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Abstract: The pioneering work in finance by Black, Scholes and Merton during the 1970s led to
the emergence of the Black-Scholes (B-S) equation, which offers a concise and transparent formula
for determining the theoretical price of an option. The establishment of the B-S equation, however,
relies on a set of rigorous assumptions that give rise to several limitations. The non-local property
of the fractional derivative (FD) and the identification of fractal characteristics in financial markets
have paved the way for the introduction and rapid development of fractional calculus in finance.
In comparison to the classical B-S equation, the fractional B-S equations (FBSEs) offer a more flexi-
ble representation of market behavior by incorporating long-range dependence, heavy-tailed and
leptokurtic distributions, as well as multifractality. This enables better modeling of extreme events
and complex market phenomena, The fractional B-S equations can more accurately depict the price
fluctuations in actual financial markets, thereby providing a more reliable basis for derivative pricing
and risk management. This paper aims to offer a comprehensive review of various FBSEs for pricing
European options, including associated solution techniques. It contributes to a deeper understanding
of financial model development and its practical implications, thereby assisting researchers in making
informed decisions about the most suitable approach for their needs.

Keywords: fractional derivative; fractional Black-Scholes equation; European option; analytic
solution; numerical simulation

1. Introduction

In the financial field, an option is a significant and popular financial derivative that
grants the holder the right to purchase (call option) or sell (put option) an asset at a pre-
determined fixed price K (known as the strike price) within a specific period. Options
trading can be traced back to the late 18th century in both American and European markets.
However, it was not until 1973, when the Chicago Board Options Exchange introduced
standardized options contracts, that this financial instrument witnessed significant advance-
ments. Accordingly, determining the appropriate pricing for an option became a significant
challenge. In the 1970s, Black and Scholes [1] along with Merton [2] developed an original
option pricing model that governs the dynamic behavior of option prices over time.

When assuming that the random walk followed by the natural logarithm of the stock
price St under the risk-neutral measure or equivalent martingale measure (EMM) is

d(ln St) = (r − 1
2

σ2)dt + σdBQ
t , (1)

where σ ≥ 0 is the volatility of the returns from holding St and r is the risk-free rate. dBQ
t is

the increment of a Brownian motion under the risk-neutral measure by using the superscript
Q. It is assumed that the Brownian motion follows the Normal or Gaussian distribution.
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Furthermore, by using Itō’s lemma, the pricing of a European-style option V(S, t), written
on the underlying asset St, satisfies a partial differential equation (PDE) as follows:

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S

= rV, (2)

where r is the risk-free rate. This is the well-known Black-Scholes (or Black-Scholes-Merton)
equation (BSE). By means of the variable substitution xt = ln St, the above B-S equation
can be rewritten as an advection-diffusion type equation

∂U
∂t

+
1
2

σ2 ∂2U
∂x2 + (r − 1

2
σ2)

∂U
∂x

= rU, (3)

where U(x, t) = V(ln S, t).
The Black-Scholes (B-S) model is a valuable tool in approximating the behavior of

underlying assets and serves as a benchmark for comparing alternative models due to
its simplicity and clarity in determining option prices. However, the B-S model was
formulated based on a set of stringent assumptions, such as a frictionless and complete
market which is not consistent with the behaviour observed in real financial markets.
Furthermore, the assumption of constant volatility makes the equation unable to capture
large moves or jumps over small intervals [3]. For a more realistic scenario, various
alternative models have been proposed to improve the B-S model, such as the jump-
diffusion model [3,4], stochastic volatility or time-changed models [5,6], a model with
transaction costs [7], the regime-switching model [8]. Additionally, in the early 1960s,
Mandelbrot [9] observed that the relative change of stock prices exhibits excess kurtosis
and heavy tail phenomena, which cannot be adequately captured by assuming standard
Brownian motion (BM) for underlying asset prices. Then, he proposed an exponential non-
normal Lévy process to simulate this phenomenon. Subsequently, various improved Lévy
processes have been presented. Notably, KoBoL process (Koponen [10] and Boyarchenko
and Levendorskiǐ [11]), CGMY (Carr, Geman, Madan, and Yor [12]), and Finite Moment
Log Stable (FMLS) process [13] have stood out and drawn extensive attentions among these
Lévy processes. However, a systematic introduction of these modified Lévy processes has
not been thoroughly reported.

Fractional derivatives, as quasi-differential operators, exhibit non-local characteristics
and thus serve as a powerful tool for describing the properties of non-locality and long
memory observed in various physical phenomena. With the rapid development of the
fractional calculus in the last several decades, fractional partial differential equations
(FPDEs) have been applied in various fields including, but not limited to, physics, fluid
mechanics, biology, and finance, engineering [14–29]. In the late 20th century, researchers
discovered that financial markets exhibit fractal characteristics both domestically and
internationally [9,30]. The self-similar and non-local properties of the fractional derivative
allow the fractional B-S model to describe the fat-tailed and leptokurtic distributions of asset
prices. Compared to the classical B-S model, it is preferable to simulate complex situations
in the real market. The fractional B-S models have gained increasing attention due to
notable contributions by Wys [31] and Cartea et al. [32]. Assuming that the dynamics of
equity price follow Jump-diffusion processes or infinite activity Lévy processes, established
price dynamics of financial derivatives satisfy FPDE. Since then, various fractional B-S
equations (FBSEs) have been developed. For instance, a space fractional B-S equation [32]
has been constructed by replacing the standard Brownian motion with fractional Brownian
motion or specific Lévy processes. Chen et al. [33] derived a time-fractional B-S equation
by treating the change in option price over time as a fractal transmission system. Moreover,
by utilizing the Gaussian white noise and fractional Taylor series, a space-time fractional
B-S equation has been formulated [34].
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With the wide application of FBSEs in option pricing, an increasing interest has been at-
tracted on the exploration of solution techniques. Since the beginning of this century, many
studies have been devoted to finding solutions from both analytical and numerical perspec-
tives. By employing the pure integral transform technique, an explicit analytic solution can
be obtained in the form of a convolution involving some specific functions such as the Fox
function and Mittag-Leffler (M-L) function [31,35–37]. However, it is challenging to derive
the explicit analytic solution of FBSEs in most cases. Therefore, many improved methods
have been proposed to obtain (approximate) analytic solutions in the form of infinite series,
such as the Laplace homotopy perturbation method (LHPM) [38], the Laplace Legendre
wavelet method [39], the Laplace homotopy analysis method (LHAM) [40], the Residual
power series method (RPSM) [41], the Adomain decomposition method (ADM) [42], the
Differential transform method (DTM) [43] and the Elzaki transform method (ETM) [25,44].
Regarding the numerical perspective, a variety of finite differential techniques are com-
monly employed [32,35,45–49]. In recent years, various finite difference coupling tech-
niques have been developed to numerically approximate the fractional B-S model, such
as combining the finite difference with the meshless method [50,51], coupling the finite
difference with the collocation method [33,52] and incorporating the finite difference with
the spectral method [53]. Additionally, other effective numerical methods have been devel-
oped by researchers, including a moving least-squares approach [54], a space-time spectral
method [55], an operational matrix method [56] and the neural network technique [57].
Considerable efforts have been dedicated to studying fractional B-S equations and develop-
ing efficient methods for obtaining their analytical and numerical solutions. However, to
the best of our knowledge, a comprehensive overview of various fractional B-S equations
and their corresponding solution techniques has not been reported previously.

As we mentioned above, FBSEs play an important role in characterizing heavy-tailed
phenomena of option prices. However, the availability of a detailed introduction of dif-
ferent fractional B-S equations is still limited. Furthermore, efficient solution techniques
for obtaining analytical and numerical solutions provide a basis for further applications
of fractional B-S equations. Although much work has been done to investigate effective
methods, most of them are limited to a few specific techniques. A systematic and compre-
hensive overview of available literature concerning this topic is still lacking. Therefore,
this review provides an introduction of many potential fractional B-S equations and their
solution techniques. It aims to enrich the research methods in the field of finance. Moreover,
it serves as a valuable resource for researchers in finance, enabling them to gain a deeper
understanding of the practical applications of these equations in finance, which provides
robust theoretical support for practical market analysis and risk management. Furthermore,
considering the interdisciplinary nature of FBSEs, which involve mathematics, physics, and
finance, this review also seeks to foster technological innovation in finance and promote
interdisciplinary research collaboration.

The rest of the paper is organized as follows: Section 2 introduces some preliminaries,
including the definitions of fractional derivatives (FDs), the terminal and boundary condi-
tions (TBCs) of European option and various approximation schemes for FDs. The space,
space-time and time fractional B-S equations are outlined in Sections 3–5, respectively.
Moreover, an extensive overview of various solution techniques is provided. Section 6
draws some conclusions.

2. Preliminaries

In this section, we initially present several commonly utilized definitions of FDs in the
financial domain. Subsequently, the TBCs satisfied by some European options are listed.
Finally, we also provide some approximation formulas for both the Riemann-Liouville
derivative and Caputo derivative.
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2.1. Definitions of Fractional Derivatives

Definition 1 ([14,15,58]). The fractional integral aD−α
x (α > 0) of f (x) is defined as follows:

aD−α
x f (x) =

1
Γ(α)

∫ x

a

f (ξ)
(x − ξ)1−α

, (4)

where Γ(z) =
∫ ∞

0 tz−1e−t is the gamma function.

Definition 2 ([14,15,59]). If f (x) is continuous on [a, b], then the Grünwald-Letnikov (G-L)
derivative (α > 0) and integral (α < 0) can be uniformly defined as follows:

GL
a Dα

x f (x) = lim
( h→0

nh=t−a)
h−α

n

∑
r=0

(−1)r
(

α

r

)
f (t − rh) (5)

where (α
r) =

α(α−1)(α−2)...(α−r+1)
r! .

Definition 3 ([14,15,58]). If f (x) is integrable on [a, b], then the left and right Riemann-Liouville
(R-L) derivatives with order α(k − 1 ≤ α < k) on [a, b] are, respectively, defined as

RL
a Dα

x f (x) =
1

Γ(k − α)

dk

dxk

∫ x

a
(x − ξ)k−α−1 f (ξ)dξ (6)

and

RL
x Db f (x) =

(−1)k

Γ(k − α)

dk

dxk

∫ b

x
f (ξ − x)k−α−1(ξ)dξ. (7)

Definition 4 ([14,15,60]). If f (x) ∈ Ck[a, b], then the left and right Caputo derivatives with order
α(k − 1 ≤ α < k) on [a, b] are, respectively, defined as

C
a Dα

x f (x) =
1

Γ(k − α)

∫ x

a
(x − ξ)k−α−1 f (k)(ξ)dξ (8)

and

C
x Db f (x) =

(−1)k

Γ(k − α)

∫ b

x
(ξ − x)k−α−1 f (k)(ξ)dξ. (9)

Remark 1. The G-L, R-L, and Caputo FDs are among the most widely popularized. However,
one of the drawbacks of the R-L derivative is its inconsistency with physical initial and boundary
conditions for initial or boundary value problems. This issue can be overcome by employing the
Caputo derivative. Moreover, there are the following relationships among them: If the function
f (x) ∈ C(n−1)[a, b] and f (n)(x) is integrable in [a, b], the R-L derivative is existent and aligns
with the G-L derivative. Furthermore, for m − 1 ≤ α < m, one has

RL
a Dα

x f (x) = GL
a Dα

x f (x) = C
a Dα

x f (x) +
m−1

∑
j=0

f (j)(a)(x − a)j−α

Γ(1 + j − α)
, a < x < b. (10)

Definition 5 ([61,62]). When some kind of fractional operators aDα
x act upon f (x), and the

integration of aDα
x f (x) is performed with respect to the order α, we obtain the following distributed-

order derivative

aDw(α)
x f (x) =

∫ γ2

γ1

w(α)aDα
x f (x)dα (11)

where w(α) represents the weight function associated with the distribution of order α ∈ [γ1, γ2].
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Remark 2. When w(α) only takes a discrete value in [γ1, γ2], the distributed-order derivative
becomes FD. The operator has been demonstrated to be a more effective tool for quantifying and
characterizing various physical phenomena [63–69].

Definition 6 ([70]). Suppose that f (x) ∈ Cα(a, b). The local FD of order α is characterized by

LFDα
x f (x0) :=

∆α[ f (x)− f (x0)]

(x − x0)α
, 0 < α ≤ 1, (12)

where ∆α[ f (x)− f (x0)] ∼= Γ(1 + α)[ f (x)− f (x0)], and Cα(a, b) denotes a class of locally frac-
tional continuous functions defined as follows: for arbitrary ϵ > 0, there exists a corresponding
δ > 0 such that if |x − x0| < δ, then

| f (x)− f (x0)| < ϵα, 0 < α ≤ 1.

Remark 3. Local FD provides a powerful tool to analyze pointwise behavior of irregular signals.

Definition 7 ([34]). If f (x) is integrable on [a, b], then the modified left and right R-L derivatives
of order α(k − 1 ≤ α < k) are defined by the following expression:

MR
a Dα

x f (x) =
1

Γ(k − α)

dk

dxk

∫ x

a
(x − ξ)k−α−1( f (ξ)− f (a))dξ, (13)

and

MR
x Dα

b f (x) =
(−1)k

Γ(k − α)

dk

dxk

∫ b

x
(ξ − x)k−α−1( f (b)− f (ξ))dξ, (14)

Remark 4. The modified R-L derivatives can mitigate the side effects of non-zero initial conditions
under the R-L derivative definition. Furthermore, they yield identical results to the Caputo definition
when the function exhibits differentiability.

Definition 8 ([71]). Let Re(α) ≥ 0 and k = [Re(α)] + 1. If f (x) ∈ ACk
δ [a, b], then the Caputo-

type modification of left- and right-sided Hadamard FDs (referred to as the C-H derivative) of order
α(k − 1 < α < k) can be, respectively, expressed by

CH
a Dα

x f (x) =
1

Γ(k − α)

∫ x

a
(log

x
ξ
)k−α−1δk f (ξ)

dξ

ξ
, (15)

and

CH
x Dα

b f (x) =
(−1)k

Γ(k − α)

∫ b

x
(log

ξ

x
)k−α−1δk f (ξ)

dξ

ξ
, (16)

where ACk
δ [a, b] = { f | f : [a, b] → C, δk−1 f (x) ∈ AC[a, b], δ = x d

dx} and AC[a, b] is the set of
functions that are absolute continuous on [a, b].

Remark 5. The C-H derivative exhibits physically interpretable initial conditions, similar to those
observed in Caputo derivatives, as the derivative of a constant is zero. The logarithmic kernel renders
it suitable for characterizing ultra-slow processes rising from super-heavy tailed distributions of
waiting time in particle motion.
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Definition 9 ([72,73]). Let Re(α) ≥ 0 and k = [Re(α)] + 1. If f (x) ∈ ACk
γ[a, b], then, using

the Katugampola’s fractional integral, the generalized Caputo derivative (referred to as the K-C
derivative) of f with order α is defined by

KC
a Dα,ρ

x f (x) =
1

Γ(k − α)

∫ x

a
(

xρ − ξρ

ρ
)k−α−1γk f (ξ)

dξ

ξ1−ρ
(17)

and

KC
x Dα,ρ

b f (x) =
1

Γ(k − α)

∫ b

x
(

ξρ − xρ

ρ
)k−α−1(−γ)k f (ξ)

dξ

ξ1−ρ
, (18)

where ACk
γ[a, b] = { f | f : [a, b] → C, γk−1 f (x) ∈ AC[a, b], γ = x1−ρ d

dx , ρ > 0}.

Remark 6. Note that when ρ = 1, the K-C derivative becomes the Caputo derivative, while it
converges to the C-H derivative as ρ approaches 0. The K-C derivative serves as a generalization of
both the Caputo and C-H derivatives.

Definition 10 ([74]). For x > 0, the α-order conformable derivative is defined as

CFMDα
x( f )(x) = lim

ε→0

f (x + εx1−α)− f (x)
ε

, α ∈ (0, 1], (19)

when f : [0, ∞) → R, and

CFMDα
x( f )(x) = lim

ε→0

f ⌈α⌉−1(x + εx(⌈α⌉−α))− f ⌈α⌉−1(x)
ε

, α ∈ (n, n + 1], (20)

when f is differentiable with respect to x up to the n-th order. Here, ⌈α⌉ denotes the smallest integer
that is greater than or equal to α.

Remark 7. The conformable derivative aligns with the established FDs on polynomials. Moreover,
it adheres to the same formulas for differentiating the product and quotient of two functions, as well
as the chain rule, just like its integer-order counterpart.

Definition 11 ([75]). For 0 < α < 1, the Caputo-Fabrizio (C-F) derivative is definied by

CF
a Dα

x f (x) =
M(α)

(1 − α)

∫ x

a
exp{−α

x − ξ

1 − α
} f ′(ξ)dξ, (21)

when f (x) ∈ H1(a, b) and

CF
a Dα

x f (x) =
M(α)

(1 − α)

∫ x

a
( f (x)− f (ξ)) exp{−α

x − ξ

1 − α
}dξ, (22)

when f (x) ∈ L1(a, b). Here, M(α) is a normalization function, satisfying the conditions
M(0) = M(1) = 1.

Definition 12 ([76]). The Atangana and Baleanu (A-B) derivative in the Caputo sense for
f ∈ H1(a, b) can be expressed as follows:

ABC
a Dα

x f (x) =
M(α)

(1 − α)

∫ x

a
Eα{−α

(x − ξ)α

1 − α
} f ′(ξ)dξ, (23)

where 0 < α < 1 and Eα(−xα) =
∞
∑

k=0

(−x)αk

Γ(αk+1) is the Mettag-Leffler(M-L) function.
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Remark 8. Unlike the definitions of FDs with integral form, neither the C-F derivative nor the A-B
derivative possesses a singular kernel.

Remark 9. If the order of FD α is permitted to vary as a function, the resulting derivative is
denominated as a variable-order derivative.

Definition 13 ([77]). Assume that α > 0 and ψ ∈ C1([a, b]) is a positive and monotonically
increasing function. The left-sided fractional integral of f ∈ AC[a, b] with respect to ψ is defined
as follows:

Iα,ψ
a+ f (x) =

1
Γ(α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))α−1 f (t)dt. (24)

If n − 1 < α < n, β ∈ [0, 1] and f , ψ ∈ Cn([a, b]), then the left ψ-Hilfer FD of order α and type β
is specified by

H Dα,β;ψ
a+ f (x) = Iβ(n−α);ψ

a+ (
1

ψ′(x)
d

dx
)n I(1−β)(n−α);ψ

a+ f (x), (25)

where ψ is positive and increasing.

Remark 10. Let ψ(x) = x, ψ-Hilfer FD become R-L FD when β → 0, and transforms into a
Caputo FD when β → 1.

2.2. The Terminal and Boundary Conditions Satisfied by Different European Options

Let V = V(S, t) represent the price of a European option on the underlying asset price
S at time t, and let U = U(x, t) = V(ln S, t). These two notations are consistently used
throughout this paper.

The terminal and boundary conditions (TBCs) of European option V(S, t) depend on
the relationship between the price of the underlying asset S and the exercise price K of the
option. Let T denote the expiry date and r be the risk-free interest rate. The most prevalent
European options are call and put options, which adhere to the following TBCs:

Call option:

V(S, T) = max{S − K, 0}
V(0, t) = 0, lim

S→+∞
[V(S, t)− (S − Ke−r(T−t))] = 0, t ∈ [0, T). (26)

Put option:{
V(S, T) = max{K − S, 0}
V(0, t) = Ke−r(T−t), lim

S→+∞
V(S, t) = 0, t ∈ [0, T). (27)

It should be noted that different European options may have different TBCs, which
mainly depend on the specific terms of the options and market conditions, for example, for
certain options with special exercise conditions, such as barrier option and butterfly option.
Here we list the TBCs for the two options relative to the call option.

Barrier option (there are three different cases) [32]:
Case 1. European up and out call option with barrier located at S = Su:

V(S, t) =
{

max{S − K, 0}, 0 < S < Su, t = T
0, S ≥ Su, 0 ≤ t < T.

(28)

Case 2. European down and out call option with barrier located at S = Sd:

V(S, t) =
{

max{S − K, 0}, S > Sd, t = T
0, S ≤ Sd, 0 ≤ t < T.

(29)
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Case 3. European double-knock-out call option with barrier located at S = Su and
S = Sd:

V(S, t) =
{

max{S − K, 0}, Sd < S < Su, t = T
0, S ≤ Sd and S ≥ Su, 0 ≤ t < T.

(30)

Butterfly call option [78]:{
V(S, T) = max{S − K1, 0} − 2max{S − K2, 0}+ max{S − K3, 0}
V(0, t) = 0, lim

S→+∞
[V(S, t)− (S − Ke−r(T−t))] = 0, t ∈ [0, T), (31)

where Ki(i = 1, 2, 3) are the exercise price and K2 = K1+K2
2 .

2.3. Several Classical Approximation Schemes for Fractional Derivatives

Here, we only present several widely employed approximation schemes for the
R-L derivative and the Caputo derivative. Additionally, numerous other approximation
formulas can be found in relevant books [79,80].

2.3.1. The G-L Approximation of the R-L Fractional Derivative

Denote Aα
h,p f as the shifted G-L formula over the function f , which is expressed by

Aα
h,p f (x) = h−α

∞

∑
k=0

g(α)k f (x − (k − p)h), 0 ≤ n − 1 ≤ α < n, (32)

where p is a constant, referred to as displacement, and

g(α)k = (−1)k
(

α
k

)
,
(

α
k

)
=

α(α − 1) · · · (α − k + 1)
k!

.

Let
Ln+α(R) = { f | f ∈ L1(R),

∫ ∞

−∞
(1 + |ω|)n+α|F(ω|dω < ∞)},

here, F(ω) is the Fourier transform of function f (x). Then, we have the following approxi-
mations: a first-order approximation formula [81]:

RL
−∞Dα

x f (x) = Aα
h,p f (x) + O(h), f ∈ L1+α(R) (33)

and a second order approximation formula [82]:

RL
−∞Dα

x f (x) = λ1 Aα
h,p f (x) + λ2 Aα

h,q f (x) + O(h2), f ∈ L2+α(R) (34)

where λ1 = α−2q
2(p−q) , λ2 = 2p−α

2(p−q) , p ̸= q.

2.3.2. The Interpolation Approximation of Caputo Derivative

Here, we present two prevalent approximations for the Caputo derivative when
0 < α < 1.

Let τ = T
N and tk = kτ(0 ≤ k ≤ N).

The L1 approximation formula is given by [83]

C
0 Dα

t f (t)|t=tn =
τ−α

Γ(2 − α)

[
c(α)0 f (tn)−

n−1

∑
k=1

(c(α)n−k−1 − c(α)n−k) f (tk)− c(α)n−1 f (t0)

]
(35)

+O(τ2−α), (36)

where c(α)l = (l + 1)1−α − l1−α, l ≥ 0.
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L2 − 1σ approximation formula can be formulated as [84]

C
0 Dα

t f (t)|t=tn−1+σ
=

τ−α

Γ(2 − α)

n−1

∑
k=1

c(n,α)
k [ f (tn−k)− f (tn−k−1)] + O(τ3−α), 1 ≤ n ≤ N, (37)

where c(1,α)
0 = σ1−α and for n ≥ 2

c(n,α)
0 = (1+σ)2−α−σ2−α

2−α − (1+σ)1−α−σ1−α

2 ,

c(n,α)
k = 1

2−α [(k + 1 + σ)2−α − 2(k + σ)2−α + (k − 1 + σ)2−α]

− 1
2 [(k + 1 + σ)1−α − 2(k + σ)1−α + (k − 1 + σ)1−α], 1 ≤ k ≤ n − 2,

c(n,α)
n−1 = 1

2 [3(n − 1 + σ)1−α − (n − 2 + σ)1−α]

− 1
2−α [(n − 1 + σ)2−α − (n − 2 + σ)2−α],

where σ = 1 − α
2 .

3. Space Fractional Black-Scholes Equations and Solutions

Brownian motion (BM) is an independent incremental continuous random process
with normal distribution, which fails to adequately capture the leptokurtic and heavy tail
phenomena observed in the dynamic behavior of underlying asset prices. To address this
limitation, various modified Lévy processes and fractional BM have been introduced to
more accurately represent these features. As a result, a space FBSE was derived.

3.1. Pricing Equations Based on Various Modified Lévy Processes and Their Solutions

Based on FMLS, KoBoL and CGMY processes, Cartea et al. [32] derived three corre-
sponding space fractional B-S (FBS) equations, respectively. These equations have gained
significant popularity in financial mathematics and have been extensively utilized for the
pricing and risk control of financial derivatives.

3.1.1. KoBoL Pricing Equation

The KoBoL process is a modified Lévy-α-stable process. This modification incorporates
a damping effect into the tails of the Lévy stable distribution. This modification ensures the
existence of finite moments and improves mathematical tractability. The KoBoL pricing
equation based on the KoBoL process can be expressed as [32]

∂U
∂t

+ (r − v − λα−1(q − p))
∂U
∂x

+
σα

2
[q(e−λx RL

−∞Dα
xeλx)U + p(eλx RL

x Dα
∞e−λx)U] = (r +

σαλα

2
)U, (38)

where λ governs the exponential decay of the tail, p, q ∈ [−1, 1] with p + q = 1 and
v = 1

2 σα{q(λ+ 1)α + p(λ− 1)α − λα − αλα−1(q− p)}. If α = 2, the KoBoL pricing equation
is restored to the classical B-S equation. It should be mentioned that the FD operators
e−λx RL

−∞Dα
xeλx and eλx RL

x Dα
∞e−λx in Equation (38) are called temper fractional operators

that can be used to describe the behavior of non-stationary systems.

3.1.2. CGMY Pricing Equation

CGMY process is a damped Lévy process that effectively captures the frequency and
magnitude of negative and positive jumps in asset price dynamics. When assuming that
log-stock prices follow the CGMY process, the pricing equation is derived as [32]

∂U
∂t

+ (r − v)
∂U
∂x

+ CΓ(−Y)(e−Gx RL
−∞DY

x eGx)U

+ CΓ(−Y)(eMx RL
x DY

∞e−Mx)U = (r + CΓ(−Y)(MY + GY))U, (39)
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where v = CΓ(Y)[(M − 1)Y − MY + (G + 1)Y − GY]. The parameter C > 0 serves as a
quantitative indicator of the overall activity level, while G ≥ 0 and M ≥ 0 control the
exponential decay rates of the left and right tails, respectively. It is worth mentioning that
the distribution exhibits symmetry when G = M.

3.1.3. FMLS Pricing Equation

The FMLS process is a maximally skewed Lévy stable process which can effectively
catch the leptokurtic and fat tail feature. If assuming that the log-stock prices follow the
FMLS process, then the valuation of a European option can be described by the following
FPDE [32]

∂U
∂t

+ (r − v)
∂U
∂x

+ v RL
−∞Dα

xU = rU, (40)

where v = − 1
2 σα sec(απ/2). This equation is known as the FMLS equation. Moreover, it is

evident that the FMLS equation reduces to the classical B-S equation when α = 2.

3.1.4. Analytic Solutions of These Three Equations

Chen and her co-workers investigated the option pricing using the FMLS equation [37],
the CGMY equation [85], and the KoBoL equation [86]. By utilizing Fourier integral
transform, they derived explicit closed-form analytical solutions for each equation based on
the corresponding terminal condition. These solutions were expressed in integral form with
the Fox function. Subsequently, asymptotic behavior of analytic solutions was discussed.
When the log-stock price approaches extreme value, i.e., x = ±∞, the asymptotic behavior
of these analytic solutions aligns with the characteristics of the corresponding option. They
also demonstrated the put-call parity for each equation. These findings strongly support
the utilization of each equation in option pricing. Furthermore, due to the presence of Fox
functions in the integration kernel, the implementation of the analytic solution is not as
straightforward as the B-S formula. To overcome this challenge, the authors expressed
the Fox function in an infinite series form, thereby significantly facilitating their formulae
implementation. Ara et al. [87] utilized the Legendre wavelets optimization method to
optimize European options pricing based on the FMLS framework. The novelty of their
approach lies in integrating the differential evolution algorithm into the Legendre wavelets
method to optimize the approximation of unknown terms.

3.1.5. Numerical Simulation by the Finite Difference Method

Initially, the G-L definition yields the R-L derivative approximations with first-order
accuracy [15,88]. However, Meerschaert and Tadjeran [81] highlighted instability issues in
numerical methods based on this formula, leading them to propose a shifted G-L formula.
As a result, higher-order approximations for the R-L FD have been developed [82,89–92].

The FMLS equation proposed by Cartea et al. [32] was employed to price knock-out
barrier options. The numerical solution of the equation was obtained by discretizing the
FD using the G-L definition and the Crank-Nicolson (C-N) scheme for t. Furthermore, the
comparison between the results obtained using the B-S equation and the FMLS equation
revealed that the latter exhibits fat tails and demonstrates superior accuracy in capturing
jump characteristics or significant movements for in-the-money options. Subsequently,
Marom and Momoniat [93] applied the C-N scheme and the shifted G-L formula to simulate
the FMLS, CGMY, and KoBol equations. They also investigated the impact of equation
parameters on option prices and explored the convergence conditions for each of these
equations. However, no numerical analysis is provided in the aforementioned literature.

Subsequent researchers have developed various difference schemes and presented
detailed numerical analyses. Zhang et al. [94,95] investigated the numerical approximation
of the CGMY equation, KoBoL equation, and the FMLS equation. They developed implicit
difference schemes with second-order accuracy in both temporal and spatial dimensions
by employing weighted difference schemes [82,91] for spatial discretization and a C-N
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scheme for temporal discretization. Furthermore, they employed the bi-conjugate gradient
stabilized method [96] in conjunction with the fast Fourier transform to effectively solve
the resulting linear systems, leading to a significant reduction in storage requirements and
computational cost. Other related studies on the FMLS equation were explored in [97,98].

3.1.6. Numerical Simulation by Finite Difference Coupling with Spectral Method

To improve the accuracy of convergence, the spectral method has been employed for
the numerical simulation of fractional equations.

Guo and Ling [99] evaluated the FMLS equation using the Gauss-Jacobi spectral
method. By comparing it with the first-order finite difference scheme, they found that
the global nature of the Gauss-Jacobi method makes it well suited for solving fractional
partial differential equations, allowing for natural consideration of global solution behavior.
Building upon this, Xu et al. [100] discussed the numerical approximation of a two-
asset option equation based on the FMLS process. They combined an implicit finite
difference scheme for the temporal dimension with a collocation method utilizing shifted
Chebyshev basis functions of the second kind for the spatial dimension. A similar technique
was employed by Aghdam et al. [101] to numerically approximate the CGMY equation,
but utilizing shifted Chebyshev polynomials of the fourth kind as basis functions. The
advantage of this technique lies in its capability to handle procedures with unconditionally
large orders, making it highly suitable for solving corresponding systems.

3.2. FMLS Equation Incorporating Regime Switching Dynamics and Its Solution

Various empirical studies have confirmed the presence of regime switching in financial
markets [102], which has sparked extensive discussions on derivative pricing within the
framework of regime switching [103,104].

3.2.1. FMLS Equation Incorporating Regime Switching Dynamics

By incorporating the regime-switching mechanism into the FMLS process and allowing
the constant volatility to transition between various states following a Markov chain, Zhou
et al. obtained a coupled FPDE system that captured the dynamics of option prices [105]

∂Ui
∂t

+ (ri − vi)
∂Ui
∂x

+ vi
RL
−∞Dα

xUi − riUi +
J

∑
j=1

qijUj = 0, i ∈ J (41)

where 1 < α < 2, qij is the transition intensity from state i to state j and it satisfies qij > 0

for i ̸= j. Additionally,
J

∑
j=1

qij = 0 for each i ∈ J . The interest rate ri and the volatility σi

are non-negative constants and vi = − 1
2 σα

i sec απ
2 .

The regime-switching FMLS equation, which incorporates the phenomenon of regime
switching, captures the key characteristics of asset returns and aligns with empirical
observations in financial markets. The regime-switching B-S equations can be regarded as
a special case of the above coupled FPDE system when α = 2. By assigning different values
to qij, the FMLS pricing equation can be obtained.

3.2.2. Numerical Solution and Analytic Solution

Compared to a single fractional partial differential equation, solving the coupled
system of equations in the regime switching is more challenging for both numerical and
analytical solutions. Zhou et al. [105] developed an iterative Laplace transform method for
FPDE system (41) from a numerical perspective. The spatial derivatives were discretized
by weighted difference methods, resulting in a system of ordinary differential equations.
A Laplace transform was then applied to the temporal direction and numerical contour
integral methods were used to compute the inverse Laplace transform. This proposed
method exhibits second-order spatial convergence and spectral-order convergence for
Laplace transform inversion.
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From an analytical perspective, Lin [106] proposed a two-step solution procedure for
FPDE system (41) with two states. Firstly, they assumed prior knowledge of future informa-
tion regarding the Markov chain and obtained the conditional option price by analytically
solving a time-dependent FPDE. Secondly, an explicit and exact pricing formula for the
unconditioned price was derived using the expansion of the Fourier cosine series. They
also illustrated the dynamic behavior of option prices obtained by the FMLS equation with
regime switching and the FMLS equation at different expiration dates. The observations
indicate that the FMLS equation incorporating regime switching leads to option prices
exhibiting significant volatility disparities between different states, which become more
pronounced over longer time periods. This provides valuable insights into the behavior of
option prices under evolving market conditions.

4. Time and Space Fractional B-S Equations and Solutions
4.1. Single Parameter Time-Space FBSEs

The distinguishing characteristic of such equations lies in the interdependence between
the order of time FD and the space FD. By employing fractional order Taylor’s series and
Itô’s lemma, a fractional partial differential equation can be derived from the dynamics of
stock price that satisfies a fractional stochastic differential equation.

4.1.1. Equation for Fractal Stock Exchange Dynamics and Its Solution

Considering non-random fractional dynamics driven by the usual Brownian motion,
Jumarie extended the derivation of the classical B-S equation to fractal processes and
subsequently obtained the following dynamical equation [34]

MR
0 Dα

t V = t1−α(
r

Γ(2 − α)
V − rSα · MR

0 Dα
SV)

− (Γ(1 + α))3[Γ(2 − α)]2

Γ(1 + 2α)
σ2S2α · MR

0 D2α
S V, 0 < α ≤ 1. (42)

Jumarie [35] improved this previous work [34] and successfully addressed the solution
of (42). By transforming Equation (42) into a fractional heat equation, followed by applying
the Fourier transform and inverse Fourier transform, an exact solution was derived in
the form of an integral expression involving a M-L function. Yang et al. [46] employed
central difference scheme to discretise the spatial derivatives and L1 scheme for time FD
discretization. By employing parameter θ(0 ≤ θ ≤ 1), they obtained a difference scheme,
known as the C-N scheme when θ = 1

2 . This work was further extended by Li et al. [107].
They developed two alternative schemes, namely the explicit-implicit scheme and implicit-
explicit scheme, which not only ensure numerical stability but also exhibit favorable parallel
characteristics. It has been demonstrated that these schemes can achieve second-order
spatial accuracy and temporal accuracy of 2 − α order.

4.1.2. Equation Driven by the fGBM and Its Solution

It is worth noting that both the classical B-S equation and the aforementioned fractional
B-S equations (FBSEs) are based on the hypothesis that the dynamics for the stock price
can be described by a SDE, where randomness is modeled by either standard BM or
fractional BM. However, these equations fail to fully capture the actual movement of
stock prices, including abnormal patterns, long-term dependencies, and uncertainties
in volatility [108]. To address this limitation and characterize stock movement more
comprehensively, Guo et al. introduced a novel stochastic process known as fractional G-
Brownian motion (fGBM), which extends classical BM, fractional BM, and G-Brownian
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motion. Consequently, they derived a European option pricing equation within a time-
space fractional B-S framework as demonstrated below [108]

C
0 Dα

t V = t1−α[
r

(2 − α)
V − rSα · C

0 Dα
SV]

− Γ2(2 − α)Γ(1 + 2H)Γ(2 − 2H)

Γ(1 + 2α)
σ̃2σ2t2H−1S2α · C

0 D2α
S V, (43)

where the Hurst parameter H ∈ (0, 1) shows the long-term dependence and σ̃2 quantifies
the uncertainty in variance for the G-normal distribution. These characteristics further
elucidate the volatility uncertainty inherent in the dynamics of stock price S(t). The order
of time FD α signifies the persistent memory in both stock and option markets. Moreover, if
H = 1

2 and σ̃2 = Γ3(1 + α), the above equation is reduced to Equation (42). Moreover, the
authors employed the Fourier integral transform method to derive explicit option pricing
formulas for both European put and call options.

4.2. Bi-Parameter Time-Space FBSEs and Their Solutions

The distinguishing feature of such equations lies in the independent orders of the time
FD and the space FD. When formulating these equations, it is customary to consider the
dynamic behavior of the underlying asset price as a fractional stochastic process, while
regarding the temporal dynamics governing option prices as a transmission mechanism
exhibiting fractal properties [109,110].

4.2.1. Equation Derived by Fractional Wiener Process and Its Solution

When the stochastic process is considered as a fractional Wiener process as mentioned
in Formula (7) of the study in [36], Liang et al. derived the following equation [36]:

AγSd f −1

Γ(α)
MR

t Dγ
TV +

σ2S2α

Γ(2α)
MR

0 D2α
S V +

rSα

Γ(α)Γ(α − m)
MR

0 Dα
SV − rV = 0. (44)

It should be noted that researchers often simplify the study of these equations by assuming
Aγ and d f to be 1.

By combining Laplace transform and Fourier transform, along with the expansion
theorem for the Laplace transform, explicit option pricing formulas were derived [36]. These
formulas were expressed as infinite series containing integrals when γ > 0, 1 ≤ α ≤ 2.
Edeki et al. [43] investigated the specific form of (44), i.e., the scenario where the spatial
derivative Dα reduced to a first-order derivative. They presented approximate analytical
solutions expressed as infinite series using a combined approach known as fractional
complex transform in conjunction with a modified DTM. Recently, Rezaei and Izadi [111]
have proposed a novel approach by combining the fractional calculus theory (FCT) with
RPSM to efficiently obtain an analytical solution for the same equation where the fractional
operator is considered as a local FD. RPSM is a novel iterative strategy proposed for
obtaining Taylor expansion series solutions to systems of linear and nonlinear ODEs and
PDEs. This technique was initially introduced by O.A. Arqub [112]. The presented FCT-
RPSM technique can be considered as a directly applicable approach, devoid of any form
of discretization, linearization, or other additional imposed assumptions.

Meng et al. [113] considered the numerical approximation of the same equation
presented in [43] using a combined approach involving the Haar wavelet integration
method, the variational iteration method (VIM), and the HPM. The HPM and VIM are
widely recognized as efficient tools for solving nonlinear problems. They employed three
techniques: (1) Haar wavelet integration method to convert the PDEs into an algebraic
equation system, (2) HPM for linearising the problem, and (3) VIM for efficiently solving
the algebraic equation system. The proposed algorithm demonstrated high computational
efficiency for numerically solving the FBSE.
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4.2.2. Equation Derived by FMLS Process and Solution

When the fractional stochastic process is regarded as the FMLS process, Zhang et. al
derived the following time-space fractional option pricing equation [114]:

MR
t Dγ

TU + (r +
σα

2
sec(

απ

2
))

∂U
∂x

− σα

2
sec(

απ

2
) · RL

−∞ Dα
xU − rU = 0, (45)

where 0 < γ < 1, 1 < α ≤ 2.
Later, researchers extended Equation (45) to the two dimensional case as follows [115]:

C
0Dγ

t U + (r +
σα1

1
2

sec(
α1π

2
))

∂U
∂x

+ (r +
σα2

2
2

sec(
α2π

2
))

∂U
∂y

−
σα1

1
2

sec(
α1π

2
) · RL

−∞ Dα
xU −

σα2
2
2

sec(
α2π

2
) · RL

−∞ Dα
yU − rU = 0. (46)

where the log-stock prices x = ln S1 and y = ln S2 are assumed to follow two independent
FMLS processes.

In [114], the authors constructed a spatial accuracy of second-order and temporal ac-
curacy equivalent to 2 − γ implicit finite difference scheme to approximate (45). Moreover,
the fast bi-conjugate gradient stabilized method was proposed to address the numerical
scheme, aiming to reduce storage requirements and computational expenses. Regarding
the equation presented in [115], an implicit finite difference scheme was developed by using
the backward finite difference formula [15] to approximate the Caputo temporal derivative
and employing a shifted G-L type formula to discretize the left R-L spatial derivative. Sub-
sequently, they proposed a parallel all-at-once bi-diagonal block circulant preconditioner
for solving the discretized linear system. The resulting discretization exhibits first-order
spatial accuracy and 2 − γ order temporal accuracy.

5. Time Fractional B-S Equations and Their Solutions

In 1997, Carpinterj and Mainardi [116] highlighted the utility of FPDEs in studying
fractal geometry and fractal dynamics. With the recognition of fractal structures in financial
markets, FPDEs have gradually been integrated into financial theory.

5.1. Simple Time Fractional B-S Equations

By replacing the first-order time derivative with an α-order (0 < α ≤ 1) FD, Wyss
proposed a time FBSE as follows [31]:

RL
0Dα

t V +
σ2

2
S2 ∂2V

∂S2 + rS
∂V
∂S

− rV = 0. (47)

Later, assuming that the evolution of option prices over time exhibits a fractal trans-
mission mechanism, and the dynamics of underlying asset prices adheres to geometric
Brownian motion, Chen et al. established a specific instance of Liang et al.’s equation (44)
in the following form [33]:

MR
t Dα

TV +
1
2

σ2S2 ∂2V
∂S2 + (r − D)S

∂V
∂S

− rV = 0, (48)

where D is the dividend yield, and D = 0 denotes the absence of dividend payments in the
stock price.

Equation (48) is very similar to Equation (47) in its structure, except that FDs are
defined differently. For simplicity, we represent them in a unified equation

Dα
t V +

σ2

2
S2 ∂2V

∂S2 + rS
∂V
∂S

− rV = 0. (49)
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Several researchers extended Equation (49) to a more general case, such as incorpo-
rating interest rate and volatility as functional variables [50,117,118], and considering a
broader range of assets [119].

Remark 11. The time FD in Equation (49) is commonly considered as either the modified R-L
derivative or Caputo derivative. The modified R-L derivative can be transformed into the Caputo
derivative through variable substitution for a smooth function [47]. Therefore, if these two derivatives
are employed as time FD, further clarification will not be provided in the subsequent literature review.

5.2. Analytic Solution and Semianalytic Solution

The analytical solution, obtained exclusively through the integral transformation
method, is commonly expressed in integral form involving special functions [31], thereby
presenting computational challenges. Noting that the homotopy perturbation method
(HPM), homotopy analysis method (HAM), RPSM, ADM and Elzaki transform are charac-
terized by their independence from discretization, linearization, restrictive assumptions
or transformations, therefore, are widely utilized to solve both linear and nonlinear differ-
ential equations. In recent two decades, researchers introduced them together with other
techniques to solve Equation (49), aiming to obtain analytical solutions in the form of a
computable series.

5.2.1. The HPM

The HPM was originally introduced and applied by J.H.He [120]. Combining the
HPM with other transform techniques can effectively obtain (approximate) the analytic
solution in a series form that is easy to implement. The LHPM combined HPM with Laplace
transform was applied by Kumar et al. [38] to solve (49). Furthermore, the authors also
considered the case of non-constant volatility. Subsequently, the same equation as in [38]
was considered by Elbeze et al. [121] using a different method, i.e., HPM incorporating the
Sumudu transform (SHPM), yielding results that are consistent with those obtained using
the LHPM. Later, the LHPM was generalized by Sawangtong et al. [122] and Prathumwan
and Trachoo [123] to a two-dimensional case for pricing different types of European options.

The researchers also discuss cases where alternative definitions of the time FD are em-
ployed. Yavuz and Özdemir [40] proposed conformable fractional ADM and conformable
fractional modified HPM to solve both Equation (49) and a generalized fractional B-S
pricing equation with non-constant volatility, when considering the C-F derivative as the
time FD. While considering the K-C derivative as time FD, based on the characteristics of
the integral kernel in the definition of the K-C derivative, Fall et al. [124] replaced Laplace
transform with ρ− Laplace transform [125] and combined HPM to solve the Equation (49)
with the usual initial condition. Furthermore, this technique has also been employed by
Ampun and Sawangtong [126] to address the same equation subject to a varying initial
condition, i.e., the Katugampola integral initial condition. Moreover, Thanompolkrang
et al. [127] extended the aforementioned method to a scenario involving two assets.

5.2.2. The HAM

The HAM, originally proposed by Liao et al. [128], offers a distinct advantage over
the HPM by overcoming the limitation of the perturbation method dependent on small
parameters. Moreover, the HAM offers an efficient approach to control and adjust the
convergence of the approximation series by selecting the auxiliary parameter h̄ (or vector h̄)
within the series, which is not found in perturbation methods. Yavuz and Özdemir [129]
employed a combination of the HAM and Laplace transform to address two identical
problems as presented in [40]. However, they considered the C-F derivative with a smooth
kernel as the time FD. Furthermore, Fadugba [130] applied HAM to evaluate a European
Call Option when taking into account the Caputo derivative.
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5.2.3. The RPSM

The RPSM, initially proposed by Arqub et al. [131], is based on the generalized
Taylor’s formula. This approach offers an approximate analytical solution to the problem
by presenting them in a truncated series form. Haq and Hussain [41] utilized the RPSM
to derive an exact solution of Equation (49) with both constant and variable coefficients,
followed by a numerical approximation using the radial basis function (RBF) mesh-free
method. Additionally, they investigated the impact of shape parameter selection on the
accuracy of the RBF meshless techniques, and suggested a method to identify an ideal
shape parameter for improved accuracy. Subsequently, an efficient approximate iterative
mathematical approach, based on the residual power series (RPS) algorithm, was proposed
by [132] to obtain an approximate analytical solution for the same example as referenced
in [38]. The fundamental superiority of the RPSM over other existing analytical methods
stems from its capacity to reduce the complexity and duration of calculations.

5.2.4. Other Coupling Methods

Hariharan et al. [39] employed the Laplace Legendre wavelet method (LLWM) to
obtain a rapid and accurate solution, followed by an iterative method to determine the
coefficients in the Legendre wavelet expansion expression of the option function. This
approach demonstrates superior efficiency in comparison to the conventional Legendre
wavelet technique for addressing FPDEs. By integrating the expansion of eigenfunction
with the Laplace transform, a comprehensive series solution for a double barrier option was
developed in [33]. Kanth and Aruan [133] introduced the fractional DTM and the modified
fractional DTM for solving Equation (49) involving non-constant volatility rate and risk-free
interest rate. They suggested that fractional DTM and modified fractional DTM were signif-
icantly simpler compared to HPM, VIM and ADM. A finite difference method coupled with
ADM was applied by Song [42] to obtain an approximate semi-analytical solution. Subse-
quently, Uddin and Taufiq [134] proposed the Laplace transformed radial kernel method,
which utilized the Laplace transform to eliminate the time variable and significantly reduce
computational cost. Then, they employed radial kernels to discretising the spatial operator
in the local context, leading to sparse differentiation matrices. Finally, the obtained integral
form solution was evaluated by a quadrature rule. Recently, Khan et al. [135] employed
the Laplace perturbation iteration technique to derive a fractional analytical solution in
series representation.

5.3. Numerical Solution Techniques

It is worth mentioning that the limitation of previous analytic solutions is attributed to
their reliance on convolution of some special functions or infinite series with integrals. Con-
sequently, numerous researchers have been striving to develop numerical approximations
to address the option pricing problem governed by the time fractional B-S equation.

5.3.1. The Finite Difference Method

The time fractional equation typically employs the modified R-L derivative and Caputo
derivative to represent time derivative. The former is often transformed into the latter for
computational convenience, while common discrete forms of the Caputo derivative include
the L1 formula, L2 − 1σ formula, and L1 − 2 formula. The spatial and temporal mesh are
denoted as h and ∆t, respectively, while the order of the time derivative is represented by α.
These notations are consistently used throughout this section to maintain simplicity.

Regarding Equation (48), when discretizing the time derivative by L1 scheme and
central difference for spacial discretization, Zhang et al. [47] obtained a implicit FD scheme
with a convergence rate of O(∆t2−α + h2). Similar techniques were utilized in [136,137] to
investigate the same problem incorporating different FDs, namely the C-F derivative and
Caputo derivative, respectively. In recent study, Rezaei et al. [138] extended Equation (48)
by incorporating transaction costs. The new equation considers volatility as a function of
spatial derivatives, asset prices and time, with the dividend and interest rate being time
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dependent. Subsequently, an implicit discrete scheme based on mid-layer, distinct from the
previous literature, was developed with O(∆t3−α + h2) accuracy.

To improve the discretization accuracy, the compact scheme in conjunction with
higher-order temporal discretization techniques was employed. Staelen and Hendy [139]
improved the results in [47] by devising a compact fourth-order spatial difference scheme
while maintaining 2 − α order temporal accuracy through the L1 scheme. Next, Tian
et al. [48] further extended the work presented in [139]. They constructed three distinct
compact difference schemes, each with their respective order of accuracy. The first scheme
has an accuracy of O(∆t2−α + h4), where the time finite difference was discretized using
the L1 formula. The second scheme achieves an accuracy of O(∆t2 + h4) by employing
the L2 − 1σ formula. The third scheme, which utilized the L1 − 2 formula, achieves
an accuracy of O(∆t3−α + h4). Recently, Abdi et al. [49] constructed two higher-order
numerical approaches of order O(∆t3−α + h6) and O(∆t3−α + h8) by combining the L1 − 2
scheme with sixth and eighth-order compact schemes. Other similar works can be found in
references [140,141].

The non-regularity of a solution resulting from non-smoothness of initial condition
may have an impact on the accuracy of the discrete scheme [142–145]. To address this
issue, non-uniform meshes have been considered as one of the effective approaches.
Cen et al. [146] considered the pricing of the European call option governed by the
Formula (49). The authors initially adapted the Equation (48) into an equivalent integral-
differential expression. Subsequently, they introduced a first-order accurate integral dis-
cretization scheme on a priori graded mesh for temporal discretization, and utilized a
central difference scheme on a piecewise uniform mesh to approximate the spatial deriva-
tives. Kazmi [147] later improved Cen’s work by utilizing the trapezoidal rule for temporal
discretization, resulting in a discrete scheme exhibiting 1 + α-order temporal accuracy even
when considering non-smooth payoff functions. Then a Richardson type extrapolation
technique was utilized to improve the accuracy to second order in time. On the other
hand, Gu et al. [148] developed a temporal non-uniform mesh combined with the compact
difference scheme, which exhibits a convergent order of O(∆t2 + h4). Soon afterwards, a
improved work was presented in [149]. The authors proposed the sixth-order/eighth-order
compact difference scheme, incorporating a trapezoidal formulation based on temporally
graded meshes for the temporal integral term.

Huang et al. [117] considered a more complex scenario where coefficients of Equation (48)
are time dependent, making it challenging to obtain prior information about the exact solu-
tion. Consequently, they developed an adaptive moving mesh method to handle potential
singularities. Later, Kim et al. [119] extended the discrete technique presented in [117]
to the three-dimensional (3D) version of (48), and solved the resulting fully discretized
equation using an operator splitting method.

5.3.2. The Meshless Method

The meshless local Petrov-Galerkin (MLPG) and implicit finite difference method
were used by Phaochoo et al. [50] to discretise the governing equation, considering the
interest rate and volatility as functions. In MLPG method, a moving kriging approximation
was utilized to construct the shape function. This method avoids the domain integral in
the weak-form.

Another popular meshless method is RBFs, offering several advantages such as spec-
tral convergence, dimension insensitivity, independence from node connectivity require-
ments, and ease of implementation. The selection of the basis function governs the spectral
convergence. The commonly used radial basis functions (RBFs) are presented in Table 1,
which provides a range of options for practitioners to choose from based on their specific
requirements and problem characteristics [51].
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Table 1. Definition of some types of RBFs.

Name of RBF (Abbrevistion) ϕ(r), r ≥ 0 Smoothness

Gaussian (GA) e−cr2
Infinite

Generalised multiquadric (GMQ) (c2 + r2)β Infinite
Inverse multiquadric (IMQ) 1√

c2+r2 Infinite
Inverse quadric (IQ) (c2 + r2)−1 Infinite
Multiquadric MQ)

√
c2 + r2 Infinite

Cubin (CU) r3 Piecewise
Linear (LI) r Piecewise
Monomial (MN) r2k−1 Piecewise
Thin plate spline (TPS) r2log(r) Piecewise

A combination of global MQ RBF method and L1 scheme was employed by
Golbabai et al. [51] to approximate Equation (48). Nikan et al. [150] improved the method-
ology proposed in [51] by substituting the global RBF method with the a local RBF method.
The latter method exclusively utilizes neighboring data points, resulting in a sparse matrix
system. Consequently, it effectively addresses the ill-conditioning issues associated with
dense system matrices and reduces sensitivity concerns related to the shape parameter
used in the overall strategy. The global RBF method was extended by Delpasand and
Hosseini [151] to approximate the two-assets case, employing the C-N method based on
L1 scheme for discretising the time variable. The numerical results demonstrated high
accuracy achieved by the proposed method without significant computational costs. Fur-
thermore, different modified L1 schemes [152], in conjunction with various RBFs, have been
employed to address the diminished convergence order observed for the initial condition
with non-smoothness [153–155].

5.3.3. The Spline Interpolation Method

Ghafouri et al. [156] proposed a novel numerical approach that combines the Laplace
transform for approximating the time FD and quasi-interpolation using cubic B-spline for
spatial discretization. They further employed a C-N method for temporal discretization.
Roul [52] employed a spatial discretization based on a quintic B-spline basis function
collocation approach, achieving fourth-order accuracy. For temporal discretization, the L1
scheme was utilized. Based on the work of [52], Tian et al [157] proposed a L1 − 2 scheme
combined with a compact quadratic spline collocation method, which not only ensures
fourth-order spatial accuracy but also improves the temporal accuracy to 3 − α order. L1
scheme and a collocation method based upon an extended cubic B-spline with second-order
accuracy in spatial direction was constructed by Akram et al. [158]. A similar technique
was considered in [159]. Recently, Pan and Zhang [160] proposed a MQ quasi-interpolation
technique for approximating space derivative. The advantages of this method lie in its
ability to handle a resultant full matrix and eliminate the ill-conditioning issues when
employing RBF as a global interpolant function.

5.3.4. The Numerical Technique with Exponential Convergence

He and Zhang [53] implemented L1 formula in conjunction with the Fourier-spectral
method, which exhibited a convergence order of O(∆t2−α + N1−m), where m represents the
regularity of the option function and N denotes the degree of polynomial. Equation (48)
was discussed by She et al. [161] from two perspectives. Firstly, an exact solution was
derived through variable separation. The regular analysis of the solution revealed that
it blows up as the time is infinitely close to the expiry date. Secondly, to address the
challenge posed by the weak regularity of the solution, a modified L1 scheme based on a
variable transformation was proposed for time discretization, while spatial discretization
was achieved using Chebyshev Galerkin methods. X.An et al. [55] employed a space-time
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spectral method assuming a smooth payoff function. The proposed approach utilizes the
Fourier-like basis functions for spatial discretization and Jacobi polynomials for tempo-
ral discretization.

Tour et al. [162] employed a Richardson extrapolation approach based on the L1
approximation to optimise the reduction in convergence order caused by non-smooth
initial values. Additionally, they utilized a spectral element method incorporating Leg-
endre and Laguerre basis functions in the spatial domain. A computational approach
combining finite difference with the operational matrix approach (OMA) was developed
by Srivastava et al. [163]. The authors used the L1 − 2 scheme to discretise the Caputo
derivative. They utilized shifted Legendre polynomials and shifted Chebyshev polynomi-
als within the OMA to simulate the spatial derivatives. Mesgarani et al. [164] proposed
the L1 scheme and a spatial collocation method based on the third Chebyshev polynomi-
als. Subsequently, they further improved their previous work in [164] by constructing a
quadratic interpolation with 3 − α order accuracy [165] and incorporating a collocation
method utilizing Legendre polynomials [166].

5.3.5. Other Solution Techniques with Respect to Other FD

In [167], researchers suggested that a fixed fractional order cannot adequately represent
the dynamics of market uncertainties or price fluctuations. To address this issue, they
introduced the concept of a random order as a variable fractional order with random
values. Motivated by the idea of variable FD in [167], Zhang and Zheng [168] introduced a
time-dependent variable FD to a time FBS pricing equation. A fully-discrete finite element
scheme was derived by employing a difference scheme for temporal discretization and the
finite element technique for spatial discretization.

When considering the distributed order derivative as the time derivative, Kumar and
Singh [56] developed a novel approach based on operational matrices derived by Cheby-
shev and Legendre wavelets. Moreover, by combining the Gauss-Legendre quadrature
formula and standard Tau method with the derived operational matrices, they transformed
the distributed order time FBSE into a system of linear algebraic equations. On the other
hand, Rahimkhani et al. [169] achieved the same goal by utilizing the fractional inte-
gral operator of Hahn hybrid functions, the Gauss-Legendre quadrature formula and the
collocation method.

Mohammadizadeh et al. [170] investigated a more complex ψ-Hilfer fractional B-S
(ψ-HFBS) equation with non-constant volatility. They provided the solvability analysis
and implemented a time fractional Chebyshev pseudo-spectral method under appropriate
terminal and boundary conditions.

5.4. Complex Time Fractional B-S Equations and Their Solutions
5.4.1. Equations Derived by Fractional Taylor Series and Their Solutions

By utilizing a derivative technique similar to that employed in (42), a time FBSE was
derived in the following form [34]

MR
0 Dα

t V = (rV − rS
∂V
∂S

)
t1−α

Γ(2 − α)
− Γ(1 + α)

2
σ2S2 ∂2V

∂S2 . (50)

Similarly, Farhadi et al. derived an alternative time fractional B-S equation [171]

MR
0 Dα

t V =
t1−α

Γ(2 − α)
(rV − rS

∂V
∂S

− σ2S2

2Γ2(1 + α)

∂2V
∂S2 ). (51)

As for Equation (50), Jumarie [35] derived an exact solution expressed as an integral
form involving the M-L function by using a similar technique as used in (42). The numerical
approximation of Equation (50) was addressed by developing an implicit finite difference
scheme [45] and a θ finite difference scheme [172,173].
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When examining stocks with continuous dividend payments, a pricing equation
proposed by Nuugulu et al. [174] closely resembles the one (50). To estimate European
put option premiums, an implicit finite difference scheme with O(∆t + h) was constructed.
Meanwhile, Nuugulu et al. [175] improved upon the results in [174] by introducing a robust
numerical method based on extending a C-N finite difference approach with O(∆t2 + h2).
Considering the time-varying dynamics of asset prices in the market, Rezaei et al. [118]
proposed a more complicated equation, which incorporates time-varying interest rates and
dividend parameters. Subsequently, an L1 scheme combined with central difference was
employed to obtain a discrete scheme with O(∆t2−α + h2).

In [171], Equation (51) was solved using a reconstructed variational iteration method,
which yielded a series solution. Later, Rezaei et al. [176] employed a similar technique
presented in [118] to evaluate double barrier options in the European market with dynami-
cally adjusting barriers, which are governed by an extension of Equation (51) incorporating
time-dependent interest rates, volatility, and dividend parameters.

5.4.2. Equation with Markov-Switching Properties and Its Solution

Modifying the classical B-S equation for the dynamics of the price of the underlying
asset to incorporate Markov-switching properties, a B-S equation with regime-switching
can be derived. Building upon this concept, Laura proposed a time FBSE with regime-
switching [78]:

C
0 Dαi

t Vi −
1
2

σ2
i S2 ∂2Vi

∂S2 − (ri − δi)S
∂Vi
∂S

+ riVi − qiiVi − ∑
i ̸=j

qijVj = 0,

0 < αi < 1, i ∈ J , (52)

by using Itô’s lemma within the framework of the no-arbitrage principle and assum-
ing that the evolution of option price over time is a fractal transmission system. Here
J = {1, 2, · · · , J} is a finite state space. ri, δi and σi are the risk-free interest rate, the divi-
dend rate and the asset price volatility in the state i, respectively. qij is the same as that in
FPDE system (41).

In [78], researchers proposed the L1 scheme combined with the Richardson extrapo-
lation approach to improve the temporal accuracy. For spatial discretization, a local RBF-
generated finite difference method was constructed, where the finite difference weights
were determined using Gaussian RBFs. This approach achieved a fourth-order convergence
rate. Then they further explored the spectral element method. For the European option
with a non-smooth payoff at the strike price, the entire domain was divided into two sub-
domains. The Legendre polynomials and stable Gauss-Radau-Laguerre polynomials were
employed in their respective sub-domains to derive a fully discrete scheme with spectral
accuracy. Finally, the author applied these numerical techniques to address the pricing of
some special options such as the butterfly call option and double barrier call option.

5.4.3. Equation with Jump-Diffusion and Its Solution

A time FBSE under jump-diffusion can be described as follows [177]:

C
0 Dα

t V +
1
2

σ2S2 ∂2V
∂S2 + (r − λk)S

∂V
∂S

− (r + λ)V

+ λ
∫ ∞

0
V(Sξ, t)φ(ξ)dξ = 0, (53)

where λ > 0 denotes the intensity of the independent Poisson process and k is the expected
relative jump size. φ(ξ) represents the probability density function of the jump with
amplitude ξ, which satisfies that ∀ξ, φ(ξ) ≥ 0 with

∫ ∞
0 φ(ξ)dξ = 1.

In [177], the authors considered both numerical and analytical solutions for Equation (53).
The equation was initially transformed into a fractional integro-differential equation with
the Fredholm integral operator. By utilizing the L1 scheme on a graded mesh for time dis-
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cretization, combined with a second-order central difference scheme for spatial derivatives
and the composite trapezoidal approximation for the integral component, a fully discrete
framework was derived. Furthermore, an analytical approximate solution was obtained
using the ADM. Then they compared this result with numerical solution.

6. Inverse Problem of Fractional B-S Equations

To the best of our knowledge, research on the inverse problem of FBSEs is still limited.
The coefficients of the FMLS Equation (40), including the tail index α and implied

volatility σ, were estimated by Jiang [178] using three well-established statistical inversion
schemes, namely Markov Chain Monte Carlo, slice sampling algorithm, and Hamilto-
nian/hybrid Monte Carlo algorithm. Jiang and Xu [179] investigated a time FBSE (48) in
which the implicit volatility is thought to be related to the underlying asset price. Firstly,
they constructed a robust L1-central difference implicit approximation scheme to effectively
solve Equation (40). Subsequently, a linearization method was employed to transform
an inverse problem into a Fredholm integral equation. Then the implied volatility was
reconstructed via additional data. To tackle this ill-posed problem, the Fredholm integral
equation was solved by the Tikhonov regularization method. Recently, X.An et al. [180]
aimed to estimate the parameters of Equation (49) with Caputo derivative by using the
real option prices of the S&P 500 index options. They initially developed a high order
difference scheme using the L1 − 2 formula and central-difference technique, achieving an
accuracy of O(∆t3−α + h2). Then they employed a modified hybrid Nelder-Mead simplex
search and particle swarm optimization (MH-NMSS-PSO) to determine the values of the
implied volatility and the order of Caputo derivative. Based on empirical results, it was
observed that the order of FD can serve as a market fluctuation indicator for classifying
financial environments, exhibiting exceptional adaptability in fitting real data compared to
the traditional B-S equation.

7. Conclusions

The real financial market exhibit inherent nonlinearity and memory effects that can be
more accurately captured using fractional derivatives and integrals, leading to more precise
modeling methods. In traditional integer-order calculus, market fluctuations are typically
measured using volatility as an essential risk indicator in finance. However, due to the
presence of long-range memory and heavy-tailed along with leptokurtic characteristics
in financial markets, traditional methods may not fully reflect the actual situation. The
introduction of the fractional index parameter in FBSEs allows for adjusting the behavior
of long tails and non-normal features in stochastic processes. This enables better characteri-
zation of long-term correlations and provides more accurate and reliable risk measurement
methods. The solution techniques of FBSEs offer efficient and stable ways to analyse and
predict market behaviors.

With the increasing popularity of computational methods and ongoing advancements
in financial mathematics, it is worth expecting further improvements and innovations
in the field of FBSEs. These may include utilizing machine learning and neural network
techniques for approximating solutions, as well as integrating hybrid equations and multi-
factor equations into the fractional-order B-S framework. We believe that as these equations
continue to evolve, they will undoubtedly play a crucial role in informed decision-making
for financial professionals and policymakers.
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