting in
distortion. For the FK, when the calculation time is minimal, uz tends to be 0. Through the
comparison of calculation results, it was found that FTS can better describe uz.

3.3.3. FTS and Three-Parameter Solid Model

Taking ARHM-13 as an example, the mechanical response of the three-parameter
solid model and FTS is calculated, and the incremental step h is t/50. The uz of the
three-parameter solid model and FTS under different temperatures is shown in Figure 8.
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Figure 7. uz of several fractional derivative viscoelastic models under static load and different
temperatures: (a) T = 15 ◦C; (b) T = 30 ◦C; (c) T = 45 ◦C; (d) T = 60 ◦C.

Figure 8 shows that the vertical displacement curve of the surface center of FTS over
time is smoother compared to the three-parameter solid model, which can better describe
the displacement characteristics over time and is c
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Figure 8. uz of the three-parameter solid model and FTS under static load and different temperatures:
(a) T = 15 ◦C; (b) T = 30 ◦C; (c) T = 45 ◦C; (d) T = 60 ◦C.

loser to the actual situation.

3.3.4. FTS under Different Temperatures

The uz of FTS under different temperatures changes with time, as shown in Figure 9.
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Figure 9. uz of FTS under static load and different temperatures.

The uz increases with temperature in the time interval of 10−10~108 s, as depicted in
Figure 9. This observation aligns with the general characteristics of viscoelastic materials,
where material stiffness decreases with increasing temperature. However, for t ≤ 10−11 s
or t ≥ 109 s, a further increase in temperature no longer leads to an increase in uz. These
findings indicate that while FTS provides a better description of viscoelastic properties in
rubber-modified asphalt mixtures, subtle differences between this model and the actual
constitutive behavior still exist, rendering its application limited across all time domains.
Inaccurate results are obtained when calculating extremely small or large timescales.

3.3.5. FTS under Different Gradations

The uz of FTS under different gradations is shown in Figure 10.
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Figure 10. uz of FTS under static load and different gradations: (a) T = 15 ◦C; (b) T = 30 ◦C;
(c) T = 45 ◦C; (d) T = 60 ◦C.

The results depicted in Figure 10 demonstrate that within 10−15 s~1015 s, when the
temperature reaches or exceeds 30 ◦C, uz follows a trend of ARHM-25 > ARHM-20 >
ARHM-13 as time progresses. Considering the specific applicability range of FTS in the
time domain, during the time interval of 10−10~108 s and under all four temperatures, an
increasing temporal trend is observed for uz with ARHM-25 > ARHM-20 > ARHM-13.

4. Finite Element Calculation under Dynamic Load

The model described in Section 4.2 is employed, except that a half-sine wave load is
utilized instead. Furthermore, the operating area remains consistent with the static load
condition. The mathematical expression for the load is presented as follows:

F = p sin(2π f t) (19)

In the formula, p is the load amplitude, 0.1 MPa is taken in this article, and f is the
load frequency, 0 ≤ t ≤ 1/(2π f ).

4.1. Convergence Analysis

FTS is used to analyze the convergence of the numerical solution. According to the
convergence analysis conclusion in Section 2, the convergence is the most unfavorable
when n1 = 1. Given that E1 = E2 = 1560 MPa, η = 1560 MPa/s, and µ is 0.3, the influence of
the time step on the convergence of numerical solutions under different load frequencies,
fractional order, and calculation time is studied.

Calculate uz at t = T/4 under different frequency conditions. The calculation results
are shown in Figure A4, with a uniform length on the vertical axis and a total length of
0.4 × 10−2 mm, with a scale of 0.05 × 10−2 mm. From Figure A4, it can be seen that
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α = 0.9, which is the most unfavorable state for convergence. When t = T/4 and α = 0.9, uz
under different frequency conditions is shown in Figure A5. As can be seen from Figure A5,
when h = t/32, convergence after two decimal places can be satisfied. Calculate uz at
t = T/2 under different frequency conditions. The calculation results are shown in Figure A6,
with a uniform length on the vertical axis and a total length of 0.45 × 10−2 mm, with a
scale of 0.05 × 10−2 mm. From Figure A6, it can be seen that when α = 0.9, it is the most
unfavorable state for convergence. When t = T/2 and α = 0.9, uz under different frequency
conditions is shown in Figure A7. From Figure A7, it can be seen that when h = t/128,
convergence to two decimal places can be achieved.

4.2. Numerical Solution Verification

For FUMAT, when α = 1, the calculation results are mutually verified with IUMAT.
Taking uz at t = T/4 as an example, the results are shown in Figure 11.
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Figure 11. uz of FUMAT and IUMAT at time t = T/4: (a) f = 1/32 Hz; (b) f = 1/16 Hz; (c) f = 1/8 Hz;
(d) f = 1/4 Hz; (e) f = 1/2 Hz; (f) f = 1 Hz; (g) f = 2 Hz; (h) f = 4 Hz.
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The results from Figure 11 demonstrate that uz, calculated using both FUMAT and
IUMAT, tends to exhibit consistency with increasing incremental steps under eight different
frequency conditions at t = T/4.

For FUMAT, the calculation results were mutually verified with IUMAT. Taking uz at
that time, t = T/4, as an example, the results are shown in Figure 12.
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Figure 12. uz of FUMAT and IUMAT at time t = T/2: (a) f = 1/32 Hz; (b) f = 1/16 Hz; (c) f = 1/8 Hz;
(d) f = 1/4 Hz; (e) f = 1/2 Hz; (f) f = 1 Hz; (g) f = 2 Hz; (h) f = 4 Hz.

The results from Figure 12 demonstrate that uz, calculated using both FUMAT and
IUMAT, tends to exhibit consistency with increasing incremental steps under eight different
frequency conditions at t = T/2.

From the definition of the fractional derivative, α cannot be equal to 0. When α tends
to 0, taking uz as an example, the calculation results of the fractional derivative viscoelastic
and elastic models are shown in Tables 4 and 5, with the time step h = 0.01 t. When α = 0,
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the fractional derivative viscoelastic constitutive model degenerates into a linear elasticity
model with an elastic modulus of 1040 MPa and Poisson’s ratio of 0.3.

Table 4. uz of FUMAT and linear elasticity model at time t = T/4 (10−2 mm).

Frequency
(Hz)

α

0 0.00001 0.0001 0.001 0.01 0.1

1/32 1.41523 1.41524 1.41528 1.41573 1.42019 1.46471
1/16 1.41523 1.41524 1.41527 1.41557 1.41855 1.44843
1/8 1.41523 1.41524 1.41525 1.41540 1.41692 1.43207
1/4 1.41523 1.41523 1.41523 1.41524 1.41528 1.41568
1/2 1.41523 1.41523 1.41522 1.41508 1.41365 1.39928

1 1.41523 1.41523 1.41520 1.41491 1.41201 1.38292
2 1.41524 1.41523 1.41519 1.41475 1.41038 1.36664
4 1.41526 1.41525 1.41519 1.41461 1.40876 1.35049

Table 5. uz of FUMAT and linear elastic model at time t = T/2 (10−2 mm).

Frequency
(Hz)

α

0 1 × 10−10 1 × 10−9 1 × 10−8 1 × 10−7 1 × 10−6 1 × 10−5 1 × 10−4

1/32 2.1431 × 10−7 2.1435 × 10−7 2.1474 × 10−7 2.1864 × 10−7 2.5762 × 10−7 6.4742 × 10−7 4.5454 × 10−6 4.3525 × 10−5

1/16 2.1593 × 10−7 2.1597 × 10−7 2.1636 × 10−7 2.2026 × 10−7 2.5924 × 10−7 6.4904 × 10−7 4.5470 × 10−6 4.3537 × 10−5

1/8 2.2019 × 10−7 2.2023 × 10−7 2.2062 × 10−7 2.2452 × 10−7 2.6350 × 10−7 6.5329 × 10−7 4.5513 × 10−6 4.3531 × 10−5

1/4 2.1555 × 10−7 2.1560 × 10−7 2.1599 × 10−7 2.1988 × 10−7 2.5886 × 10−7 6.4866 × 10−7 4.5467 × 10−6 4.3527 × 10−5

1/2 2.0931 × 10−7 2.0935 × 10−7 2.0974 × 10−7 2.1364 × 10−7 2.5262 × 10−7 6.4242 × 10−7 4.5404 × 10−6 4.3520 × 10−5

1 1.8919 × 10−7 1.8924 × 10−7 1.8963 × 10−7 1.9353 × 10−7 2.3250 × 10−7 6.2230 × 10−7 4.5203 × 10−6 4.3500 × 10−5

2 9.7809 × 10−7 9.7852 × 10−7 9.8242 × 10−8 1.0214 × 10−7 1.4112 × 10−7 5.3092 × 10−7 4.4289 × 10−6 4.3409 × 10−5

4 −1.7937 × 10−8 −1.7893 × 10−8 −1.7504 × 10−8 −1.3605 × 10−8 2.5377 × 10−8 4.1520 × 10−7 4.3134 × 10−6 4.3296 × 10−5

Tables 4 and 5 show that the closer α approaches 0, the more uz tends toward linear
elasticity model calculation results.

When α = 1 and tends to 0, the calculated results are consistent with those of the
linear elasticity model and three-parameter solid model, which proves that the results of
fractional derivative viscoelastic constitutive calculation in this paper are correct.

4.3. Finite Element Analysis under Several Fractional Derivative and Classical Viscoelastic Models
4.3.1. Several Classical Viscoelastic Models

Taking ARHM-13 as an example, the mechanical response of several classical viscoelas-
tic models is calculated, f = 10 Hz, and the incremental step h is t/128. The uz of several
classical viscoelastic models under different temperatures is shown in Figure 13.

Figure 13 shows that the peak value of uz is as follows: three-parameter solid model >
Kelvin model > Maxwell model. The occurrence time of the peak value of uz is as follows:
three-parameter solid model > Maxwell model > Kelvin model. At the end of load loading,
uz is as follows: three-parameter solid model > Maxwell model > Kelvin model.

4.3.2. Several Fractional Derivative Viscoelastic Models

Taking ARHM-13 as an example, the mechanical response of several fractional deriva-
tive viscoelastic models is calculated, and the incremental step h is t/128. The uz of several
fractional derivative viscoelastic models under different temperatures is shown in Figure 14.

Figure 14 shows that when T = 15 ◦C, the displacement time curves of the FM and
FTS tend to be consistent. The time displacement curve of the FK is higher than that of the
FM and FTS. When T ≥ 30 ◦C, the time displacement curves of the FK and FTS tend to be
consistent, and their displacement time curves are higher than those of the fractional order
Maxwell model. The higher the temperature is, the more significant the difference is.
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Figure 14. uz of several fractional derivative viscoelastic models under dynamic load and different
temperatures: (a) T = 15 ◦C; (b) T = 30 ◦C; (c) T = 45 ◦C; (d) T = 60 ◦C.
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4.3.3. FTS and Three-Parameter Solid Model

Taking ARHM-13 as an example, the mechanical response of the three-parameter solid
model and FTS is calculated, and the incremental step h is t/128. uz of the three-parameter
solid model and FTS under different temperatures is shown in Figure 15.
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Figure 15. uz of the three-parameter solid model and FTS under dynamic load and different tempera-
tures: (a) T = 15 ◦C; (b) T = 30 ◦C; (c) T = 45 ◦C; (d) T = 60 ◦C.

From Figure 15, it can be seen that the peak value of uz is as follows: the three-
parameter solid model > FTS. When the peak value of uz occurs at T = 15 ◦C,
FTS > three-parameter solid model; when T ≥ 30 ◦C, the three-parameter solid model
> FTS. At the end of load loading, uz, when T = 15 ◦C, is as follows: FTS > three-parameter
solid model. When T ≥ 30 ◦C, the three-parameter solid model > FTS.

4.3.4. FTS under Different Temperatures

uz of FTS under different temperatures changes with time, as shown in Figure 16.
As shown in Figure 16, the higher the temperature, the larger the peak value of uz,

and the later the peak value of uz. At the end of loading, the higher the temperature is, the
greater uz is.

4.3.5. FTS under Different Gradations

uz of the FTS under different gradations is shown in Figure 17.
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Figure 17. uz of FTS under dynamic load and different gradations: (a) T = 15 ◦C; (b) T = 30 ◦C;
(c) T = 45 ◦C; (d) T = 60 ◦C.

As can be seen from Figure 17, the peak value of uz, the time when the peak value of
uz occurs, and uz at the end of loading are as follows: ARHM-13 > ARHM-20 > ARHM-25.

5. Finite Element Calculation under Moving Load

The first step is to determine the size of each component. The component is a beam
specimen with a length of 1000 mm, a width of 100 mm, and a height of 100 mm. The
second step is to determine the structural parameters of the model. The third step is to
assemble the components. The fourth step is to set the analysis step, and the model adopts
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the viscosity analysis step. The fifth step is load application. The moving load of a 100 mm
× 100 mm square with the size of 0.1 MPa is applied to the beam specimen’s top surface.
The velocity remains constant. The beam specimen and the two ends of the beam specimen
are fixed constraints. The sixth step is grid division. The global grid size used for the
cylinder specimen is 50 mm. The finite element calculation model is shown in Figure 18.
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Figure 18. Finite element calculation model of a beam: (a) loads and constraints; (b) meshing;
(c) calculation result.

5.1. Convergence Analysis

The convergence analysis of numerical solutions was conducted using FTS. From the
convergence analysis conclusion in Section 2, it can be seen that the convergence is most
unfavorable when n1 = 1. Assume that E1 = E2 = 1560 MPa, η = 1560 MPa/s, µ = 0.3. Taking
the example of moving a load to a distance of 1/4 of the beam span from the edge, this
study investigates the convergence of vertical displacement at the center of the bottom
surface (ω). Under different working conditions, ω is shown in Figure A8. Figure A8
shows that when v = 250 mm/s and t = 1 s, it is the most unfavorable state for convergence;
h = t/256 can satisfy convergence to two decimal places. Like under static load, when
t = 1 s, it is the most unfavorable state for convergence.

5.2. Numerical Solution Verification

For FUMAT, when α = 1, the calculation results are mutually verified with IUMAT.
Taking ω as an example, ω under different working conditions of FUMAT and IUMAT
subroutines is shown in Figure 19.
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Figure 19. ω of FUMAT and IUMAT under different operating conditions: (a) v = 25,000 mm/s,
t = 0.01 s; (b) v = 2500 mm/s, t = 0.1 s; (c) v = 250 mm/s, t = 1 s; (d) v = 25 mm/s, t = 10 s.

Figure 19 shows that for ω of FUMAT and IUMAT under four different operating
conditions, the results calculated with the two subroutines tend to be consistent with the
increase in incremental steps.

From the definition of the fractional derivative, α cannot be equal to 0. When α tends
to 0, taking ω as an example, the calculation results of the fractional derivative viscoelastic
and elastic models are shown in Table 6, and the time step h = t/256 is taken. When α = 0,
the fractional derivative viscoelastic constitutive model degenerates into a linear elasticity
model with an elastic modulus of 1040 MPa and Poisson’s ratio of 0.3.

Table 6. ω of FTS and linear elasticity model under different working conditions (mm).

Working Conditions
α

0 0.00001 0.0001 0.001 0.01 0.1

v = 25,000 mm/s, t = 0.01 s 0.317347 0.317346 0.317333 0.3172 0.315874 0.302417
v = 2500 mm/s, t = 0.1 s 0.317347 0.317347 0.317345 0.317322 0.317092 0.31466

v = 250 mm/s, t = 1 s 0.317347 0.317348 0.317357 0.317444 0.31831 0.326984
v = 25 mm/s, t = 10 s 0.317347 0.31735 0.317369 0.31757 0.31953 0.33905

As can be seen from Table 6, when α tends to 0, ω tends to be the calculation result of
the linear elasticity model.

When α is equal to 1 and tends to 0, the calculated results are consistent with those
of the linear elasticity model and three-parameter solid model, which proves that the
calculated results of fractional derivative viscoelasticity in this paper are correct.

5.3. Finite Element Analysis under Several Fractional Derivative and Classical Viscoelastic Models
5.3.1. Several Classical Viscoelastic Models

Taking ARHM-13 as an example, the mechanical response of several classical viscoelas-
tic models is calculated, and the incremental step h is t/256. v = 25 mm/s and t = 10 s. ω of
several classical viscoelastic models under different temperatures is shown in Figure 20.

Figure 20 shows that as the loading time increases, for the Maxwell model, ω increases
linearly with time, resulting in distorted results. The Kelvin model and the three-parameter
solid model show that ω slowly decreases with time, and the displacement is relatively
small. Compared with the Maxwell model, they can better describe the actual state of the
beam.
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Figure 20. ω of several classical viscoelastic models under different temperatures: (a) T = 15 ◦C;
(b) T = 30 ◦C; (c) T = 45 ◦C; (d) T = 60 ◦C.

5.3.2. Several Fractional Derivative Viscoelastic Models

Taking ARHM-13 as an example, the mechanical response of several fractional deriva-
tive viscoelastic models is calculated, and the incremental step h is t/256. v = 25 mm/s and
t = 10 s. ω of several fractional derivative viscoelastic models under different temperatures
is shown in Figure 21.

Figure 21 shows that when T ≤ 30 ◦C, the results of FM and FTS are closer, and the
lower the temperature, the closer the two results are. When T ≥ 45 ◦C, the FK is closer
to FTS.

5.3.3. FTS and Three-Parameter Solid Model

Taking ARHM-13 as an example, the mechanical response of the three-parameter solid
model and FTS is calculated, and the incremental step h is t/256. v = 25 mm/s and t = 10 s.
ω of the three-parameter solid model and FTS under different temperatures is shown in
Figure 22.

Figure 22 shows that in the initial stage of load action, ω is as follows: three-parameter
solid model > FTS. As the action time increases, ω is as follows: FTS > three-parameter
solid model.

5.3.4. FTS under Different Temperatures

ω of FTS under different temperatures is shown in Figure 23.
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Figure 21. ω of several fractional derivative viscoelastic models under different temperatures:
(a) T = 15 ◦C; (b) T = 30 ◦C; (c) T = 45 ◦C; (d) T = 60 ◦C.
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Figure 23. ω of FTS under different temperatures.

As can be seen from Figure 23, ω is as follows: 60 ◦C > 45 ◦C > 30 ◦C > 15 ◦C. The
higher the temperature is, the more obvious ω is.

5.3.5. FTS under Different Gradations

ω of FTS under different gradations is shown in Figure 24.
As can be seen from Figure 24, the vertical displacement in the middle of the beam

span is as follows: ARHM-13 > ARHM-20 > ARHM-25. The maximum time of vertical
displacement is about 4 s.
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6. Conclusions

The present study presents a methodology for implementing the computation of a
three-dimensional fractional derivative viscoelastic model within the finite element frame-
work, utilizing the commercial finite element software ABAQUS external subprogram
UMAT. Three distinct loading conditions, namely static load, dynamic load, and mobile
load, are individually analyzed and computed. Furthermore, classical and fractional deriva-
tive viscoelastic rubber-modified asphalt mixture models are examined and calculated. The
key findings are as follows:

(1) In the convergence analysis of static load, dynamic load, and mobile load models
in this paper, when the fractional order is 0.1 ≤ α ≤ 0.9, the incremental step h is set as
t/32, t/128, and t/256, respectively, to satisfy the two-digit convergence requirements. The
selection of the incremental step depends on various factors, including the model type, load
characteristics, and fractional order. During calculation, a trial method can be employed to
determine an appropriate value for h while ensuring computational accuracy. It is advisable
to use a more giant incremental step whenever possible to reduce computational workload.

(2) FK and Kelvin models are fundamentally solid, which may introduce inaccurate
calculation results when the computation time is short. Similarly, the FM and Maxwell
models are essentially liquid models, which can also lead to distortions in calculation
results when the computation time is extended. FTS possesses the combined advantages of
FK and FM, enabling an accurate depiction of material viscoelastic characteristics across a
broad time spectrum.

(3) In current pavement mechanics calculations, the mechanical analysis of an asphalt
mixture commonly relies on either the linear elasticity model or the classical viscoelasticity
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model, resulting in disparities between calculated results and real-world scenarios. There-
fore, it is imperative to comprehensively consider the fractional derivative viscoelastic
characteristics of an asphalt mixture during calculations.

(4) This article’s simulation method applies to viscoelastic materials with the dynamic
modulus varying with load frequency and temperature, similar to asphalt mixtures. Dif-
ferent viscoelastic materials may be suitable for different fractional derivative viscoelastic
models, which requires obtaining the fractional derivative viscoelastic model used through
experiments and a constitutive analysis. The method in this article can be referred to for an
analysis and calculation.

(5) Due to the limited computing storage space of ABAQUS, implementing the frac-
tional derivative viscoelastic model in a finite element analysis requires that the stress and
strain data generated during calculations should be at most 2 GB. This limitation imposes
constraints on the model’s size and the number of incremental steps. Consequently, im-
plementing a multi-grid, multi-incremental step fractional derivative viscoelastic finite
element model becomes challenging within this framework. However, future computer
computing power advancements and commercial finite element software updates are
expected to facilitate such implementations.
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Figure A4. uz under different frequency conditions at time t = T/4: (a) f = 1/32 Hz; (b) f = 1/16 Hz; (c) 

f = 1/8 Hz; (d) f = 1/4 Hz; (e) f = 1/2 Hz; (f) f = 1 Hz; (g) f = 2 Hz; (h) f = 4 Hz. 
Figure A4. uz under different frequency conditions at time t = T/4: (a) f = 1/32 Hz; (b) f = 1/16 Hz;
(c) f = 1/8 Hz; (d) f = 1/4 Hz; (e) f = 1/2 Hz; (f) f = 1 Hz; (g) f = 2 Hz; (h) f = 4 Hz.
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f = 1/8 Hz; (d) f = 1/4 Hz; (e) f = 1/2 Hz; (f) f = 1 Hz; (g) f = 2 Hz; (h) f = 4 Hz. 
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Figure A6. uz under different frequency conditions at time t = T/2: (a) f = 1/32 Hz; (b) f = 1/16 Hz; (c) 

f = 1/8 Hz; (d) f = 1/4 Hz; (e) f = 1/2 Hz; (f) f = 1 Hz; (g) f = 2 Hz; (h) f = 4 Hz. 
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Fractal Fract. 2024, 8, x FOR PEER REVIEW 32 of 34 
 

 

21 22 23 24 25 26 27 28

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

u
z(

1
0
−

2
m

m
)

n

 f=1/32Hz  f=1/16Hz  f=1/8Hz  f=1/4Hz

 f=1/2Hz  f=1Hz  f=2Hz  f=4Hz

 

Figure A5. uz under different frequency conditions (t = T/4, α = 0.9). 

21 22 23 24 25 26 27 28

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

u
z(

1
0
−

2
m

m
)

n

 α=0.1  α=0.2  α=0.3  α=0.4  α=0.5

 α=0.6  α=0.7  α=0.8  α=0.9

 
21 22 23 24 25 26 27 28

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

u
z(

1
0
−

2
m

m
)

n

 α=0.1  α=0.2  α=0.3  α=0.4  α=0.5

 α=0.6  α=0.7  α=0.8  α=0.9

 
21 22 23 24 25 26 27 28

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

u
z(

1
0
−

2
m

m
)

n

 α=0.1  α=0.2  α=0.3  α=0.4  α=0.5

 α=0.6  α=0.7  α=0.8  α=0.9

 
21 22 23 24 25 26 27 28

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

u
z(

1
0
−

2
m

m
)

n

 α=0.1  α=0.2  α=0.3  α=0.4  α=0.5

 α=0.6  α=0.7  α=0.8  α=0.9

 

(a) (b)  (c)  (d)  

21 22 23 24 25 26 27 28

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

u
z(

1
0
−

2
m

m
)

n

 α=0.1  α=0.2  α=0.3  α=0.4  α=0.5

 α=0.6  α=0.7  α=0.8  α=0.9

 
21 22 23 24 25 26 27 28

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

u
z(

1
0
−

2
m

m
)

n

 α=0.1  α=0.2  α=0.3  α=0.4  α=0.5

 α=0.6  α=0.7  α=0.8  α=0.9

 
21 22 23 24 25 26 27 28

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

u
z(

1
0
−

2
m

m
)

n

 α=0.1  α=0.2  α=0.3  α=0.4  α=0.5

 α=0.6  α=0.7  α=0.8  α=0.9

 
21 22 23 24 25 26 27 28

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

u
z(

1
0
−

2
m

m
)

n

 α=0.1  α=0.2  α=0.3  α=0.4  α=0.5

 α=0.6  α=0.7  α=0.8  α=0.9

 

(e)  (f)  (g)  (h)  

Figure A6. uz under different frequency conditions at time t = T/2: (a) f = 1/32 Hz; (b) f = 1/16 Hz; (c) 

f = 1/8 Hz; (d) f = 1/4 Hz; (e) f = 1/2 Hz; (f) f = 1 Hz; (g) f = 2 Hz; (h) f = 4 Hz. 
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Figure A8. ω under different working conditions: (a) v = 25,000 mm/s, t = 0.01 s; (b) v = 2500 mm/s, 

t = 0.1 s; (c) v = 250 mm/s, t = 1 s; (d) v = 25 mm/s, t = 10 s. 
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