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Abstract: This paper focuses on the analysis of a coupled system governed by a Caputo-fractional
derivative with g-integral-coupled boundary conditions. This system is particularly relevant in mod-
eling multi-atomic systems, including scenarios involving adsorbed atoms or clusters on crystalline
surfaces, surface-atom scattering, and atomic friction. To investigate this system, we introduce an
operator that exhibits fixed points corresponding to the solutions of the problem, effectively trans-
forming the system into an equivalent fixed-point problem. We established the necessary conditions
for the existence and uniqueness of solutions using the Leray—Schauder nonlinear alternative and the
Banach contraction mapping principle, respectively. Stability results in the Ulam sense for the coupled
system are also discussed, along with a sensitivity analysis of the range parameters. To support the
validity of their findings, we provide illustrative examples. Overall, the paper offers a thorough
examination and analysis of the considered coupled system, making important contributions to the
understanding of multi-atomic systems and their mathematical modeling.

Keywords: fractional g-integral; boundary conditions; Riemann-Liouville fractional g-derivative;
fixed point theorems

1. Introduction

The fundamental concept of fractional calculus involves replacing natural numbers with
rational numbers in the order of derivation operators. Although this concept may seem simple,
it has far-reaching consequences and results that pertain to phenomena in various fields, such
as bioengineering, dynamics, modeling, control theory, and medicine [1-4]. Additionally,
Lopez et al. presented a new definition of fractional curvature of plane curves, specifically
when the fractional derivative is in the Caputo sense [5]. Salati et al. [6] studied the
numerical solutions of Bagley—Torvik and fractional oscillation equations in the Coputo
sense. Asaduzzaman et al. [7] studied the existence criteria of at least one or at least three
positive solutions to the Caputo-type nonlinear fractional differential equation by using
Guo—Krasnoselskii’s fixed point theorem.

In the 20th century, significant research activity focused on g-difference equations,
which emerged as an intriguing subject in mathematics and its applications. These equa-
tions found applications in areas like orthogonal polynomials and mathematical con-
trol theories [8-10]. The book [11] provides comprehensive definitions and properties
of g-difference calculus. The extension of fractional differential equations to fractional
g-difference equations has attracted the attention of many researchers. For detailed dis-
cussions and examples of nonlinear fractional g-difference equations subject to various
boundary conditions involving g-derivatives and g-integrals, the book by Annaby and
Mansour [12] is a valuable resource. Furthermore, extensive research has been conducted
on g-difference and fractional g-difference equations, as evidenced by works such as [13-15].
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Recently, Laledj et al. [16] conducted a study focusing on the existence and Ulam
stability of implicit fractional g-difference equations in both Banach spaces and Banach alge-
bras. They employed fixed point theory, specifically the nonlinear alternative of Schaefer’s
type proven by Dhage, as well as Dhage’s random fixed point theorem in Banach algebras.
Another study conducted by Allouch et al. [17] focused on the existence of solutions
for a class of boundary value problems involving fractional g-difference equations in a
Banach space. They utilized Monch'’s fixed point theorem and the technique of measures of
non-compactness. Boutiara et al. [18] examined a system of fractional boundary value prob-
lems, specifically addressing the existence of unbounded solutions for a class of nonlinear
fractional g-difference equations on an infinite interval. The study was conducted within
the context of the Riemann-Liouville fractional g-derivative. Rajkovic et al. [19] present the
properties of fractional integrals and derivatives in g-calculus. El-Shahed et al. [20] studied
the properties of positive solutions of the g-difference equation. Ahmad et al. [21-24] stud-
ied the existence of solutions for nonlinear fractional g-difference equations and inclusions
with nonlocal conditions.

The nonlinear Langevin equation (NLE), formulated by the brilliant French physicist
Paul Langevin [25] in the early 20th century, played a crucial role in accurately describ-
ing Brownian motion. The Langevin equation has found diverse applications, ranging
from analyzing stock market behavior and modeling evacuation processes to studying
fluid suspensions, self-organization in complex systems, photo-electron counting, and
protein dynamics.

The Langevin equation serves as a valuable tool for investigating the temporal evolu-
tion of physical phenomena. However, when it comes to dynamics in complex media, the
standard Langevin equation falls short of providing an accurate description. To address
this limitation, several generalizations of the Langevin equation have been proposed. One
such generalization is the generalized Langevin equation, which incorporates fractal and
memory features through a dissipative memory kernel. Recent research indicates that
introducing fractional derivatives of non-integer orders into the Langevin equation offers
a more adaptable model for fractal processes. Notably, the investigation of the Langevin
equation involving g-fractional derivatives of various orders remains an unexplored area
of research.

Almalahi et al. [26] considered the nonlinear fractional integro-differential Langevin
equation with the ¢-ABC fractional derivative of the type:

ABC (ABCDOP 4 A)z(w) = g(w, z(w), B I[P z(w)), w € (0,b), .
z(0) = a1,24(0) = ay, @

where ABCD%¢ and 4BCD? are the ¢-ABC fractional derivatives of order « and o, respec-
tively such thata, ¢ € (0,1], 48 ]Igip is a ¢-Atangana-Baleanu-fractional integral of order «, ¢
is an increasing function, having a continuous derivative ¢’ on (0, b), such that ¢'(w) # 0,
forallw € (0,b) and g : U x R? — R is continuous and differentiable function such that
8(0,w(0),48 Iy¥w(0)) = 0 and g}, (0, (0,48 Iy¥w(0)) = 0.

In [27], Ahmad et al investigated the existence of solutions for the Caputo fractional
g-difference integral equation with two different fractional orders and nonlocal boundary
conditions

C]D)‘qlf (CD?{ + )L)Z(a)) =af(w,z(w)) +')’]Igg(OJ,Z((U)),O <w<1,
n1z(0) — U(w(lfY)qu 0) oo = mz(B1),

12z(1) + 02Dyz(1) = 122(B2),

where ¥,Y,{ € (0,1), f, g are given continuous functions, A, «, 7y are real constants and
Ui, 0, Y; € R, ,Bi € (0,1) (l = 1,2).

Boutiara et al. [28] utilized the eigenvalue of an operator to establish the existence
and uniqueness of solutions by employing techniques based on condensing operators and
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Sadovskii’s measure to investigate the following specific Caputo fractional g-difference
boundary value problem

DY (CDYz(w) - g(w, 2(w)) )z(w) = f(w,z(w)), weloT),
11z(0) —I—O’chng(O) =m )‘1 % z(x)dgx, A1 € (0,T),01 >0,
122(0) + 02D 2(0) = 1 AZ M 2(x)dgx, A2 € (0,T), 02 > 0,

where C]D);Y C]D)Y and C}D)gi (i = 1,2) are the fractional g-derivatives of the Caputo type
of orders 0 < ‘I’ Y, < 1,i=1,2¢f :1[0,T] xR = R continuous functions and
wi, o, €RY, (i =1,2).

Based on the justification provided, we are motivated to thoroughly evaluate and
investigate the necessary conditions for the existence and uniqueness of solutions for a
coupled system through the application of Caputo-fractional g-difference equations. Our
aim is to carefully examine and determine the specific requirements that must be satisfied
to ensure the existence and uniqueness of solutions for the following problem

CD‘qyl C]Dgl + A )z1(w) = a1 fi(w, z1(w), z2(w)) + 'hllg]gl (w,z1(w),z2(w)), o
CID):;z CDqu + A )z2(w) = aafo(w,z1(w),22(w)) + 'yz]lgzgz(w, z1(w), z2(w)),
equipped with g-integral-coupled boundary conditions
iz ( )—0'1( (1=Y1)Dyz, (0) =mzi(p1),
p2z1(1) + 02Dgz (1) = 1 (Ba), 3)

(
)
H322(0) = 03 (w1 Y2Dyz5(0)) = 1aza(Bs),
paza(1) + 0uDyz (1) = naz2(Ba),

where

1. 0<w<10<g<l

2. CD;FZ' and C]D)in denote the fractional g-derivatives of the Caputo type of orders 0 < ¥;,
Y;<1li=12

3. ]Igi denotes Riemann-Liouville integral of order {; € (0,1),i = 1,2.

4. Ay, ,i=1,2are real constants and y;, 05,1 € R, B; € (0,1),i =1,2,3,4.

5. fi,8:[0,1] x R? = R, (i = 1,2) are given continuous functions satisfied the following
hypotheses:

(H1) There exist constants L;, K; > 0,7 = 1,2, such that, foreachw € [0,1] and 21,25, 2], 25 € R,
we have
filw,z1,22) — filw,z1,23)| < Li(lz1 — 21| + 22 — 23),
18i(w,z1,22) = &i(w, 21, 23)| < Ki(lz1 — 21| + |z2 — z3]).
(Hp) There exist real numbers m;, im;, n;, 1; > 0 (i = 1,2), and my, 1i1g, ng, ig > 0 such that,
Vz1,2z2 € R, we have

|fi(w,z1,22)| < mg +my|z1| + ma|z2|,

‘fz(w,21,22)| < my +1’711|21| + 7712|22‘/
181(w, 21, 22)| < mo + ny|z1| + m2|z2],

and
182(w, 21, 22)| < 1g + 111 |z1| + 12|22
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1.1. Contributions of This Paper

In this context, it is important to highlight that system (2) with conditions (3) involves g-
fractional type Langevin equations with distinct fractional orders. The nonlinearity present
in these equations encompasses both non-integral and Riemann-Liouville-type g-integral
terms. However, it is possible to reduce the nonlinearity to either a purely non-integral
case or an integral nonlinearity case, corresponding to «; and ; (for i = 1, 2) respectively.
Additionally, as g approaches 17, system (2) can be reduced to a system of Langevin
equations with two different fractional orders, or a system of second-order g-difference
equations with the values ¥; and Y; (for i = 1,2). An alternative and flexible approach
involving {; (for i = 1,2) is provided by the integral type nonlinearity, which is expressed
in terms of the g-integral of the Riemann-Liouville type with the order {; in the range
(0,1). Moreover, in feedback control problems such as determining the steady-states of a
thermostat, four-point nonlocal boundary conditions arise. These conditions are associated
with a controller positioned at the domain’s edge, which either adds or removes heat based
on temperature variations caused by two variable (nonlocal) positions within the domain
under consideration.

Overall, the combination of applying Langevin equations to multi-atomic systems,
analyzing a coupled system with a Caputo-fractional derivative, introducing an operator for
the fixed-point formulation, establishing necessary conditions for existence and uniqueness,
and validating the results through illustrative examples contributes to the novelty and
significance of this work.

1.2. Construction of This Paper

The remainder of this paper is organized as follows: In Section 2, we provide a review
of fractional calculus notations, definitions, and relevant lemmas that are essential to our
research. Additionally, we present an important lemma that allows us to convert the
coupled system of Caputo-fractional g-difference Equation (2) into an equivalent integral
equation. Section 3 presents the main findings regarding the existence and uniqueness of
solutions for the coupled system of Caputo-fractional g-difference Equation (2). In Section 4,
we discuss the stability results with parameters sensitivity analysis. To illustrate these
results, we present a numerical example in Section 5. Finally, we conclude this paper with
a summary of our findings in the last section.

2. Preliminary Results and Essential Concepts

In this section, we provide a review of fractional calculus notations, definitions, and
relevant lemmas that are essential to our research. Additionally, we present an important
lemma that allows us to convert the coupled system of Caputo-fractional g-difference
Equation (2) into an equivalent integral equation. Let S = {z € C([0,1],IR)} be the space
equipped with the norm ||z|| = SUP (o] |z(w)], Clearly, (S, ||-||) is a Banach space. Let
S x S be the product space with the norm ||(z1,22)|| = ||z1]| + ||z2]| for (z1,22) € S x S.

For every a € R, the g-number [a]; is defined by [a]; = %, where g € (0,1),is an
arbitrary real number. Also, the g-shifted factorial of real number a is defined by (a,9)o = 1,
and (a,9), = 1_[;7:_01(1 —ag/) forn € NU {co}. For a,b € R, the g-analog of the power
function (a — b)" with n € Ny is given by

(a—b)0 =1, (a—D)" :H;‘;()l(a—bqj).

In general, if ¢ is a real number, then (a2 — b)(©) = 0TI ( aby ) and a(®) = a2 when

]:O a—bqj*@
b:O.IfQ>0andO§aSbgw,then(w—b)(g) < (w—a)(g).
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Definition 1 ([12,29]). Let 0 > 0,q € (0,1),and z : [0,1] — R be a continuous function. Then
the Riemann—Liouville fractional g-integral for the function z of order ¢ is defined by

(192) (@) = z(w),
(192) (@) = 1y i (@ = g5) @ Va(s)dgs, >0,

provided that the right-hand side is point-wise defined on [0, 1] and w € [0,1], also, the g-Gamma
function T (o) is defined by

1—g)le-1)
Iy(e) = ((1_2)91, 0eR/{0,-1,-2,..},

which satisfies the relation Ty(0 + 1) = [0]4T4(0)-
Also, for any x,y > 0, we define the q-Beta function By(x,y) as

By(x,y) = lm 4)

Definition 2 ([12,29]). The Riemann—Liouville fractional g-derivative of order n —1 < ¢ < n,
n > 1, for a function z : [0,1] — R is defined by

B 1 w z(s)
(D2) (w) = I

Tin=0) Jo (w—gs)et™™

Lemma 1 ([12,29]). For ¥, 0 € R", and let z be a function defined on [0,1]. Then,

¥
L) (w) = (I D)),
(]D):]P}Igz)(w) = z(w),
T,(¥+1)
et = et YE(CLw) 020 w0
Ifz =1, then Hg(l)(w) = rq(gl+1>wg,f0r all w > 0.

Lemma 2 ([12,29]). Let 0 > 0. Then, we have
[e] -1
(]Is c]Df,?z)(a)) =z(w) —
In the case o € (0,1), we have
(I3 ‘Dz) (w) = z(w) — z(0).

Theorem 1 ([30]). Let C(J,R) be a Banach space. The operator T : S — S is a contraction if
there exists a constant 0 < L < 1, such that, i.e., | T (z) — T (z*)|| < L||z — z*|| forall z,z* € S.

Theorem 2 ([31]). Let S be a non-empty, closed-convex subset of a Banach space X. If T : S — S
is a completely continuous operator and ®(T) = {(z € S,z = T (2),0 < & < 1}, then either
®(T) is unbounded or T has a fixed point.

Notations

To improve readability, we fix the following notations and, subsequently, refer to them
in our analysis without any additional explanations



Fractal Fract. 2024, 8,73 6 0of 22
Y
A = % (2 — p2)w (ﬂzﬁzl—ﬂz+¢fz[Yl] )}
2
A2 = Z—l |:(171 (171181 ‘|’(7'1 Yl l]):|
2
Az = %l (m — (771,31 —01[Yq] q> ,
(%
Ay = Al (m — (771/31 —o1[Yq q> ,
3 Y.
As = Z? [(’74 — )" = (nap? — pat aalYal, )|,
Ag = % (113 — p3)w (773/53 + 03[Y)] q) ,
A7 = % (113 — p3)w (773,53 — 03[Yo)] q) ,
(.
Ag = Xi (13 — p3)w (173/33 — 03[Y2] q) , ©)
and
Y Y
A= (n =) (1BY — 2+ o2y = (2 — 2)e™ (B +anlYal, ).
Y. Y
By = (15— p3) (naBy? — pa+uXaly) — (14 — )2 (a3 + 03[Yal, )
In the sequel, we set
(14 1411BY + 1 421BY + | As] + ] As])
o (1 +1) '
(14 141 B 4 A By + | As| + | Ad])
. (i + %1 +1) '
(14 [An By 6 4 A By T | Ag] + | Ag))
F3 (Y1 +¥1+41+1) ’
(1+ 45837 + | A6l By + | 47| + |Ag] )
P4 T,z +1) /
(1 + [ As|By Y2+ | A6 BT + | A7 + |A8|)
05 T,(Ya+ ¥, +1) '
(1 + |A |'BY2+‘Y2+§2 + |A |'BY2+‘Y2+§2 + |A7| + ‘Ag‘) ©)
Pé .

3. Main Results

Fq(Yz +¥+0+ 1)

In this section, we will discuss the existence and uniqueness of the solution for sys-
tem (2). The study of existence results for fractional g-difference equations is an active area
of research, and researchers continue to develop new methods and techniques to address
this problem. By establishing the existence of solutions, researchers can provide a solid
foundation for further analysis, numerical simulations, and applications of these equations
in various fields of science and engineering.
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3.1. Equivalent Integral Equation

In this subsection, we will begin by obtaining the equivalent integral equation of the
following linear fractional system:

CDy (DYt + At )21 (w) = By (w), o
CDy2 (DY + A2 ) 22 (w) = ha(w),
equipped with g-integral-coupled boundary conditions,
#1z1(0) — 01( (1-Y1) qul(o)) =mzi(B1),
#2z1(1) + 2Dgz1 (1) = 221 (B2), 8)
#322(0) — 173( (1722 (0 ) = 11322(B3),
#azo(1) + 04Dyz2(1) = 422(/34)

where 0 < w <1,0< g < landhy,hy €S.

Theorem 3. Let hy,hy € S.If (z1,2z2) € S X S, then (z1,z2) satisfies system (7) with condition
(8) if and only if zy and z are given by

2(w) = /0 w%(ﬁlhlm - Min(v) ) dyx
+A / A w (11 (x) = a2 (x) ) g
A /ﬁz ~ YlYl Y (0 (x) — Az () ) dyx
4 A, /0 W(ﬂ‘;ﬂhl(x) — Miz1(x) ) g
_A, /0 ' W(H}lhl(x) —Alzl(x))dqx, )

and

z(w) = /Ow M (]I;Yzhz(x) - /\zzz(x))dqx

I(Y2)
+As /53 (Bs ;qq’;z( - (H;Yzhz(x)—/\222(x))dqx
—Ag /ﬁ‘* (B4 ;qfi’;jz ) (H‘quhz(x)f/\m(x))dqx
YAy /0 (_I,Zz:){;zn(]l;bhz(x) — Aaza(x) )y
+ Ag / Yz— 5 )(]I:,Yzhz(x)—)\zzz(x))dqx, (10)

Proof. Applying the operators H;Yl and H;Pz to both sides of Equation (7), respectively, and
using Lemma 2, we have

{ ECD;“ + /\1521 (w) =1y ' (w) — Mz (w) — co, a1

CDgz + Ap Zz(w) = H;chz(w) — /\222((4)) — Cp.
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Applying the operators Hgl and H}z to both sides of Equation (11), respectively, and using
Lemma 2, we have

) [y §
= quiy) (T893 () = Az () ) g — -0 — cx,

12)
w—gx)\'2 1) WY (
fo 1ﬂq+2< ;Yth(x) - AZZZ(X))dqx - WZZH)CZ —C3.

The g-derivative of Equation (12) is

)M1-2) /oy [Yq]yw¥17!

Dyzq(w fo qu?xyln) (Hq Thy(x) — )\121(x))dqx - r;&l;rl)l €0
¥ [Y2] ™2™

Dyzo(w) = [y % (]Iq Zhy(x) — AZZQ(x)>dqx - Wcz.

Using the boundary conditions (8) in Equation (12) and the definition of the g-beta function
together with the property of (4), we find that

A

1 — (Ylfl)
—11(12 — p2) /015 % (H;Plhl(x) - A1Z1(x))dqx

cp =

(Y1-1)

B2 —
+12(111 — p1) '/0 %

~ax)(Y172)
=021 — 1) /01 (11*,,(2{1)—1) (H;Plhl (x) — Alz1(x))dqx

1(1 _ (Y1-1)
—12(m — p1) ./0 %

(]Igjlhl(x) —Mz1 (x))dqx

<I[;Flh1 (x) — Alzl(x))dqx] ,

B _ ) (Y171
q = % ’71(725;1—#24"72[\{1],7)/0 %(Hglhl(x)—)\lzl(xvdqx

(Y1-1)

B2 —
—712(711[3}{1%—(71[\{1]‘1)/0 %

_ap)(Y172)
+0y (771,3}{1 -0 [Yl]q) /01 (qu(z{l)l) (H;Plhl(x) - A1Z1(x)>dqx

: _ (Y1-1)
+172 (mﬁ}“ -0 [Yﬂq) /01 % (H;Y%(x) - A1Z1(x))qu] ,

(H;Ylhl(x) — Mz (x))dqx

Fq(Yz + 1)
A

3 ~ap) (27D
—113(17a — pa) /Oﬁ % (]I;Yth(x) - Azzz(x)>dqx]

(Y2-1)

+174(13 — p3) /0/34 % (H;Yzhz(x) - AzZZ(x))dqx
)(Yz*Z)

—0oy(n3 — p3) /01 (F;(lz(gil) (]I;Yth(x) — Azzz(x))dqx,
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and

)(Yz—l)

NE (7745}2 —Hat 0y [Yﬂq) /Oﬁz (Br—gqx) 2V

“ T I, (Y2)

(]I;chz(x) - Azzz(x)>dqx
— i s M Y _
na By +ealal, ) | o (I (x) — Aaza(x) ) g

_ ) (Y272)
o1 estt) [ C ey (0 et o

1 (Y2-1)
Y2 _ A=gx) =7
(183"~ alval,) [y () Azzz(x))dqx] .
Substituting the values of ¢, c1, c2, and c3 in Equation (12) yields solutions (9) and (10).

This completes the proof. [

As a result of Theorem (3), we obtain the following theorem:

Theorem 4. Let (z1,2) € S X S. Then, (z1,2z;) satisfies system (2) with condition (3) if and only
if z1 and z, are given by

(Y1-1)

W (w—qgx _
a@) = [ I (I B (0 + ] G () — Az 1)

zp(w)

P BTV e AT
+Aq /0 W((Xlﬂ 11:2122( )‘|")’ H 1761~ GZ122( )7/\121(X))dqx

(Y1—-1)

P2 (B2 —qx)
b

( ]I\PlPZl] Zz( )+’y H‘Y1+€1 lG;1 Zz( )Alzl(x)>dqx‘|

La—go by ¥+ -1
+Aj3 /o W(aﬂl 11?21122( )+l T G;lzz( )—Alzl(x))dqx

HA—g™ ¥i+01-1 -1
—Ay /O m(ﬂ(lﬂ lezz( )+’Y]I Gz]zz( )—Alzl(x)>dqx ,

and

@ (w—g0)™ Vg ¥r4+0r—1
LTy (R ) 57 G () — Aazal)

P (B a0V e ¥y t+{p—1 -2
+As /0 W(o& oI 2F2122( )+')’ H 2+0o— GZ122( )—AzZz(X))dqx

(Y2—-1)

A /054M

fap2 ¥y lo-152
Fq(Yz) (0& I 2F21Zz( >+'Y H 2+0— G21 22( )—AzZz(x))dqx‘|

La—g0)™ D Yot lp—1 -2
+47 /0 W(“ZH *F, zlzz( )+7H e Gzlzz( )-AzZz(x))dqx

1(1_11x)(Y2_2) Y, -2 Yo 4-p—1 2
+Asg /0 m( Al 2F2122( )+'Y]I 2762 Glez( )—AzZz(x))dqx ,

where El,_, (x) = fi(x,21(x), 22(x)), G, 1, (x) = gi(x, 21 (x), 22(x)), i = 1,2
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Ti(z1,22) (w)

T2(z1,22) (w)

To obtain results using the fixed point technique, we define an operator 7 : S x S —

S x Sby
_( T(z1,22)(w) )
T(ZLZZ)(W) - < 7-2(21,22)((0) y (13)
where
w _ (Y1-1)
/O %(mﬂ“’lé} (@) F I TG L () = Mz (x) ) g

[ b (/31—‘1x)(Y1_1) ¥ 11 Y1 +71—1 1
+Aq /0 W(wﬂl 1F2122( )—f—’)/ ]I 1761~ GZ1ZZ( )—)lel(X))dqx

B (B —q0) MY e Y401 A1
—Ay /O W (0(1}1 Ile Zz( ) + 7 ]I 1761 GZl Zz( ) —AMz1 (X))dqx
qx)

[ (1— (Y1-1) ¥ .
+As3 -‘/0 W (“1]I z1, zz(x) + 7 H 1= Ggl 22( ) — Alzl(x))dqx
1 _qx)(Yl_z) - .
—Ay /0 m(“lﬂ 7, zz(x) +ml, 14— G;l Zz( x) — Alzl(x))dqx , (14)

and

© (w—gqx)7Y ¥y 2 Y1012
J vy (I E (04 TG 4 (6) — Az () )y

[ B3 —gx (Yz—l)
+Asg A %(0{ ]I‘YZF221 Zz( )+’Y ]I‘Yz+§2 ngl ZZ( )_ Azzz(x)>dqx

[ 184 (164 _qx)(YZ_l) v v 1
—Ag ‘/0 W( i 21:22122( )+'y ]] 2+02— G§1ZZ( )7/\222(3())51[79(

[ 1 (1— qx)(Yzfl) v o
+A7 /0 W( ]I zezl Z (.X') + ’)/ZH 2t+62— G%l Zz( ) — AzZz(X))dqx
Y,—2)

Mg V) 2 ¥o40-1 2
4 | m(“zﬂ By (0) + BTG () — Maza() ) g (15)

Observe that system (2) with conditions (3) has solutions only if the operator equation
T (z1,22)(w) has fixed points, where T is given by Equation (13).

3.2. Uniqueness of Solutions

Theorem 5. Assume that (Hy) holds. Then the system as described in (2) has a unique solution on
[0,1], provided that

(Lip2o1 + Kip371 + Lopsar + Kopey2) — max{[A1|p1, [Azea} < 1. (16)
Proof. Define the closed ball B, = {(z1,22) € S X S : ||(z1,22)|| < r}, with

Ni1p2a1 + Myp371 + Nopsao + Mapey2
. (L1p2ay + Kyp371 + Lopsas + Kppey2) — max{|A1]p1, |A2]pa}’

where N1 = sup,¢ (g 1)/ f1(w,0,0)[, N2 = sup,,c (g 1) f2(«,0,0)|, M1 = sup,,c(o1)/81(w, 0,0)]
and M, = SUP,cfo1] |g2(w, 0,0)|. Now, we show that 7 (B,) C By, where T : B, =+ S x Sis
defined by (13). For any z1,2, € By, w € [0,1] with (H;), we have
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|f1(w,z1(w), z2(w)) — f1(w,0,0)] + |f1(w,0,0)]
Li(|z1(w)| + |z2(w)]) + | fi(w,0,0)]

Li(llza ]l + [[z2l) + N1

Lir+ Nj. (17)

filw,z1(w), 22(w))]|

VAN VAN VAN VAN

Similarly, we can find that
fa(w, z1(w), 22(w))| < Lar + Ny, (18)

81(w, z1(w), 22(w))| < Kyr + My, (19)
|g2(w, z1(w), z2(w))| < Kar + Ma. (20)

Thus, we obtain

171(z1, 22

w ((U _ qx)(Yl—l) v
su (] 1
we[(fl]{/o rﬂ(Yl) ( H

Fla () 4 mI o

IN

21,22

Gh, 2 ()] + [Aa] 71 ()] ) g

Br(pr—qn) Vg
Al /o Tq(Y1) (alﬂql

¥+ -1
le1,22(x)’ + 1l 1+

c%mhwmwwﬁ

B2 (B —q) Yy
Az /0 Ty(Y1) (alﬂq 1

Fa ()] + It o?

21,22

G%mhwmwwﬁ

[ 1 (1 = g (Y1) N
sl [ OB (B, 0] + Gl (0]l 21 (01

rq(Yl)

/1 (1 - qx)(Y172) (“1]1‘1’1
o Tp(Y1-1) I

Y -1
+]As| B ()] + It %@mthMWM%4}

By (17)-(20), we have

71 (21, 22)
( (Llr + Nl)oq
(Y1 +Y¥1+1)

IN

) (@ A BT Al ]+ 4]
+< (Kir + M1)m
Li(Y1+¥1+0+1

Alllzall 7y, Y Y
e Ap|BY 4+ | Ay |BYY + | A5 + |A
rq(Yl+1)(“’ +[A1]By" + [A2|By" + |As| + | 4|)

(Lip2a1 + Kyp371)7 + [A1]p1|z1 || + (Nip2oes + Mip371).

)) (wY1+‘F1+Cl + ‘A1|ﬁ;{1+‘1’1+§1 + ‘A2|ﬁ;{1+‘1’1+§1 +|As] + |A4|>

+

IN

In the same way, we can find that

172(21,22) || < (Lapsaz + Kopev2)r + |A2oal[z2]l + (N2psaz + Mapsy2)-
From the above inequalities, we have

17T (z1,22) | < Ti(z1,22) || + | T2(21,22) ||
< ((L1p2a1 + K1p371 + Lopsaz + Kapsy2) + max{|Aq|p1, [A2]oa})r
+(N1p201 + My 371 + Nopsaz + Mopey2)

r,

IN

which indicates 7 (B;) C B,. Now, by applying conditions (H;) and (H>), and for any
(z1,22), (2},23) € By, w € [0,1], we have



Fractal Fract. 2024, 8,73 12 of 22

171(21,22) = Th(21,22) |

Li(||z1 — 2| + llz2 = 23]
l"q(Yl +¥1+1)

Nw%ﬂm%%HM%%HMHM)

Ki(||z1 = zi[| + lz2 = z5[)m Y 4¥ 40 Y ¥4
A 1 1 1 A
+< (Y1 +¥1+4+1) (a) + [A2[B, + | Ay

[M]|z1 — 23]
< (llz1 = 211l + llz2 = z3||) (L1p2e1 + K1p371) + |[M]p1llz1 — 21 ]-

Y1+Y Y Y
[ArlB T 4 Aq) + (¥t + A1 + |Aa|BY + | As| + | Aal )

A\

Similarly, one can obtain
172(21,22) = Ta(z1, 22) |
< (21 =27] + llz2 = 221 (Lapsaz + Kaper2) + |Azlpallz2 — 23 |-
Consequently, we have
17 (z1,22) = T (21, 22
ITi(z1,22) = Ta(z1, 22) | + 1 T2(21,22) — T2 (23, 22) |

(L1p2a1 + Kyp371 + Lopsan 4+ Kppeya + max{|A1|p1,|A2]p4})
X([lz1 = 21 || + |22 — z3||)-

IN A

Since
(L1p2a1 + Kip371 + Lopsas + Kapsyz +max{|A1]o1, |Az2|pa}) < 1.

We conclude that the operator 7 is a contraction. As a result of the conclusion of the Banach
contraction principle, we deduce that the operator 7 has a unique fixed point and, hence,
system (2) has a unique solution. [

3.3. Existence of Solutions

In the following results, we establish the existence of solutions for the system (2) by
employing the Leray-Schauder alternative [31].

Theorem 6. Assume that (Hy) holds. Then, system (2) has at least one solution on [0, 1], provided
that 0 < @1, g2 < 1, where

o1 = [(ma1p2 +n17103) + (M1azps +017206) + [A1]01],

2 = [(mea1p2 +127103) + (2205 + N27206) + [A2|2204],
and p;, (i=1,----,6) are given in (6).
Proof. We demonstrate in the first step that the operator 7 : S x S =+ S x S, defined by
(13), is completely continuous. By the continuity of functions f;, g;,i = 1,2, we conclude

that the operator 7 is continuous. Let Z C S x S be bounded. Then, for all (z1,z3) € Z,
there exist constants x;, 7;,1 = 1,2, such that

|fi(w, z1(w), z2(w))]
18i(w, z1(w), z2(w))]

Ki,

IN A

T.

Let (z1,22) € Z. Then there exists Q, such that ||(z1,22)|| < ||z1]] + ||z2]| < Q. Then, for any
(z1,22) € Z , we have
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71 (z1,22) ||
w (w — qx)(Ylfl) ¥, ¥,47,-1
/0 T, ("‘11151 x1+ 71y T+ MlHIZlH)dqx

B1 —gx)1 7D _
+I] [ M(alﬂ;“xﬁ%]l;"l*@l "1+ Mz ) g

P2 (By —
—f—‘A |/ .82 q'x

(1—gx) Yl 1)
+\A3|/ q

gl [ 4
0

kM Vit a8V A, 18 (A A
(Fq(Y1+‘I’1+1))<w +1A1lB +[A2(B; + |As| + ] 4|)

av Y1 +¥1 4+ Y1 +¥1+01 Y1+¥1+01
w 1A 1A 1 |As]+ A
+<rq(Y1+‘I’1+Cl+1)>< Arlfy Aalf 4ol +1 4|)
|A1|]za ]
Fq(Yl +1)
(k10201 + T10371) + |21 /|| M1 01-

IN

(alﬂ;YlKl + L O \/\1|||Zl||)dqx
(a0 + 7 9 Az ) g

-2)
¥
(061]1 i1 + 1l ol 4 |)\1|||Zl||)dqx

IN

+ (1 + [ ALIBY + |42l B3 + | As] + | A

IN

Similarly, we can find that
1T2(z1,22) || < (k20502 + T2p672) + [A2] 22| pa-
Consequently, we have
|7 (z1,22) || < (k10201 + T1P371 + K2p502 + T20672) + max(|A1 |1 + [A2]p4)Q

Therefore, the operator 7 is uniformly bounded.
Next, we show that the operator 7 is equicontinuous. Let w1, wy € [0,1] with wy < ws.
Then, we have

|T1(z1(w2), 22(w2)) — T1(z1(w1), z2(wr)|

w1 (CL)2 — qx)(Ylfl) B ((U] _ qx)(Ylfl) l{fl T1+§171
/0 < (Y1) T,(Y1) ("‘ﬂq K1+ 71l T+ |/\1\|\21|\)qu

@2 (wy — qx) 17 Y141
+/w1 Ww ey T 2] ) g

K101 Y1 +¥ Y1+Y Y+%,
- - (2 — 1T _ —
(Fq( ))( (wy — wr) (wy Wy ))

IN

IN

Y1 +91+1

53! Y +¥ Y+Y Y1+¥
2(wy —wqp) 1T — (w —w
Jr<Fq(Y1+‘I’14—514-1))(( 2= 1) (w2 ! )>

|A|[za ] Y, +Y¥ Y+¥ Y1+¥

+

IN

(k10102 + Ty10s + a1l 1) (2(w2 — o) ¥ — (w7 — ) ).

Thus, we have
|T1(z1(w2), z2(w2)) = Ti(z1(w1), z2(wr)| — 0.

as (a)z — w1) — 0.
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IN

IN

|21 (w)|

Analogously, we can obtain

|T2(21(w2), 22 (w2)) — Ta(z1(w1), z2(wr)] = 0,

as (wy —w1) — 0, This shows the equicontinuous of 7 (z1,z;). Based on the preceding
arguments, we conclude that the operator 7 (z1,22) is completely continuous. Finally,
we prove that ® = {(z1,2z2) € S X S|(z1,22) = €T (21,22),0 < & < 1} is bounded. Let
(z1,22) € ® with (z1,2p)(w) = T (21,22)(w). Then, for any w € [0, 1], we have

zilw) = ¢Ti(z1,22)(w)
< Ti(z1,22)(w),i=1,2.

In view of condition (Hj), with some calculations, we can find that

<(mo +myq|z1| +ma|za])ay
LY +¥1+1)

) (@ A B+ A B + | As| + | Aul)

(ng + n1|z1| +n2|zzl)71> Y ¥4 Y+ ¥4 Y ¥ 4L
+ wittHitl 4 e g YO AL 4 A
( rq(Yl +¥,+0+1) ( |A1Ay | A2|B, |As| + | 4‘)

+

|A1]]z1]
T,(Y; +1)

(¥t + A1 + [ A2]B3 + ] As| + | Aal )

(mo +my|z1] +ma|z2])arp2 + (no + n1|z1] + n2|zal)v103 + [M]|21]01,

and
|zo(w)| < (mg + my|z1| + Mz |z2|)a2ps + (g + 711 |z1| + 112|22|) Y206 + |A2]|22|04-
Thus, we have

|z1]] < (moa1p2 +noy103) + (M1a1p2 + n1y103 + A1) |21 ]|
+(man102 + n2yv103) 221,

and

2] < (moazps + 1oy2p06) + (M10205 + 117206) |21 ||
+(1maazp5 + 12Y206 + |A2]2204) [ 22]]-

Thus, we have

I(zr,z2)l < lzall + |22l
< moaypz + ngy103 + Moazps + 1oY206
+max{p1, P2 }([|z1[| + [|z2])
<

1 - -
Go [moa1p2 + noy103 + Moaaps + Moy2pe),

where
Go = min{py, 2},
which proves the @ is bounded. Thus, according to the Leray—Schauder alternative [31],

the operator 7 has at least one solution, which means that there exists a solution of system
(2on[0,1]. O

4. Stability Analysis

Stability analysis plays a crucial role in understanding the behavior and dynamics
of a coupled system of nonlinear fractional g-difference equations with Caputo fractional
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|

C ]D)‘qu

CDy 1 (CDY + Ay )21 (w) — a1 fi(w, 21 (W), 22 (w)) — 115 g1 (w, 1 (w), Z2(w)) | < &1,
CDY? + A,

derivatives in a boundary value problem context. By investigating the stability properties
of the system, we can determine whether small perturbations in the initial or boundary
conditions lead to significant changes in the system’s solutions over time. Stability analysis
helps identify stable solutions that are robust and converge to a desired equilibrium or
periodic behavior, providing valuable insights into the system’s long-term behavior and
predictability. Moreover, stability analysis aids in determining the critical parameter ranges
or conditions under which the system exhibits stability or undergoes bifurcations, which are
characteristic of qualitative changes in the system’s dynamics. Understanding the stability
properties of the coupled system is essential for ensuring the reliability and applicability of
the model in real-world scenarios, guiding parameter selection, and assessing the system'’s
response to uncertainties or variations in the governing equations [32,33]. In this section,
we shall discuss the Ulam-Hyers stability of system (2).

Remark 1. A function (z1,z;) € S x S satisfies the following inequalities

(21)

~

2 (w) — a2 fo(w, 51 (W), 22(w)) — 1212 (w, 1 (w), 22 (w))| < 2,

if and only if there exist functions hy, hy € D, such that

(i) { M (w)] < &1,

‘ﬁz(w)| S &€n .

D2 (CDY2 + Ay 22 (w) = a2 fo(w, 21 (w), 22(w)) + 1215285 (w0, 21 (w), Z2(w)) + Tia ().

i { ;' ECD% + M;El (@) = 1 fi(@21 (@) 2(@) + Nl 81(@ 7 (@) 22(w)) + (@),

= Al

_AZ

+A;

Definition 3. System (2) is UH-stable if there exists VV > 0, such that, for each ¢ = max{e1,ep} >
0 and each solution (Z1,23) € S x S of the inequalities (21), there exists a solution (z1,z3) € S X S
of system (2) with

||(21,22) - (Zl,Zz)H <We, 0€J.

Lemma 3. Ifa function (21,z;) € S X S satisfies the inequalities (21), then (z1,Zy) satisfies the
following integral inequalities

~ w — (Y 71) ~
21 (w) — Rz, — | %(alﬂ‘;’lp (@) + L OTIEL | (x )—/\zl(x))dqx

< Myey,

N _gx)(Y2-1) v v 1 -

Za(w) — R, — [ %(azﬂqugl’A (x) + 720262 4 () —/\zz(x))dqx
< Mpey,

where

21,22 21,2

1 _ g1
/oﬁ W(“ ]1‘1’11: (x) + 71 ]1‘1’1+§1 6l (x )—Alil(x))dqx]

rq(Yl)

R (B—gn) Yy ¥1401-1 -1 2
J B (R ) TGl ()~ 0 9

PA—g™T ¥14+01-1 41 -
/O W(a]ﬂ 1F2122( )“")/]I 1+61— Gz1zz( )—Alzl(x))dqx

La—gn)™M2 Y401 1 A
[ O (L )+ I 071Gl ) = s )
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qx)(Yzfl)

b3 (B3 — ¥y 101 ~
Rz, = A5/0 W(MH lezz( )+’Y]I2 2 Gzlzz( )_}\222(3‘)>qu

[ B (Bi—gq0)Y ¥y 401 A
+A6 /(; W(U{ZH 2FZ] 22( )+'}’ H 2 2= Gzl 22( )—/\2Z2(x))dqx

11— gn) Yot 2 R
A7 /0 W(lx2l lezz< )_'_r)/]l aree Gzlzz( )—AzZz(X))dqx

Pl g Yol 2 .
s [y (Rl () I G () — Mmoo dyx

Y
(14118 + 14218} + 43| + | As])
Fq(Yl—Fl) !

1=

and v
(14165 + 14slB” +147] + |4s1)

2= T,(Y2+1)

Proof. By Remark 1, we have

DY (DY + M )21 () = i (@, 51 (), (@) + 11l g1 (0,51 (), B (w)) + i (@).

Then, in view of Lemma 3, we have

= @ (w—g0)MD g Y441 ~
Zl(w)_‘ﬁfl _/0 W(“lﬂqlpflﬁ( X) + 71 H e GEIEZ( )_/\Zl(x))dqx

P (Br — g™ 2 (Br —q) 7Y
< = A =2 (A d
< Al [ Py @ gx | +lal | [ SRS i )y
1(1 _qx)(Yl_l) 1(1 _qx)(Yl—Z)
—_— A -~ (h d
sl [y (x| + 14| [ (@)
_ (1Aalpy + 142l +14s] +]44])
= (Y1 +1) “
< ./\/llsl.
In the same way, one can obtain
w (Y2—1)
~ w —gx ~
zz(w)—iﬁgz—/o (FZ(Y)z)QX ]I‘FZFZ] 5(X) +72 ]IW2Jrg2 1G§1z (x )—/\22(x))dqx
S M282.

O

Theorem 7. Assume that (Hy) holds. If Y, + Y1 < 1, where
th)C]C(JY1 +1 Ki 'Ylel +¥1+01
= + ,
N {(Fq(Y1+‘P1—|—1)> <1—'q(Y1 +T1+C1+1)>}

LzOézCUYzJ'_‘FZ Kzrysz2+‘1’2+§2
= + .
V2 qu(Yer‘anLl)) (Fq(Y2+‘I’2+§2+1)>}

and
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Then

{cmgﬁ Ecmgl +A1§21 (W) = a1f1 (@, 21 (@), Ea(@)) + T 81(w, 21 (), B2 (w)),

22
2 (w) = a2fa(w, 71 (W), B2(w)) + 1205 82(w, 71 (w), B2 (w)), )

cmY:
D,?
are Ulam—Hyers stable.

Proof. Let ¢ = max{ej,e2} > 0 and (21,22) € S x S be a function that satisfies the
inequalities (21) and let (z1,z2) € S X S be the unique solution of the following system

{cmgﬁ Ecngl +/\1§zl(w) = a1 f1(w, 21 (w), 22(w)) —|—'y1]lq a1(w, 21 (w), 22 (w)), )

CDF2 (CDY2 + Ay ) 22 (w) = a2 fo(w, 21 (w), 22(w)) + 1215 g2 (w, 21 (), 22 (w)),

Now, by Lemma 3, we have

Con, o [(lee T
“ T,(Y1)

Y 1
(D‘lﬂ‘PlFle Zz( )+’y H 1+Cl Ggl,Zz( )_Alzl(x))dqxl

and

Yz 1)

o) =t [l

Y Yo+0o—1 -2
Tvy (B2 E () 4 2l TG () = daza() ) dy

Hence, from (H,) with Lemma 3, and for each w € [0, 1], we have

= - @ (w —qu)17D ¥ Y401 A1 ~
Z1(w) —z1(w)| < |z1(w) — Ry —/0 W( g B 5 (x) +mly TG (x )—Alz1(x))dqx
y(a-1)
(w — gx)
+ / ‘7 (ali!|FL oy () = Ly ()

+y ]I%Jré] 1 GZ1 ZZ( ) — G%] (X )‘ + Aq]Z1(x) —zl(x)\dqx>
< Muer + (|21 — z1]| + |22 — z2]) M1 (24)
where
v {( thx1wY1+T1 >+< K171WY1+‘P1+§1 >}
AV 7S 2 r,i+¥1+0+1)/]
Hence,
|Z1 — z1]] < Maer+ (||z1 — z1|| + |22 — z2]|) D1 (25)

By the same technique, we have

|22 — z2f] < Maoex + (|21 — z1|| + [|Z2 — 22]]) D2, (26)
where
LQOQCUYZJ'_‘FZ szyszZ'i“f’z-*-@z
= + :
V2 qu(Yer‘anLl)) (Fq(Y2+‘I’2+§2+1)>}
Thus,

1(z1,22) — (21, 22) ||

121 — z1]| + [|22 — 22|

Mier + Maey + (||21 — z1|| + |22 — 22]]) (D2 + D)

e(Mq+ Ma) + |[(z1,22) — (z1,22)[[ (V2 + D1)

ew, (27)

[VANVANRVANRPAN
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where ¢ = max{ey, &2} and

_ Mi+ M)
1—(2+)

Hence, from (27) and Definition 3, we deduce that the coupled system (22) is Ulam-Hyers
(UH)-stable. O

w > 0.

Parameter Sensitivity Analysis

The sensitivity of the behavior of the coupled system (2) comprising nonlinear frac-
tional g-difference equations with Caputo fractional derivatives, to parameter changes,
depends on the specific ranges of these parameters and constants. Moreover, their interre-
lationships may vary depending on the specific problem being modeled, along with any
additional constraints or considerations. In this section, we will discuss the parameter
sensitivity analysis for the sufficient conditions required for the existence and uniqueness
of solutions, as well as for the conditions of stability within the aforementioned ranges.

¢  The existence of a solution is crucial for validating the model, establishing feasibility
and robustness, solving boundary value problems, enabling mathematical analysis,
supporting practical applications, and developing a fundamental understanding of the
system’s behavior. It ensures that the system can be adequately described, analyzed,
and utilized in various domains and applications. For the system to be solvable, the
parameters must be chosen within specific ranges so that the following condition

is met:
0 < max{p1, 02} <1,
where
p1 = [(mia1p2 +mi71p3) + (Mia2ps + N17206) + [A1]p1],
P2 = [(maa1p2 +na71p03) + (Mam2p5 + 1M27206) + [A2|2204].

*  The uniqueness of the solution ensures the predictability, reliability, stability, and
validity of the mathematical model. It plays a crucial role in understanding and
analyzing the behavior of systems in diverse fields, enabling accurate predictions,
decision-making, and parameter estimation. For the solution of system (2) to be
unique, the parameters must be chosen so that the following conditions are met:

(L1p2a1 + Kip371 + Lopsan + Kopey2) + max{|Aq]p1, |Az|ea} < 1.

¢  Stable solutions that are robust and converge to a desired equilibrium or periodic
behavior, as described in system (1), provide valuable insights into the system’s long-
term behavior and predictability. To ensure the reliability and applicability of the
model in real-world scenarios, it is crucial to select parameter ranges that satisfy the
following condition: }, + )Y < 1, where

y Liajw¥1t Klfylel"‘Yl""@l
' qu(Yl + ¥ +1)> " (rq(Yl +¥1+0 +1)>}

y LZDQCUYZ e ) KZ’)/ZOJYZ +Y¥2+0>
2 qu(Yz +‘1’2+1)> * (Fq(Yer‘Yz +Cz+1))}

and

5. Examples

This section presents an illustrative example that focuses on the coupled system
governed by the Caputo-fractional derivative. The purpose of this example is to emphasize
and reinforce our main conclusions. The selection of these examples takes into account the
conditions stated in the employed theorems, the formulated conditions derived from our
proposed results, and the consideration of various parameter values and fractional-order
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derivatives. Through these carefully chosen examples, we aim to provide strong support
for all the arguments presented in the preceding section.

Example 1. Consider the following coupled system of the Caputo-fractional derivative:

{CD;Fl éCDQ“ + Alizl (w) =m

C]D);Y2 CDqYZ + Ay )zo(w) = ap

(W, 21(w), 22(w)) + M g1 (w, 21 (W), 22(w)),
(W, 21(w), 22(w)) + 121282 (w, 21 (W), 22(w)),

Pea—

equipped with g-integral-coupled boundary conditions

#121(0) — 0q (w(l_Yl)qul(

#2z1(1) + 02Dgz1 (1) = 17221(B2),
#322(0) — 03 (w(l_YZ)quz(
)

paz2(1) + ouDyz5(1

withal:%,txz:%/n:%,yz:%,)\l:lo,)\zzl%,‘Y :‘I’zz%,Y :Yzz%,q:
O=O=%sm=p=01=mn=1Lu=p=03=0=%p =P =Ps=Ps
m=m=mn3=rns=1and

WIFRN—=
~

filwn@)a) = et el 1,
@ 21(@),2(w) = M@oszl(wwzxw)mew,
§1(©02(@),2w) = 5 (inn(@) + 2() - se,
(W, z1(w), z2(w)) = 31—0(21(w)+tan_1zz(w)+sinw).

Foreach w € [0,1] and zq,25,27,23 € R

1
fi(w,z1,22) = fi(w,21,23)] < o071 — zi| + |z2 — z3|),

1
\fa(w, z1,22) — folw,27,23)] < %(|21 — 21| + |22 — z3]),

1
81(w,z1,22) = g1(w,z1,2)| = (I —z1] + |22 = 1),

. 1
82(w,21,22) = &2(w, 21, 13)| = g5(lz1 = 21| + |22 = z3))-

Hence, (Hy) holds. From the given data, we have L1 = ﬁ, Ly, = %,Kl = ﬁ,Kz = %. By some
calculations, we have p1 ~ 0.19, pp ~ 0.0450, p3 ~ 0.240, p4 ~ 0.183, p5 ~ 0.2, pg ~ 0.025. Also,
®; ~ 0.2578 < 1. Thus, all conditions in Theorem 5 are satisfied and, hence, system (2) has a
unique solution.

Example 2. Consider the following coupled system of the Caputo-fractional derivative

{CID‘;l EC]DDS{1 + M%Zl (w) =y

C]D);F2 CDqu + A )z (w) = ap

(W, 21(w), 22(w)) + M1 g1 (w, 21 (W), 22(w)),
(W, 21(w), 22(w)) + 1222 (w, 21 (W), 22(w)),

5 =
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equipped with g-integral-coupled boundary conditions

#322(0) — 03 (wu*YZ)Dqu

#aza(1) + ouDgza(1
1
’ 1
G=O=3m=mp=0=0=Lu=u=0=0=7p =p=PpHs
m=tnp=n3=mn=1and

; 1 1 1 1 1 1 1
wzth 0(1 - 0(2: 7,’)/1 - g,')/z: g,)\l - E,)\ZZ ﬁ,lif :Tzz E’Y :Y2: z,q:
= P4

_ 1 |21 (w)] |z2(w)|
Alwa@2@) = G+ a m@D T @120t B

_ |z1(w)] |z2(w)] 1
hloan(@)nw) = 53 0wh T wraras m@) 6
(w,z1(w), z2(w)) = C0153w (1|Z1—(’—wa))2> zz(wg)osmw,
(w,n@), W) = 1+ 12 22(w)|

6 2(1+z(w)])  45(1+ |z (w)])

Foreach w € [0,1] and z1,z, € R

fil@nz) < g5+ ssk@)] + gl
flwmmn) < g+ ala)]+ 5l
si@mn )| < g5+ 1l @) + gl
R@n)| < ¢+l + k@l

: 1 1 1 =~ 1 = 1~ 1 1
Hence, (Hz) holds with my = ﬁ,ml = m,mz = g,mo = g,ml = imz = ﬁ,no = 13/
n; = ﬁ, np, = ;—O,ﬁo = %,ﬁ1 = %, and np, = %. By some calculations, we have

o1 ~ 0.675<1,
o~ 0456 < 1.

Thus, all conditions in Theorem 6 are satisfied and, hence, the system (2) has at least one solution.
Also, condition (Hj) holds and ©1 ~ 0.745 < 1. Thus, all conditions in Theorem 5 are satisfied
and, hence, system (2) has a unique solution.

6. Conclusions

We discussed the essential requirements for a coupled system of fractional g-integro-
difference equations, utilizing Riemann-Liouville fractional q-derivatives and g-integrals
of different orders, along with g-integral boundary conditions. Applying tools from fixed-
point theory, we have obtained novel findings that contribute to and generalize the existing
literature on this topic. Our results encompass various new results as special cases, marking
a significant contribution to the field of boundary value problems associated with fractional
g-integro-difference equations.

In future work, we will aim to explore the stability properties of the obtained solutions
and investigate numerical methods for effectively solving the coupled system. Additionally,
we plan to extend our analysis to more complex scenarios or higher dimensions, which may
involve considering additional factors or variables. Furthermore, we intend to explore the
potential applications of the obtained results in diverse fields such as physics, engineering,
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and biology. By doing so, we aim to demonstrate the practical significance and relevance of
our findings in real-world contexts.
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