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Abstract: This paper deepens some results on a Mandelbrot set and Julia sets of Caputo’s fractional
order. It is shown analytically and computationally that the classical Mandelbrot set of integer
order is a particular case of Julia sets of Caputo-like fractional order. Additionally, the differences
between the fractional-order Mandelbrot set and Julia sets from their integer-order variants are
revealed. Equipotential lines and external rays of a Mandelbrot set and Julia sets of fractional order
are determined.
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1. Introduction

The fractional-order (FO) Mandelbrot and Julia sets in the sense of q-th Caputo-like
discrete fractional differences, for q ∈ (0, 1), are fractal mathematical objects generated
by the quadratic complex (Mandelbrot) map fc(z) = z2 + c, with the z and c complexes,
and starting from the initial value z0 = 0 (the critical point), and are introduced in [1] (see
also [2–5]). The algorithms for generating FO sets are based on the known Mandelbrot set
and Julia sets of integer order (IO), which, after they were discovered, still represent a huge
source of inspiration for computer graphics programmers as well as for mathematicians.
The first to draw the Mandelbrot set of IO are Robert W. Brooks and Peter Matelski in
1978 [6], before the American–French–Polish mathematician Benoit B. Mandelbrot made it
famous and gave it importance and a place in chaos theory [7]. These fractal objects serve
as the best-known demonstration of the fact that the simplest rules can produce extremely
complicated results. Moreover, the Mandelbrot set, an invariant universal set, is considered
to play a similar role as π and e have in mathematics, and also it was noticed that there
exists a relation between quantum mechanics and fractals. At MIT, scientists discovered for
the first time that fractal patterns can be found in quantum materials [8].

Before the birth of the Mandelbrot set, the study of the dynamics of complex maps
was initiated by P. Fatou and G. Julia in the early twentieth century [9,10].

For fractal structures, see, e.g., [11–14], while for details and a background on a
Mandelbrot set and Julia sets, see [7,11,15–17]. A Mandelbrot set can be considered as a
book with an infinity of pages, each page being a Julia set.

While in generating the Mandelbrot set, c is considered a variable within a lattice in
the parametric plane C, the Julia sets are obtained with fixed c, the origin of iterations of
fc(z) being a variable in the considered lattice.

The infinite beauty of these fractal sets, generated by the quadratic map, does not
represent the subject of this paper; interested readers are directed to, e.g., [11,13,14].

It was found that fractional calculus more accurately represents the natural behavior in
the areas of recurrent neural network for bioengineering and image encryption, electronics,
viscoelasticity, robotics, control theory, and so on for engineering (see, e.g., [18–25]). The first
definitions of a fractional difference operator were proposed in 1974 [26]. Aspects related to
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Caputo fractional sums and differences can be found in [27,28], while initial value problems
(IVPs) in fractional differences are studied in [29]. The stability of fractional differences is
analyzed in [30,31], and weakly fractional difference equations and the symmetry breaking
of fractional maps can be found in [32]. For the nonexistence of periodic solutions, see [33].

In this paper, new properties of fractional Mandelbrot and Julia sets are analytically
and computationally studied. The discrete fractional calculus in Caputo’s sense is used as a
natural extension of difference calculus, and Mandelbrot’s idea of creating fractals from the
iteration of complex mappings to study iterations of complex fractional difference equations
is extended. The dynamics of the shape of a Mandelbrot set of fractional order as a function
of fractional order are studied in an animated video. Additionally, the equipotential lines
and external rays of a Mandelbrot set and Julia sets of fractional order are determined.

The following notations are utilized in this paper:

• IOM: Mandelbrot of IO;
• IOKc: Filled Julia set of IO;
• IOJc: Julia set of IO;
• FOM: Mandelbrot set of FO;
• FOKc: Filled Julia set of FO;
• FEL: Fractional equipotential line;
• FER: Fractional external ray.

2. Mandelbrot Set and Julia Sets of FO

Next, a brief recall of some elementary notions about a Mandelbrot set and Julia sets
of IO required by the FO counterparts is presented (see [1,11,13] for more information).

The iteration of fc with z(0) = 0,

zn = fc(zn−1) = z2
n−1 + c, z0 = 0, n ≥ 1, (1)

generates the sequence

z0 = 0, z1 = fc(0) = c, z2 = f 2
c (0) = c2 + c, z3 = f 3

c (0) =
(

c2 + c
)2

+ c, . . . , (2)

which will be used to generate Mandelbrot sets, while for z(0) ̸= 0, the sequence of
iterates becomes

z0, z2
0 + c,

(
z2

0 + c
)2

+ c,
((

z2
0 + c

)2
+ c
)2

+ c, . . . (3)

used to generate Julia sets.
The Mandelbrot set of IO, IOM, is a set of complex values c for which the absolute

value of zn remains bounded and does not tend to be infinite, for all n ≥ 1, |z(n)|< M ,
usually r taken as r = M [13], but could be taken even in the order of thousands.

To define, for a fixed c, the Julia sets of IO, IOJc, let us consider the attraction basin of
∞, Ac(∞), the set of points z0 that tend toward ∞ through the iteration (1):

Ac(∞) =
{

z0 ∈ C : f k
c (z0) → ∞, ask → ∞

}
.

The boundary of Ac(∞), which depends on c, represents the Julia set of IO, IOJc [13]:

IOJc = ∂Ac(∞)

Another notion related to Julia sets of IO considered in this paper is the filled Julia
set of IO, IOKc, which, for a fixed c, is the set of all points z0 ∈ C for which the orbit (2)
remains bounded:

IOKc =
{

z0 ∈ C : f k
c (z0) remains bounded for all k

}
= C∖Ac(∞).
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The IOJc set is contained in the IOKc set and is the boundary of the IOKc set [13]:

∂IOKc = IOJc = ∂Ac(∞).

In this paper, for computer graphics reasons, without loss of generality, one considers
the analysis and computations of the IOKc sets.

To draw IOM and IOKc, the so-called escape time algorithm (direct algorithm) is used [1].
For a Mandelbrot set, z0 = 0, and c is varied within a finite complex parametric domain
(lattice), while for Julia sets, z0 is varied within a finite lattice for fixed c. If, after a finite
number of iterations N of fc, the modulus |zn|, n = 1, 2, . . . , N remains bounded (|zN |≤ 2),
then c in the case of an IOM set, or z0 in the case of IOKc sets, belongs to IOM or IOKc,
respectively. Otherwise, c or z0 does not belong to IOM or IOKc, respectively.

In the graphical representations of this paper, the complex plane of Mandelbrot sets is
the plane

(
cx, cy

)
(the parameter space), where cx and cy are the coordinates of c, while the

Julia sets are drawn in the complex plane (x, y) of the initial point z(0) of the coordinates
x and y. The sets IOM and IOKc are usually plotted as a color, most often black, while
the outside points of these sets can be plotted as a color using smooth coloring schemes
or black–white [11,34] (see Figure 1a for the IOM set and Figure 1c,d for the IOKc set
generated for c considered as points A and B in the IOM set).
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Figure 1. (a) IOM set, (b) zoomed detail of zone C of the IOM set, (c) IOKc set corresponding
to c = 0.3596 + 0.6294i (point A exterior to the IOM set), and (d) IOKc set corresponding to
c = 0.3902 + 0.3591i (point B from the interior of the IOM set).

All images of IO and FO sets in this paper are obtained with the time escape algorithm
(see [1]).

Some of the most important properties of the IOM set and IOKc sets analyzed in this
paper are as follows:

P1. B. B. Mandelbrot empirically found that some isolated islands out of the body of
the IOM set were actually connected to the mainland by very thin filaments [35]
(Figure 1b). Now, it is conjectured that the Mandelbrot set is locally connected [15].

Figure 1. (a) IOM set, (b) zoomed detail of zone C of the IOM set, (c) IOKc set corresponding
to c = 0.3596 + 0.6294i (point A exterior to the IOM set), and (d) IOKc set corresponding to
c = 0.3902 + 0.3591i (point B from the interior of the IOM set).

All images of IO and FO sets in this paper are obtained with the time escape algorithm
(see [1]).

Some of the most important properties of the IOM set and IOKc sets analyzed in this
paper are as follows:
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P1. B. B. Mandelbrot empirically found that some isolated islands out of the body of
the IOM set were actually connected to the mainland by very thin filaments [35]
(Figure 1b). Now, it is conjectured that the Mandelbrot set is locally connected [15].

P2. IOKc sets are connected if the underlying c belongs to the interior of IOM; i.e., the
IOM set is the set of all parameters c for which IOKc is a connected set.

P3. For c chosen at the boundary of the Mandelbrot set, the related IOKc set is a “dendrite”,
while for c situated outside of IOM, the corresponding IOKc is a Cantor set, or “dust”-
like, composed of infinitely many disjoint points [12] (see Figure 1c,d, where the IOKc
sets corresponding to points A and B are presented).

3. Mandelbrot and Julia Maps of FO

Let the time scale Na = {a, a + 1, a + 2, . . .}. The q-th Caputo-like discrete fractional
difference of a function u : Na → R , for q > 0 and q /∈ N, is defined as [36]

∆q
au(t) = ∆−(n−q)

a ∆nu(t) =
1

Γ(n − q)

t−(n−q)

∑
s=a

(t − s − 1)(n−q−1)∆nu(s),

where t ∈ Na+n−q and n = [q] + 1 and Γ is the gamma (Euler) function.
∆n is the n-th order forward difference operator,

∆nu(s) =
n

∑
k=0

(
n
k

)
(−1)n−ku(s + k),

while ∆−q
a represents the fractional sum of order q of u, namely,

∆−q
a u(t) =

1
Γ(q)

t−q

∑
s=a

(t − s − 1)(q−1)u(s), t ∈ Na+q.

The falling factorial t(q) is defined as follows:

t(q) =
Γ(t + 1)

Γ(t − q + 1)
.

Note that the fractional operator ∆−q
a maps functions on Na to functions on Na+q (for

time scales, see, e.g., [37]).
For q ∈ (0, 1), when ∆u(s) = u(s + 1)− u(s), n = 1, and the starting point a = 0, the

case considered in this paper, q-th Caputo’s difference, ∆q, becomes

∆qu(t) =
1

Γ(1 − q)

t−(1−q)

∑
s=a

(t − s − 1)(−q)∆u(s).

Then, the real FO autonomous initial value problem (IVP) in the sense of Caputo,

∆qu(t) = f (u(t + q − 1)), t ∈ N1−q, u(0) = u0,

with f being a continuous real valued map and q ∈ (0, 1) having the numerical solution

u(t) = u0 +
1

Γ(q)

t−q

∑
s=1−q

(t − s − 1)(q−1) f (u(s + q − 1)),

with the commonly used form in numerical applications:

u(n) = u(0) +
1

Γ(q)

n

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

f (u(i − 1)), n ∈ N∗. (4)
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Consider next the complex variant of the IVP of FO:

∆qz(t) = fc(z(t + q − 1)), t ∈ N1−q, z(0) = z0,

with q ∈ (0, 1), z = x + ıy ∈ C, scaled c within a parametric complex domain, and z0 ∈ C.
Then, the numerical integral (4) becomes [1]

z(n) = z(0) +
1

Γ(q)

n

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

fc(z(i − 1)), n ∈ N∗, (5)

which represents the mathematical description of the complex logistic (Mandelbrot) map
of FO used to generate the FOM set (with z(0) = 0) or FOKc sets (with z(0) variable).

Remark 1. To note that, for the whole IOM (IOKc) set, one iterates fc, usually a few dozen
iterations, N, to generate the FOM (FOKc) set, every iteration of (5) necessary to obtain the set,
the expression of z(n) requires the calculation of the sum on the right-hand side of (5) for each
n = 1, 2, . . . , N. Small values of N, in the order of few tens (e.g., N = 20 as for the IOM set), do
not provide good accuracy in the calculation of z(n) in (5) and also, for the case of IO sets, lead to
loss of details. On the other side, higher N implies being time-consuming. Therefore, a compromise
between N, the accuracy of (5), and the quality of details is desirable. In this paper, the images are
obtained with N = 70 − 100.

To obtain the FOM set, one iterates (5), for c scanning a complex domain (usually
a rectangular lattice [1]). The set of points c, for which the sequence of modules |z(n)|
remains bounded after a finite number of iterations N, forms the FOM set.

To obtain the FOKc sets, one fixes c (see P2 and P3) and one iterates (5) with the
z(0) variable within a complex domain. As for the FOM set, if after N iterations |z(n)|
remains bounded, z(0) belongs to the underlying FOKc set. In Figure 2b is drawn the
FOM for q = 0.5, while in Figure 2c–e, several FOKc sets are drawn for q = 0.5 and
c = −0.0781 + 0.6694i, c = −1.0516 + 0.0913i, c = −0.5, respectively. Details of FO
algorithms can be found in [1], while a Matlab code for FOM can be found in [38].
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point C in Figure 2b); and (f) IOKc set for c = −0.5.

Figure 2. (a) FOM set for q = 10−6; (b) FOM set for q = 0.5; (c) FOKc set for q = 0.5 and
c = −0.0781 + 0.6694i (see point A in Figure 2b); (d) FOKc set for q = 0.5 corresponding to
c = −1.0516 + 0.0913i (see point B in Figure 2b); (e) FOKc set for q = 0.5 corresponding to c = −0.5
(see point C in Figure 2b); and (f) IOKc set for c = −0.5.
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4. Properties of the FOM Set

Several properties of the FOM map are analyzed in [1], especially for real c. In
this paper, some properties are analytically proved and verified with the aid of scientific
computation.

Contrary to expectations, the IOM set is not a particular case of FOM for q = 1, but
only for q ↓ 0 as proved below:

Proposition 1. The IOM set is the FOM set for q ↓ 0 .

Proof. Consider the limit of z(n) for q ↓ 0 , with z(0) = 0 in (5) rearranged as follows:

lim
q↓0

z(n) =lim
q↓0

(
1

Γ(q)

n

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

fc(z(i − 1))

)

= lim
q↓0

1
Γ(q)

n−1

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

fc(z(i − 1)) + lim
q↓0

1
Γ(q)

Γ(q)
Γ(1)

fc(z(n − 1)).

Because
lim
q↓0

1
Γ(q)

= 0,

and for a finite number of times of iterations ∑n−1
i=1

Γ(n−i+q)
Γ(n−i+1) is bounded, it follows that

lim
q↓0

1
Γ(q)

n−1

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

= 0,

and therefore,
lim
q↓0

z(n) = fc(z(n − 1)),

or in a simplified form,
z(n) = fc(z(n − 1)),

i.e., the IOM map. □

Because, at q = 0, Γ(q) has a simple pole singularity, in simulations, q cannot be set to
0, and therefore, it is considered numerically, e.g., q = 10−m with m being a positive integer.
In Figure 2a, the FOM set is presented for m = 6.

An animation showing the metamorphosis of the FOM sets for q varying from q = 1
to q = 0 is presented as a supplementary video.

For c ̸= 0, Proposition 1 no longer takes place for the FOKc map because, in this case,
one obtains

lim
q↓0

z(n) = z(0) + fc(z(n − 1)),

which, by iteration, generates the sequence

z0, z1 = z0 + fc(z0) = z0 + z2
0 + c, z2 = z0 + f (z1) = z0 +

(
z0 + z2

0 + c
)2

+ c, . . . , (6)

which is different from the sequence generating the IOKc sets (see (3))

z0, z1 = z2
0 + c, z2 =

(
z2

0 + c
)2

+ c, z3 =

((
z2

0 + c
)2

+ c
)2

+ c, . . .

For example, compare the FOKc set and IOKc obtained for c = −0.5 in Figure 2e,f,
respectively.

However, for c = 0, probably the most important property is the following:
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Proposition 2. The IOM set is the FOKc set for q ↓ 0 and c = 0.

Proof. Consider, as required by the FOKc set, the z0 variable within a complex lattice and
q ↓ 0 . For c = 0, the sequence (6) generating FOK0 becomes

z0, z2
0 + z0,

(
z2

0 + z0

)2
+ z0, . . .

If one denotes c = z0, one obtains the sequence defining the IOM set

c, c2 + c,
(

c2 + c
)2

+ c,
((

c2 + c
)2

+ c
)2

+ c, . . . ,

i.e., the IOM obtained with the map fc(z) = z2 + c. □

Note that, while the FOK0 set with q ↓ 0 for c = 0 is identical to the IOM set
(Figure 3a), the IOK0 set for c = 0 is, as known [11], a filled disc (Figure 3b).
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While, generally, it is considered that an FO continuous or discrete system for q = 1
should identify with its own IO variant, the next result shows another surprising property
of the FOM map (see as well [32,39] for differences between real FO systems and their
IO counterparts).

Proposition 3. For q ↑ 1 , the FOM set differs from the IOM set.

Proof. Consider the limit of z(n) for q ↑ 1 , with z(0) = 0 in (5) rearranged as follows:

lim
q↑1

z(n) = z(n)|q=1 =
1

Γ(q)

n

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

∣∣∣∣∣q=1 fc(z(i − 1)) =
n

∑
i=1

fc(z(i − 1)),

or, in a simplified form,

z(n) =
n

∑
i=1

fc(z(i − 1));

i.e., for q ↑ 1 , the FOM map generates a set different from the IOM set. □
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The difference revealed by Proposition 3 can be viewed in Figure 4, where the IOM
set and FOM set, for q = 1, are presented.
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Figure 4. Differences between the IOM set (a) and the FOM set for q = 1 (b); (c) overplot of the
IOM set and the FOM set for q = 1 (image from the animated video).

5. Equipotential Lines and External Rays
5.1. Basic Notions on Equipotential Lines and External Rays for IOM and IOKc Sets

The external arguments theory of the IOM set has been developed in [40,41] and popu-
larized in [13] and makes use of an analogy to electrodynamics. It was shown that the exterior
of the IOM set can be viewed as an electrostatic field. Consider, as described in [11,40,41], a
capacitor made of a hollow metallic cylinder with a great diameter inside of which an axis of
aluminum is shaped in such a way that its cross section is the Mandelbrot set. The ensembles
of a cylinder and axial bar are supposed to be infinitely long. In other words, one has an
aluminum bar with the cross section being the Mandelbrot set, situated in the middle of a large
hollow metallic cylinder. If the interior bar is set at potential 0 and the exterior cylinder at a
high potential, between the two metallic pieces appears an electric field that creates surfaces
in the surrounding space. If one considers an orthogonal section through this ensemble of
metallic corps and equipotential surfaces, one obtains the IOM set, surrounded by equipotential
curves (lemniscates), sections through the equipotential surfaces with constant potential. It has
been proved that the equipotential lines are also lines of equal escape time in the time escape
algorithm to generate the IOM or IOKc sets [11].

A particle starting from the frontier of the IOM set will reach the great circle surround-
ing the IOM set by following the external rays, a perpendicular curve on the equipotential
lines, being gradient lines of potential.

The equipotential curves are given by

lim
n→∞

1
2n log | f n

c (z)|, (7)

Figure 4. Differences between the IOM set (a) and the FOM set for q = 1 (b); (c) overplot of the
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5. Equipotential Lines and External Rays
5.1. Basic Notions on Equipotential Lines and External Rays for IOM and IOKc Sets

The external arguments theory of the IOM set has been developed in [40,41] and
popularized in [13] and makes use of an analogy to electrodynamics. It was shown that
the exterior of the IOM set can be viewed as an electrostatic field. Consider, as described
in [11,40,41], a capacitor made of a hollow metallic cylinder with a great diameter inside of
which an axis of aluminum is shaped in such a way that its cross section is the Mandelbrot
set. The ensembles of a cylinder and axial bar are supposed to be infinitely long. In other
words, one has an aluminum bar with the cross section being the Mandelbrot set, situated
in the middle of a large hollow metallic cylinder. If the interior bar is set at potential 0 and
the exterior cylinder at a high potential, between the two metallic pieces appears an electric
field that creates surfaces in the surrounding space. If one considers an orthogonal section
through this ensemble of metallic corps and equipotential surfaces, one obtains the IOM
set, surrounded by equipotential curves (lemniscates), sections through the equipotential
surfaces with constant potential. It has been proved that the equipotential lines are also
lines of equal escape time in the time escape algorithm to generate the IOM or IOKc
sets [11].
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A particle starting from the frontier of the IOM set will reach the great circle surround-
ing the IOM set by following the external rays, a perpendicular curve on the equipotential
lines, being gradient lines of potential.

The equipotential curves are given by

lim
n→∞

1
2n log| f n

c (z)|, (7)

while the external rays are defined as follows:

lim
n→∞

1
2n arg( f n

c (z)), (8)

where, for the Mandelbrot map, fc(z) = z2 + c, one has f 0(c) = c, f 1
c (c) = c2 + c,..., f n

c (c) =(
f n−1
c

)2
+ c,...,n = 1, 2, . . .

Using the Green’s function, the Douady–Hubbard potential U(c) of a point c situated
between the cylinder and the outside of the Mandelbrot set can be written [42,43] (see (7)) as

U(c) = log|c|+
∞

∑
n=1

1
2n log |1 + c

[ f n−1
c (c)]2

|.

U(c) is zero at points c belonging to the boundary of the IOM set, while for a large c,
U(c) is approximated by log(c).

An equipotential line defined by a constant c ∈ [2, ∞) is a closed curve surrounding
the IOM set and is defined as the set of points c with the property {c|U(c) = c}, i.e., the set

{
c|log|c|+

∞

∑
n=1

1
2n log |1 + c

[ f n−1
c (c)]2

| = c

}

The external argument θ(c) of an external ray that passes through a point c, with a
large |c|, and which determines the point where it reaches the great circle, is the argument
of the function Φ(c) given as follows [44]:

Φ(c) = c
∞

∏
n=1


1 +

c
[

f n−1
c (c)

]2




2−n

.

The external argument of Φ(c) is (see (8))

θ(c) = arg(c) +
∞

∑
n=1

1
2n arg


1 +

c
[

f n−1
c (c)

]2


,

and therefore, the external ray for a fixed angle θ ∈ [0, 2π) is the locus of points c in the
complex plane that have all the same external argument with the property

{
c
∣∣θ(c) = θ

}
,

i.e., the set 



c| arg(c) +
∞

∑
n=1

1
2n arg


1 +

c
[

f n−1
c (c)

]2


 = θ





. (9)

By arg(c) ∈ [0, 2π) is denoted the principal value of the argument of a complex num-
ber. To every point on the frontier of the IOM set, there could exist several external rays.
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5.1.1. Approximations of Equipotential Lines and External Rays

Generating computationally equipotential curves and external rays using the above
relations is quite a hard task. However, there exist several other simpler methods that can
be applied to both the IOM set and the IOKc sets.

1. In [13], the potential U(c) is approximated by the value U(c) defined as follows:
if |zn|> M , while fc is iterated, where M is, e.g., 10,000 [13], the potential can be
approximated by U(c) ≈ log|zn|/2n; otherwise, if |zn| remains smaller than M, the
potential is set to 0. If, for a considered constant c, U(c) is close or equal to c, then c,
or z0 in the case of Julia sets, belongs to the equipotential line, and the point c, or z0, is
plotted. An even simpler method is the level set method (LSM [13]), which, to a point c,
or z0, within a complex lattice, attributes a color (e.g., black), depending on the number
of iterations of fc for which |zn| remains bounded. Therefore, for each n ∈ [1, N], one
obtains a level set that is approximately identical to an equipotential line.

2. On the other side, the external rays (9) can be approximated by the binary decom-
position method (BDM [13]) with respect to the fixed angle α0 ∈ [0, 2π). Thus,
to a point c, or z0, within a complex lattice, one attributes a color (e.g., black or
white) if the argument of zn, arg(zn), belongs or does not belong to the intervals
2nα0 ≤ arg(zn) ≤ 2nα0 + π(mod 2π).

Drawing precisely from an external ray, e.g., inside a detail of an IOM or FOM set,
is strongly restricted by the number of bits of the floating-point arithmetic used by the
computer program [42]. Therefore, the external rays cannot be drawn in certain details
with computer programs (see, e.g., [45]) using the double 64-bit format. Additionally, deep
studies of external arguments require external arguments measured not in radians, but as
fractions of complete turns. Using this unit, most of the notable points of the Mandelbrot
set boundary have rational external arguments [42,43].

5.2. Equipotential Lines and External Rays of FOM and FOKc Sets

The external rays for rational angles land on the frontier of the IOM set and connected
IOKc sets, and as verified numerically in this paper, this property holds for FO sets too.

Because writing analogue expressions of equipotential lines (7) and external rays (8)
for the FOM or FOKc maps, fractional equipotential lines (FELs) and fractional external
rays (FERs), represents a difficult task, a possible solution is to adapt the approximations
given in Section 5.1.1, where zn is used instead f n

c .
In Figure 5a are presented the FELs of the IOM set and the FOM set for q = 10−6

(see Property 1), and in Figure 5b,c are presented the FELs for FOM sets for q = 1 and
q = 0.5, respectively.

As known, the following property of equipotential holds:

Proposition 4. Equipotential lines cannot intersect each other.

While for the IOM set and the FOM set, for q = 1, this property is obviously verified
computationally (Figure 5a), for the FOM set with q < 1, this property seems to be no
longer verified and the FELs intersect (see Figure 5b,c).

Similarly, the FELs of FOKc sets seem to intersect (see Figure 5d–f, where the FOKc
sets are determined for q = 0.5 and correspond to c, chosen at the points denoted as A, B,
and C in the FOM set in Figure 5c).
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Drawing precisely from an external ray, e.g., inside a detail of an IOM or FOM set,
is strongly restricted by the number of bits of the floating-point arithmetic used by the
computer program [42]. Therefore, the external rays cannot be drawn in certain details
with computer programs (see, e.g., [45]) using the double 64-bit format. Additionally, deep
studies of external arguments require external arguments measured not in radians, but as
fractions of complete turns. Using this unit, most of the notable points of the Mandelbrot
set boundary have rational external arguments [42,43].

5.2. Equipotential Lines and External Rays of FOM and FOKc Sets

The external rays for rational angles land on the frontier of the IOM set and connected
IOKc sets, and as verified numerically in this paper, this property holds for FO sets too.

Because writing analogue expressions of equipotential lines (7) and external rays (8)
for the FOM or FOKc maps, fractional equipotential lines (FELs) and fractional external
rays (FERs), represents a difficult task, a possible solution is to adapt the approximations
given in Section 5.1.1, where zn is used instead f n
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q = 0.5, respectively.

Figure 5. (a–c) FELs of three FOM sets for q = 10−6, q = 1, and q = 0.5, respectively; (d–f) FELs of
FOKc for q = 0.5, corresponding to points A, B, and C from FOM, respectively.

As known, the following property of equipotential holds:

Proposition 4. Equipotential lines cannot intersect each other.

Figure 5. (a–c) FELs of three FOM sets for q = 10−6, q = 1, and q = 0.5, respectively; (d–f) FELs of
FOKc for q = 0.5, corresponding to points A, B, and C from FOM, respectively.

To draw FERs, one divided the complex plane C into sectors, where we set the same
color if θ is within some certain interval [46]. Another simple way to identify the external
rays is to use the ordinary escape iterations algorithm with a large escape radius and plot
those points c for which ℑ(zn) > 0. In Figure 6a are presented as overplot the FERs for the
IOM set and the FOM set for q = 10−6; in Figure 6b,c are shown the FERs for FOM sets
with q = 1 and q = 0.5, respectively; and in Figure 6d–f are drawn the FERs for FOKc sets
corresponding to the points A, B, and C taken in the FOM set in Figure 5c.
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While for the IOM set and the FOM set, for q = 1, this property is obviously verified
computationally (Figure 5a), for the FOM set with q < 1, this property seems to be no
longer verified and the FELs intersect (see Figure 5b,c).

Similarly, the FELs of FOKc sets seem to intersect (see Figure 5d–f, where the FOKc
sets are determined for q = 0.5 and correspond to c, chosen at the points denoted as A, B,
and C in the FOM set in Figure 5c).

To draw FERs, one divided the complex plane C into sectors, where we set the same
color if θ is within some certain interval [46]. Another simple way to identify the external
rays is to use the ordinary escape iterations algorithm with a large escape radius and plot
those points c for which ℑ(zn) > 0. In Figure 6a are presented as overplot the FERs for the
IOM set and the FOM set for q = 10−6; in Figure 6b,c are shown the FERs for FOM sets
with q = 1 and q = 0.5, respectively; and in Figure 6d–f are drawn the FERs for FOKc sets
corresponding to the points A, B, and C taken in the FOM set in Figure 5c.

Figure 6. (a–c) FERs of three FOM sets for q = 10−6, q = 1, and q = 0.5, respectively; (d–f) FERs of
three FOKc sets corresponding to points A, B, and C (Figure 5c).

6. Conclusions

The paper shows analytically and computationally that the Mandelbrot set of integer
order can be generated as a particular case of Julia sets of Caputo-like fractional order.
Moreover, it is proved that the integer-order Mandelbrot set is not a particular case of
the fractional-order Mandelbrot set for the fractional order q = 1, but only for q ↓ 0.
Further, the integer-order Mandelbrot set is the fractional-order Julia set for c ↓ 0 and
c = 0. Additionally, the algorithms for drawing equipotential lines and external rays of a
Mandelbrot set and Julia sets of integer order are adapted for a fractional-order Mandelbrot
set and Julia sets. It was observed that, contrary to the integer-order case, some of these
lines cross.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fractalfract1010000/s1.
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Data Availability Statement:

Figure 6. (a–c) FERs of three FOM sets for q = 10−6, q = 1, and q = 0.5, respectively; (d–f) FERs of
three FOKc sets corresponding to points A, B, and C (Figure 5c).
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6. Conclusions

The paper shows analytically and computationally that the Mandelbrot set of integer
order can be generated as a particular case of Julia sets of Caputo-like fractional order.
Moreover, it is proved that the integer-order Mandelbrot set is not a particular case of
the fractional-order Mandelbrot set for the fractional order q = 1, but only for q ↓ 0 .
Further, the integer-order Mandelbrot set is the fractional-order Julia set for c ↓ 0 and
c = 0. Additionally, the algorithms for drawing equipotential lines and external rays of a
Mandelbrot set and Julia sets of integer order are adapted for a fractional-order Mandelbrot
set and Julia sets. It was observed that, contrary to the integer-order case, some of these
lines cross.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fractalfract8010069/s1.

Funding: This research received no external funding.
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(animated movie).
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28. Fečkan, M.; Pospíšil, M.; Danca, M.-F.; Wang, J. Caputo Delta Weakly Fractional Difference Equations. Fract. Calc. Appl. Anal.

2022, 25, 2222–2240. [CrossRef]
29. Atici, F.M.; Eloe, P.W. Initial Value Problems in Discrete Fractional Calculus. Proc. Amer. Math. 2009, 137, 981–989. [CrossRef]
30. Cermak, J.; Gyori, I.; Nechvatal, L. On Explicit Stability Conditions for a Linear Fractional Difference System. Fract. Calc. Appl.

Anal. 2015, 18, 651–672. [CrossRef]
31. Chen, F.L. A review of Existence and Stability Results for Discrete Fractional Equations. J. Comput. Complex Appl. 2015, 1, 22–53.
32. Danca, M.-F. Fractional order logistic map: Numerical approach. Chaos, Solitons Fract. 2022, 157, 111851. [CrossRef]
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