
Citation: Ahmed, H.M. New

Generalized Jacobi Galerkin

Operational Matrices of Derivatives:

An Algorithm for Solving Multi-Term

Variable-Order Time-Fractional

Diffusion-Wave Equations. Fractal

Fract. 2024, 8, 68. https://doi.org/

10.3390/fractalfract8010068

Academic Editor: Riccardo

Caponetto

Received: 14 December 2023

Revised: 11 January 2024

Accepted: 15 January 2024

Published: 18 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

New Generalized Jacobi Galerkin Operational Matrices of
Derivatives: An Algorithm for Solving Multi-Term
Variable-Order Time-Fractional Diffusion-Wave Equations
Hany Mostafa Ahmed

Department of Mathematics, Faculty of Technology and Education, Helwan University, Cairo 11281, Egypt;
hanyahmed@techedu.helwan.edu.eg

Abstract: The current study discusses a novel approach for numerically solving MTVO-TFDWEs
under various conditions, such as IBCs and DBCs. It uses a class of GSJPs that satisfy the given
conditions (IBCs or DBCs). One of the important parts of our method is establishing OMs for Ods and
VOFDs of GSJPs. The second part is using the SCM by utilizing these OMs. This algorithm enables
the extraction of precision and efficacy in numerical solutions. We provide theoretical assurances
of the treatment’s efficacy by validating its convergent and error investigations. Four examples are
offered to clarify the approach’s practicability and precision; in each one, the IBCs and DBCs are
considered. The findings are compared to those of preceding studies, verifying that our treatment is
more effective and precise than that of its competitors.

Keywords: Jacobi polynomials; fractional differential equations with variable order; collocation
method; initial boundary conditions; Dirichlet boundary conditions

MSC: 42C05; 65L60; 34B05

1. Introduction

Fractional calculus has emerged as a subject of great interest among researchers from
diverse fields in recent decades. The universal perspective that fractional operators offer
for comprehending system dynamics is what primarily motivates this interest. Fractional
derivatives offer a more precise and comprehensive description of various physical phe-
nomena compared to traditional integer-order derivatives [1–4]. Consequently, there exists
a wide range of definitions for fractional differentiation in the literature (for further details,
refer to [5–7]). A list of abbreviations used in the paper is given in Abbreviations Section.

Researchers have made worthy progress in the field of fractional calculus, emphasiz-
ing the extension of the framework to encompass VOFDs. This extension facilitates an
understanding of diverse dynamic systems. The authors in [8] conducted a specific study
in which they investigated the characteristics of VOFD operators [9,10].

VOFC is a strong framework that obtains the nonlocal properties of different systems
very well [11–18]. For instance, in study [19], the utilization of VOFD operators enabled
the modeling of the microscopic structure of materials. As shown in an additional publica-
tion [20], continuum elasticity also made use of the Riesz–Caputo fractional derivative of
space-dependent order. In [21], the authors recommend using collocation and tau spectral
techniques to solve the time-fractional heat equation numerically. Studies [22,23] specifi-
cally focused on understanding and analyzing how the fractional order, which characterizes
the system’s dynamics, evolves over time and influences its viscoelastic properties. By ex-
amining the time-dependent changes in the fractional order, valuable insights were gained
into the complex behavior of such systems. Overall, VOFC has proven to be a valuable
tool in engineering mechanics, providing a versatile approach to accurately describe and
analyze a wide range of dynamic systems.
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The pursuit of analytical solutions for FDEs poses a significant challenge, often neces-
sitating reliance on numerical approximations. As a result, various numerical techniques
have addressed the complexities associated with FDEs, enabling researchers to effectively
tackle problems that would otherwise be challenging to solve analytically. Previous re-
search has witnessed the utilization of a variety of approaches to create numerical solutions
for FDEs through the use of both orthogonal and non-orthogonal polynomials. There
are a number of papers [24–30] that talk about different OMs of JPs and some of their
special cases. These papers use different spectral methods by utilizing these OMs to solve
different kinds of DEs and FDEs numerically, subject to different kinds of IBCs. Addition-
ally, researchers in [31–36] follow the same methodology to solve VOFDEs numerically.
Additionally, in [37,38], Bernstein polynomials were employed to approximate solutions for
FDEs. Another notable contribution in [39] proposed a numerical scheme based on Fourier
analysis for solving FDEs. Furthermore, finite difference approximations were discussed
in [40] as a means to construct numerical schemes for FDEs. In [41], the author uses a class
of modified JPs to introduce a novel method for numerically solving MTVO-FDEs with
initial conditions.

Many researchers [42–44] have shown that JPs have properties that make them very
useful for solving different kinds of DEs, especially when spectral methods are used. Some
of these properties are that they are orthogonal, have exponential accuracy, and have two
parameters that allow us to shape approximate solutions in different ways. These inherent
properties of JPs make them highly suitable for effectively solving a wide range of diverse
problems encountered in various fields of study.

It is worth noting that a significant class of fractional partial differential equations that
has received considerable attention in recent years is the TFDWE. This equation arises from
the classical diffusion-wave equation by replacing the second-order time derivative term
with a fractional derivative of order 1 < α < 2 [45]. The TFDWE describes important physi-
cal effects seen in many different types of systems, such as colloidal, amorphous, glassy,
and porous materials, as well as dielectrics and semiconductors, comb structures, poly-
mers, random and disordered media, biological systems, and geophysical and geological
processes (see [46] and references therein).

Furthermore, it is worth mentioning that the TFDWE serves as an accurate model
for many universal electromagnetic, acoustic, and mechanical responses [47,48]. A sin-
gle TFDWE may not be able to fully describe the underlying processes in some real-life
situations. This is why an MTFDWE was created, as shown in [46,49]. This MTFDWE
formulation offers a more comprehensive representation of complex systems and their
dynamic behavior, allowing for more accurate modeling of the underlying processes.

We considered the general form of MTVO-TFDE in our investigation as follows:(
c
0D

ν(x,t)
t +

m

∑
j=1

ϱj
c
0D

νj(x,t)
t

)
y(x, t) + ϱ yt(x, t) = κ yxx(x, t) + g(x, t), (x, t) ∈ [0, ℓ]× [0, T ], (1)

subject to the IBCs:

y(x, 0) = f1(x), yt(x, 0) = f2(x), y(0, t) = f3(t), y(ℓ, t) = f4(t), (2)

or the DBCs:

y(x, 0) = f1(x), y(x, T ) = f2(x), y(0, t) = f3(t), y(ℓ, t) = f4(t), (3)

where ϱj (j = 1, 2, . . . , m, m ∈ N), ϱ ≥ 0 and κ > 0 are constants; 1 < ν1(x, t) < ν2(x, t) <
. . . < νm(x, t) < ν(x, t) ≤ 2 holds; f0(x), f1(x), f2(x), f3(t), f4(t) and g(x, t) are given

functions; and c
0D

ν(x,t)
t and c

0D
νj(x,t)
t (i = 1, 2, . . . , m) are the VOFDs defined in the Caputo

sense, as given in Section 2. The significance and difficulty of proving the existence, unicity,
and dependency of parameters should be emphasized. The significance of determination
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of ν and νj in (1) is evident in theory and practice due to the strong relationship between
them and the heterogeneity and associated physical features of media [50]. For instance,
in the situation of a single term case, Cheng et al. [51] first demonstrated the uniqueness of
ν using the boundary condition data that were provided.

We present a new Galerkin OM for Ods and new OMs for VOFDs of GSJPs in the
sense of Caputo. This was made in order to find a new way to solve the problem shown by
(1) and the conditions (2) or (3). These operational matrices are specifically tailored for the
basis vectors of GSJPs. Leveraging these OMs, we have established a powerful tool that
enables the accurate computation of numerical solutions using the SCM to solve a wide
range of MTVO-TFDEs. This novel method opens up new ways to solve this type of FDE
numerically and more effectively.

To summarize, the main article’s contributions are as follows:

(i) We introduce two classes of GSJPs to satisfy the given IBCs and DBCs (see Section 3.2).
(ii) We establish Galerkin OMs for the Ods and for VOFDs of the introduced GSJPs in the

sense of Caputo (see Sections 4 and 5).
(iii) We address the presented MTVO-TFDE using the proposed GSJPs and their con-

structed OMs in conjunction with the SCM (see Section 6).
(iv) We present a study of convergence and error analysis for the numerical solution

obtained through the proposed scheme (see Section 7).

The paper has the following outline: Section 2 provides comprehensive coverage of
the needed concepts of VOFC. Section 3 highlights the necessary attributes of JPs and
GSJPs. Sections 4 and 5 emphasize the development of new Galerkin OMs for Ods and
VOFDs of GSJPs. These OMs are intended to address Equation (1) when IBCs (2) or DBCs
(3) are considered. Section 6 explores the selection of newly generated OMs in the SCM to
address the aforementioned issue. Section 7 analyzes convergence and error estimation.
Section 8 includes four examples to clarify the approach’s practicability and precision,
and the findings are compared to those of preceding studies, verifying that our treatment
is more effective and precise than its competitors. Finally, Section 9 summarizes the key
outcomes, implications derived from our investigation, and the scope of future work.

2. Basic Definition of Caputo VOFDs

This section serves to introduce and discuss important definitions and necessary assets
that lay the groundwork for the development of our proposed technique. These tools are
crucial building blocks that provide the necessary foundation for effectively handling the
MTVO-TFDE under consideration.

Definition 1 ([39,45]). Suppose h(x, t) is a twice differentiable function. The Caputo derivative
operator with the variable-order ν(x, t) is defined as:

c
0D

ν(x,t)
t h(x, t) =


1

Γ(2−ν(x,t))

t∫
0
(t − τ)1−ν(x,t) ∂2 h(x,τ)

∂ τ2 dτ, 1 < ν(x, t) < 2,

htt(x, t), ν(x, t) = 2.
(4)

The Caputo VOFD exhibits the characteristics:

c
0D

ν(x,t)
t (λ1h1(t) + λ2h2(t)) = λ1

c
0D

ν(x,t)
t h1(t) + λ2

c
0D

ν(x,t)
t h2(t), (5)

c
0D

ν(x,t)
t (C)= 0, (C is a constant), (6a)

c
0D

ν(x,t)
t tk=

{
0, k = 0, 1,

Γ(k+1)
Γ(k+1−ν(x,t)) tk−ν(x,t), k = 2, 3, . . . .

(6b)
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Remark 1. The reader who is interested may find several definitions and additional attributes of
VOFDs in [4] (pp. 35–42).

3. An Overview of the Shifted JPs and Their Generalized Ones

Introducing the fundamental features of the JPs and their shifting form is the main
objective of this section. Additionally, a group of GSJPs is introduced.

3.1. An Overview of the Shifted JPs

The orthogonal JPs, J (α̂,β̂)
n (x), α̂, β̂ > −1, satisfy the following relationship [52]:

∫ 1

−1
wα̂,β̂(x)J (α̂,β̂)

n (x)J (α̂,β̂)
m (x) dx =

{
0, m ̸= n,

h(α̂,β̂)
n , m = n,

where wα̂,β̂(x) = (1 − x)α̂(1 + x)β̂ and h(α̂,β̂)
n = 2λΓ(n+α̂+1)Γ(n+β̂+1)

n!(2n+λ)Γ(n+λ)
, λ = α̂ + β̂ + 1.

The shifted JPs, denoted as J (α̂,β̂)
ℓ,n (t) = J (α̂,β̂)

n (2t/ℓ− 1), are in accordance with:

∫ ℓ

0
wα̂,β̂
ℓ (t)J (α̂,β̂)

ℓ,n (t)J (α̂,β̂)
ℓ,m (t) dt =

0, m ̸= n,(
ℓ
2

)λ
h(α̂,β̂)

n , m = n,

where wα̂,β̂
ℓ (t) = (ℓ− t)α̂ tβ̂.

The fundamental expansions that will be used in this paper are [53] (Section 11.3.4):

1. The power form representations of J (α̂,β̂)
ℓ,n (t) are as follows:

J (α̂,β̂)
ℓ,i (t) =

i

∑
k=0

c(i)k tk =
i

∑
k=0

c(i)k (ℓ− t)k, (7)

where

c(i)k =
(−1)i−kΓ(i + β̂ + 1)Γ(i + k + λ)

ℓk k!(i − k)!Γ(k + β̂ + 1)Γ(i + λ)
and c(i)k =

(−1)k(α̂ + 1)i(λ + i)k
ℓk k!(i − k)!(α̂ + 1)k

. (8)

2. Alternatively, the expressions for tk and (ℓ− t)k in relation to J (α̂,β̂)
ℓ,r (t) have the forms:

tk =
k

∑
r=0

b(k)r J (α̂,β̂)
ℓ,r (t), and (ℓ− t)k =

k

∑
r=0

b
(k)
r J (α̂,β̂)

ℓ,r (t), (9)

where

b(k)r =
ℓk k! (λ + 2r)Γ(k + β̂ + 1)Γ(r + λ)

(k − r)! Γ(r + β̂ + 1)Γ(k + r + λ + 1)
and b

(k)
r =

(2j + λ)ℓk(−k)j(λ + 1)j−1(α̂ + 1)k

(α̂ + 1)j(λ + 1)k(k + λ + 1)j
. (10)

3.2. Introducing GSJPs

In this section, it is helpful to talk about two polynomials,
{

ϕ
(α̂,β̂)
T ,j (t)

}
j≥0

and{
ψ
(α̂,β̂)
ℓ,j (t)

}
j≥0

. These are needed to satisfy the homogeneous form of the given IBCs (2)

and DBCs (3):

ϕ
(α̂,β̂)
T ,j (t) = t2J (α̂,β̂)

T ,j (t), (11)

ψ
(α̂,β̂)
ℓ,j (t) = t(ℓ− t)J (α̂,β̂)

ℓ,j (t). (12)
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Subsequently, these polynomials satisfy the orthogonality relations as follows:

∫ T

0

wα̂,β̂
T (t)
t4 ϕ

(α̂,β̂)
T ,i (t)ϕ(α̂,β̂)

T ,j (t)dt =

0, i ̸= j,(
T
2

)λ
h(α̂,β̂)

i , i = j,
(13)

∫ ℓ

0

wα̂,β̂
ℓ (t)

t2(ℓ− t)2 ψ
(α̂,β̂)
ℓ,i (t)ψ(α̂,β̂)

ℓ,j (t)dt =

0, i ̸= j,(
ℓ
2

)λ
h(α̂,β̂)

i , i = j,
(14)

where wα̂,β̂
ρ (t) = (ρ − t)α̂ tβ̂.

4. Two OMs for Ods and VOFDs of ϕ
(α̂,β̂)
T ,j (t)

In this part, we introduce two OMs related to ODEs and VOFDs of ϕ
(α̂,β̂)
T ,j (t). To facili-

tate this, we commence with Theorem 1:

Theorem 1 ([41]). D(tn J (α̂,β̂)
T ,i (t)) for all i ≥ 0 can be computed as follows:

D(tn J (α̂,β̂)
T ,i (t)) =

i−1

∑
j=0

θ
α̂,β̂
i,j (n, T )(tn J (α̂,β̂)

T ,i (t)) + ϵn,i(t), (15)

where ϵn,i(t) = n
i! (−1)i (β̂ + 1)i tn−1, and

θ
α̂,β̂
i,j (n, T ) = Cα̂,β̂

i,j

i−j−1

∑
r=0

(−1)r(j + n + r + 1)(i + j + λ + 1)r

r!(j + r + 1)(j + r + β̂ + 1)Γ(i − j − r)Γ(2j + r + λ + 1)
, (16)

where

Cα̂,β̂
i,j =

(−1)i+j−1(λ + i)(β̂ + 1)i(λ + 2j)Γ(j + λ)(i + λ + 1)j

T (β̂ + 1)j
.

Then, the two desired OMs of

Φ
(α̂,β̂)
T ,N (t) =

[
ϕ
(α̂,β̂)
T ,0 (t), ϕ

(α̂,β̂)
T ,1 (t), . . . , ϕ

(α̂,β̂)
T ,N (t)

]T
(17)

can be computed as follows:

Corollary 1 ([41]). The general derivative of Φ
(α̂,β̂)
T ,N (t) has the form:

dmΦ
(α̂,β̂)
T ,N (t)

dtm = GmΦ
(α̂,β̂)
T ,N (t) + η

(m)
N (t), (18)

with η
(m)
N (t) =

m−1
∑

k=0
Gk ϵ

(m−k−1)
N (t), where ϵN(t) = [ϵ2,0(t), ϵ2,1(t), . . . , ϵ2,N(t)]

T and

G =
(

gi,j
)

0≤i,j≤N ,

gi,j =

{
θ

α̂,β̂
i,j (2, T ), i > j,

0, otherwise.
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Theorem 2. Dν(x,t)ϕ
(α̂,β̂)
T ,i (t) for all i ≥ 0, has the form:

c
0D

ν(x,t)
t ϕ

(α̂,β̂)
T ,i (t) = t−ν(x,t)

i

∑
j=0

Θi,j(ν(x, t))ϕ(α̂,β̂)
T ,j (t), (19)

which leads to:
c
0D

ν(x,t)
t Φ

(α̂,β̂)
T ,N (t) = t−ν(x,t)D(ν(x,t))Φ

(α̂,β̂)
T ,N (t), (20)

where D(ν(x,t)) = (di,j(ν(x, t))) is a matrix of order (N + 1)× (N + 1), which can be expressed
explicitly as:

Θ0,0(ν(x, t)) 0 · · · · · · · · · 0

Θ1,0(ν(x, t)) Θ1,1(ν(x, t)) 0 · · · · · · 0
...

. . .
...

Θi,0(ν(x, t)) · · · Θi,i(ν(x, t)) 0 · · · 0
...

. . .
...

...
. . . 0

ΘN,0(ν(x, t)) · · · · · · · · · · · · ΘN,N(ν(x, t))


, (21)

where

di,j(ν(x, t)) =

{
Θi,j(ν(x, t)), i ≥ j,
0, otherwise,

(22)

and

Θi,j(ν(x, t)) =
(−1)i−j(j + 2)!Γ(i + β̂ + 1)Γ(j + λ)Γ(i + j + λ)

(i − j)!Γ(j + β̂ + 1)Γ(2j + λ)Γ(i + λ)Γ(j − ν(x, t) + 3)
× 3F2

(
j − i, j + 3, i + j + λ
2j + λ + 1, j − ν(x, t) + 3

; 1
)

. (23)

Proof. By considering (7) and applying (6b), we obtain:

c
0D

ν(x,t)
t ϕ

(α̂,β̂)
T ,i (t) = t2−ν(x,t)

i

∑
k=0

c(i)k
Γ(k + 3)

Γ(k − ν(x, t) + 3)
tk. (24)

By utilizing (9), expanding and collecting similar terms, and using useful computa-
tional formulae of the Pochhammer symbol and the Gamma function (see [54] (p. 758)), it
is possible to convert (24) to (19), which is represented as follows:

c
0D

ν(x,t)
t ϕ

(α̂,β̂)
T ,i (t) = t−ν(x,t)[Θi,0(ν(x, t)), Θi,1(ν(x, t)), · · · , Θi,i(ν(x, t)), 0, · · · , 0]Φ(α̂,β̂)

T ,N (t), (25)

and this representation enables us to declare that (20) is proved and that the theorem is
completely proved. □

As an application of Theorem 2, for N = 4, α̂ = −β̂ = 1/2, and ν(x, t) = x t, the OM
D(ν(x,t)) has the form:

D(ν(x,t)) =



2
Γ(3−tx) 0 0 0 0

tx
Γ(4−tx)

6
Γ(4−tx) 0 0 0

3tx(tx+2)
4Γ(5−tx)

27tx
2Γ(5−tx)

24
Γ(5−tx) 0 0

5tx(tx+1)(tx+5)
8Γ(6−tx)

45tx(tx+1)
2Γ(6−tx)

100tx
Γ(6−tx)

120
Γ(6−tx) 0

35tx(tx+1)(tx+2)(tx+9)
64Γ(7−tx)

525tx(tx+1)(tx+2)
16Γ(7−tx)

175tx(3tx+2)
2Γ(7−tx)

735tx
Γ(7−tx)

720
Γ(7−tx)


5×5

. (26)
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5. Two OMs for Ods and VOFDs of ψ
(α̂,β̂)
ℓ,i (t)

In this part, we establish two OMs for Ods and VOFDs of ψ
(α̂,β̂)
ℓ,i (t). In order to achieve

this, we commence by proving the subsequent lemma:

Lemma 1. The polynomials tJ (α̂,β̂)
ℓ,i (t), i ≥ 0 have the following representation:

tJ (α̂,β̂)
ℓ,i (t) = −

i−1

∑
j=0

Yα̂,β̂
i,j (ℓ)ψ

(α̂,β̂)
ℓ,j (t) +

(α̂ + 1)i
i!

t, (27)

where

Yα̂,β̂
i,j =

Γ(i + α̂ + 1)Γ(j + λ)Γ(i + j + λ + 1)
ℓ (j + 1)Γ(i − j)Γ(j + α̂ + 2)Γ(i + λ)Γ(2j + λ) 4F3

( −i + j + 1, j + 1, α̂ + j + 1, λ + i + j + 1
j + 2, α̂ + j + 2, λ + 2j + 1

; 1
)

. (28)

Proof. We have

J (α̂,β̂)
ℓ,i (t) = (ℓ− t)

J (α̂,β̂)
ℓ,i (t)−J (α̂,β̂)

ℓ,i (ℓ)

ℓ− t

+ J (α̂,β̂)
ℓ,i (ℓ). (29)

In view of (7) and (9), we obtain:

J (α̂,β̂)
ℓ,i (t)−J (α̂,β̂)

ℓ,i (ℓ)

ℓ− t
=

i−1

∑
k=0

c(i)k+1 (ℓ− t)k =
i−1

∑
k=0

c(i)k+1

(
k

∑
r=0

b
(k)
r J (α̂,β̂)

ℓ,i (t)

)
, (30)

consequently, through expansion, the accumulation of similar terms, and using useful
computational formulae of the Pochhammer symbol and the Gamma function (see [54]
(p. 758)), it becomes evident that:

J (α̂,β̂)
ℓ,i (t)−J (α̂,β̂)

ℓ,i (ℓ)

ℓ− t
= −

i−1

∑
j=0

Yα̂,β̂
i,j (ℓ)J (α̂,β̂)

ℓ,j (t). (31)

Substitution of (31) and J (α̂,β̂)
ℓ,i (ℓ) =

(α̂+1)i
i! into (29) leads to (27), and then the lemma

is proved completely. □

Theorem 3. D ψ
(α̂,β̂)
ℓ,i (t), for all i ≥ 0, has the form:

D ψ
(α̂,β̂)
ℓ,i (t) =

i−1

∑
j=0

Ωα̂,β̂
i,j (ℓ)ψ

(α̂,β̂)
ℓ,j (t) + ϑℓ,i(t), (32)

where ϑℓ,i(t) = 1
i! ((−1)i(ℓ− t)(β̂ + 1)i − t(α̂ + 1)i), and

Ωα̂,β̂
i,j (ℓ) = θ

α̂,β̂
i,j (1, ℓ) + Yα̂,β̂

i,j (ℓ), (33)

Proof. We have

D ψ
(α̂,β̂)
ℓ,i (t) = (ℓ− t)D (tJ (α̂,β̂)

ℓ,i (t))− tJ (α̂,β̂)
ℓ,i (t). (34)

Using Theorem 1 and Lemma 1 leads to (32), and the proof of the theorem is complete.
□
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Then, the desired two OMs of

Ψ
(α̂,β̂)
ℓ,N (t) =

[
ψ
(α̂,β̂)
ℓ,0 (t), ψ

(α̂,β̂)
ℓ,1 (t), · · · , ψ

(α̂,β̂)
ℓ,N (t)

]T
(35)

can be computed as follows:

Corollary 2. The general derivative of Ψ
(α̂,β̂)
ℓ,N (t) is expressed as:

dmΨ
(α̂,β̂)
ℓ,N (t)

dtm = Hm Ψ
(α̂,β̂)
ℓ,N (t) + ξ

(m)
ℓ,N (t), (36)

with ξ
(m)
ℓ,N (t) =

m−1
∑

k=0
Hk ϑ

(m−k−1)
ℓ,N (t), where ϑℓ,N(t) = [ϑℓ,0(t), ϑℓ,1(t), . . . , ϑℓ,N(t)]

T and

H =
(
hi,j
)

0≤i,j≤N ,

hi,j =

{
Ωα̂,β̂

i,j (ℓ), i > j,

0, otherwise.

Theorem 4. c
0D

ν(x,t)
t ψ

(α̂,β̂)
ℓ,i (t) for all i ≥ 0, has the expression

c
0D

ν(x,t)
t ψ

(α̂,β̂)
ℓ,i (t) = t−ν(x,t)

(
i

∑
j=0

Λi,j(ν(x, t))ψ(α̂,β̂)
ℓ,j (t) + εℓ,i(x, t)

)
, (37)

which leads to

c
0D

ν(x,t)
t Ψ

(α̂,β̂)
ℓ,N (t) = t−ν(x,t)

(
D̂(ν(x,t))

Ψ
(α̂,β̂)
ℓ,N (t) + εℓ,N(x, t)

)
, (38)

where εℓ,N(x, t) = [εℓ,0(x, t), εℓ,1(x, t), · · · , εℓ,N(x, t)]T and D̂(ν(x,t))
= (d̂i,j(ν(x, t))) is a ma-

trix of order (N + 1)× (N + 1), which can be expressed explicitly as:

Λ0,0(ν(x, t)) 0 · · · · · · · · · 0

Λ1,0(ν(x, t)) Λ1,1(ν(x, t)) 0 · · · · · · 0
...

. . .
...

Λi,0(ν(x, t)) · · · Λi,i(ν(x, t)) 0 · · · 0
...

. . .
...

...
. . . 0

ΛN,0(ν(x, t)) · · · · · · · · · · · · ΛN,N(ν(x, t))


, (39)

where the matrix elements are defined as follows:

d̂i,j(ν(x, t)) =

{
Λi,j(ν(x, t)), i ≥ j,
0, otherwise,

(40)

and the coefficients Λi,j(ν(x, t)) have the form

Λi,j(ν(x, t)) = Ξ(1)
i,j (ν(x, t)) + Ξ(2)

i,j (ν(x, t)), (41)

where
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Ξ(1)
i,j (ν(x, t)) =

(j + 2)!(−1)i−j (λ)j(λ)i+j (β̂ + 1)i

(i − j)!(λ)i(λ)2j(β̂ + 1)j Γ(j − ν(x, t) + 3)
× 3F2

( −i + j, j + 3, i + j + λ
2j + λ + 1, 3 + j − ν(x, t)

; 1
)

, (42)

Ξ(2)
i,j (ν(x, t)) =

(−1)i+1(2j+λ)(β̂+1)i(λ)j ν(x,t)

(β̂+1)j (λ)i

i
∑

r=j

(−1)r(r+2) r! (λ+1)i+r
(β̂+r+1)(i−r−1)! (r−j)! (λ+1)j+r Γ(r−ν(x,t)+4)

×

4F3

(
1, r + 3,−i + r + 1, i + λ + r + 1
r + 2, β̂ + r + 2, 4 + r − ν(x, t)

; 1
)

,
(43)

and the functions εℓ,i(x, t) have the form

εℓ,i(x, t) =
(−1)i+1 ℓ(β̂ + 1)i ν(x, t) t

i!Γ(3 − ν) 3F2

( −i, i + λ, 2
β̂ + 1, 3 − ν(x, t)

; 1
)

. (44)

Proof. By considering (7) and applying (6b), it is easy to see that

c
0D

ν(x,t)
t ψ

(α̂,β̂)
ℓ,i (t) = t−ν(x,t)

i

∑
s=0

c(i)k
Γ(s + 2) ts+1

Γ(s + 3 − ν(x, t))
((s + 2)(ℓ− t)− ℓ ν(x, t)), (45)

which may be expressed as:

c
0D

ν(x,t)
t ψ

(α̂,β̂)
ℓ,i (t) = t−ν(x,t)

(
∑
1
+∑

2
+∑

3

)
, (46)

where

∑
1
=

i

∑
s=0

c(i)s
Γ(s + 3)

Γ(s + 3 − ν(x, t))
(t(ℓ− t))ts, (47)

∑
2
=

i

∑
s=0

c(i)s
ℓ Γ(s + 2) ν(x, t)
Γ(s + 3 − ν(x, t))

t(ℓs − ts), (48)

and

∑
3
= −

(
i

∑
s=0

c(i)s
Γ(s + 2) ν(x, t)

Γ(s + 3 − ν(x, t))
ℓs+1

)
t. (49)

Using (9), through expansion, the accumulation of similar terms, and some algebraic
manipulation (see [54] (p. 758)), it becomes evident that

∑
1
=

i

∑
j=0

Ξ(1)
i,j (ν(x, t))ψ(α̂,β̂)

ℓ,j (t). (50)

Also, substitution of the form c(i)s in (49)—after some simple algebraic manipulation—
gives

∑
3
= εℓ,i(x, t). (51)

Now, it remains that we show that

∑
2
=

i

∑
j=0

Ξ(2)
i,j (ν(x, t))ψ(α̂,β̂)

ℓ,j (t). (52)

Using ℓs − ts = ℓs−1(ℓ− t)∑s−1
k=0 ℓ

−k tk and c(i)i+1 = 0—after some algebraic manipula-
tion—leads to:
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∑
2
=

i

∑
s=0

c(i)s+1
ℓs+1 Γ(s + 3) ν(x, t)
Γ(s + 4 − ν(x, t))

t(ℓ− t)

(
s

∑
k=0

ℓ−k tk

)
. (53)

By expanding and collecting similar terms, we obtain:

∑
2
=

i

∑
j=0

Bi,j t(ℓ− t)tj, (54)

where

Bi,j =
i

∑
s=j

c(i)s+1
ℓs−j+1 Γ(s + 3) ν(x, t)

Γ(s + 4 − ν(x, t))
. (55)

Again, using (9), expanding and collecting similar terms leads to:

∑
2
=

i

∑
j=0

(
i

∑
r=j

Bi,r b(r)j

)
ψ
(α̂,β̂)
ℓ,j (t). (56)

Using the expressions of c(i)s+1 and b(r)j after some algebraic manipulation leads to:

i

∑
r=j

Bi,r b(r)j = Ξ(2)
i,j (ν(x, t)), (57)

then

∑
2
=

i

∑
j=0

Ξ(2)
i,j (ν(x, t))ψ(α̂,β̂)

ℓ,j (t). (58)

In view of Equations (46), (50), (51), and (58), the proof of (37) is complete, which can
be expressed as follows:

c
0D

ν(x,t)
t ψ

(α̂,β̂)
ℓ,i (t) = t−ν(x,t)

(
[Λi,0(ν(x, t)), Λi,1(ν(x, t)), . . . , Λi,i(ν(x, t)), 0, . . . , 0]Ψ(α̂,β̂)

ℓ,N (t) + εℓ,i(x, t)
)

; (59)

this gives (38), and the theorem is completely proved. □

As an application of Corollary 2 and Theorem 4, for N = 4, α̂ = −β̂ = 1/2,

and ν(x, t) = x t, the OMs H and D̂(ν(x,t)) have the forms:

H =
1
ℓ


0 0 0 0 0
6 0 0 0 0
− 3

2 12 0 0 0
10 − 5

2
50
3 0 0

− 35
16

315
16 − 35

12 21 0


5×5

, (60)

and

D̂(ν(x,t))
=



2
Γ(3−tx) 0 0 0 0

5tx
Γ(4−tx)

6
Γ(4−tx) 0 0 0

3tx(13tx+14)
4Γ(5−tx)

63tx
2Γ(5−tx)

24
Γ(5−tx) 0 0

5tx(5tx(5tx+18)+41)
8Γ(6−tx)

15tx(13tx+9)
2Γ(6−tx)

180tx
Γ(6−tx)

120
Γ(6−tx) 0

35tx(tx(tx(41tx+312)+481)+186)
64Γ(7−tx)

105tx(7tx(5tx+11)+38)
16Γ(7−tx)

35tx(43tx+22)
2Γ(7−tx)

1155tx
Γ(7−tx)

720
Γ(7−tx)


5×5

. (61)
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6. Numerical Handling for MTVO-TFDWEs Subject to IBCs (2) or DBCs (3)

OMs from Sections 4 and 5 are used in this section to find numerical solutions for
MTVO-TFDWEs (1) when IBCs (2) or DBCs (3) are present.

6.1. Homogeneous IBCs and DBCs

Suppose that the IBCs (2) or the DBCs (3) are homogeneous; that is, f1(x) = f2(x) =
f3(t) = f4(t) = 0. We can consider

y(x, t) ≃ yN(x, t) =
N

∑
i=0

N

∑
j=0

ai,j ψ
(α̂,β̂)
ℓ,i (x) ϕ

(α̂,β̂)
T ,j (t) = Ψ

(α̂,β̂)
ℓ,N (x)A Φ

(α̂,β̂)
T ,N (t) (62)

in the case of IBCs, while in the case of DBCs, we have

y(x, t) ≃ yN(x, t) =
N

∑
i=0

N

∑
j=0

ai,j ψ
(α̂,β̂)
ℓ,i (x)ψ

(α̂,β̂)
ℓ,j (t) = Ψ

(α̂,β̂)
ℓ,N (x)A Ψ

(α̂,β̂)
T ,N (t), (63)

where A = (ai,j)(N+1)×(N+1) is the unknown matrix.
Corollaries 1 and 2 and Theorems 2 and 4 allow us to approximate the derivatives

of y(x, t) that appear in Equation (1) according to the conditions considered, IBCs/DBCs,
as follows:

c
0D

ν(x,t)
t yN(x, t) =
N
∑

i=0

N
∑

j=0
ai,j ψ

(α̂,β̂)
ℓ,i (x) c

0D
ν(x,t)
t ϕ

(α̂,β̂)
T ,j (t) = t−ν(x,t)Ψ

(α̂,β̂)
ℓ,N (x)A D(ν(x,t))Φ

(α̂,β̂)
T ,N (t), forIBCs,

N
∑

i=0

N
∑

j=0
ai,j ψ

(α̂,β̂)
ℓ,i (x) c

0D
ν(x,t)
t ψ

(α̂,β̂)
T ,j (t) = t−ν(x,t)Ψ

(α̂,β̂)
ℓ,N (x)A (D̂(ν(x,t))

Ψ
(α̂,β̂)
T ,N (t) + εT ,N(x, t)), forDBCs,

(64)

DtyN(x, t) =


N
∑

i=0

N
∑

j=0
ai,j ψ

(α̂,β̂)
ℓ,i (x)Dtϕ

(α̂,β̂)
T ,j (t) = Ψ

(α̂,β̂)
ℓ,N (x)A (GΦ

(α̂,β̂)
T ,N (t) + η

(1)
T ,N(t)), forIBCs,

N
∑

i=0

N
∑

j=0
ai,j ψ

(α̂,β̂)
ℓ,i (x)Dtψ

(α̂,β̂)
T ,j (t) = Ψ

(α̂,β̂)
ℓ,N (x)A (H Ψ

(α̂,β̂)
T ,N (t) + ξ

(1)
T ,N(t)), forDBCs,

(65)

and

DxxyN(x, t) =


N
∑

i=0

N
∑

j=0
ai,j Dxxψ

(α̂,β̂)
ℓ,i (x) ϕ

(α̂,β̂)
T ,j (t) = (H2 Ψ

(α̂,β̂)
ℓ,N (x) + ξ

(2)
ℓ,N(x))A Φ

(α̂,β̂)
T ,N (t), forIBCs,

N
∑

i=0

N
∑

j=0
ai,j Dxxψ

(α̂,β̂)
ℓ,i (x)ψ

(α̂,β̂)
T ,j (t) = (H2 Ψ

(α̂,β̂)
ℓ,N (x) + ξ

(2)
ℓ,N(x))A Ψ

(α̂,β̂)
T ,N (t), forDBCs.

(66)

In this method, using the approximations (62)–(66) allows one to write the residual of
Equation (1) as:

RN(x, t) =

(
c
0D

ν(x,t)
t +

m

∑
j=1

ϱj
c
0D

νj(x,t)
t

)
yN(x, t) + ϱDt yN(x, t)− κ Dxx yN(x, t)− g(x, t). (67)

Now, we suggest a spectral approach called GSJCOPMM to obtain an approximate
solution for (1) under the IBCs (2) or DBCs (3) (with f1(x) = f2(x) = f3(t) = f4(t) = 0).

The collocation points xi, ti (0 ≤ i ≤ N) are chosen to be either the zeros of J (α̂,β̂)
ℓ,N+1(x)

and J (α̂,β̂)
T ,N+1(t) or the points xi = ℓ(i+1)

N+2 and ti = T (j+1)
N+2 , i, j = 0, 1, . . . , N, respectively.

Therefore, we have
RN(xi, tj) = 0, i, j = 0, 1, . . . , N. (68)
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We can compute ai,j (where i, j = 0, 1, . . . , N) by using the right solver to work through
a set of (N + 1)2 Equation (68). Achieving the target numerical solution relies heavily on
these coefficients.

6.2. Non-Homogeneous IBCs and DBCs

Changing Equation (1) along with the non-homogeneous conditions (2) or (3) into a
similar form with homogeneous conditions is an important part of creating the proposed
algorithm. The following transformation accomplishes this change:

u(x, t) = y(x, t)− q(x, t), q(x, t) = q1(x, t) + q2(x, t), (69)

where the two functions q1(x, t) and q2(x, t) are defined as follows:

In the Case of IBCs:

q1(x, t) = 1
ℓ [(ℓ− x)( f3(t)− f2(0) t − f3(0)) + x( f4(t)− f2(ℓ) t − f4(0))],

q2(x, t) = f1(x) + f2(x) t.

}
(70)

In the Case of DBCs:

q1(x, t) = 1
ℓ T [(ℓ− x)(T f3(t)− f2(0) t − f1(0) (T − t))− f1(ℓ) x (T − t)− f2(ℓ) x t + T x f4(t)],

q2(x, t) = 1
T [(T − t) f1(x) + t f2(x)].

}
(71)

As a result, the current issue may be simplified by solving the following updated
equation:(

c
0D

ν(x,t)
t +

m

∑
j=1

ϱj
c
0D

νj(x,t)
t

)
uN(x, t) + ϱDtuN(x, t) = κ DxxuN(x, t) + g̃(x, t), (72)

where

g̃(x, t) = g(x, t) +

(
κ Dxx − c

0D
ν(x,t)
t −

m

∑
j=1

ϱj
c
0D

νj(x,t)
t − ϱDt

)
q(x, t),

subject to the homogeneous IBCs

u(x, 0) = ut(x, 0) = u(0, t) = u(ℓ, t) = 0, (73)

or the homogeneous DBCs

u(x, 0) = u(x, 0) = u(0, t) = u(ℓ, t) = 0. (74)

Then,
yN(x, t) = uN(x, t) + q(x, t). (75)

Remark 2. Section 8 explains the algorithm that was used to solve various numerical examples.
An Intel®Core™ i9-10850 CPU running at 3.60 GHz, with 10 cores and 20 logical processors and
64.0 GB RAM, was used to do the calculations on a computer system equipped with Mathematica
13.3.1.0 with GSJCOPMM, and the following algorithmic steps may be described to solve the
MTVO-TFDWE (Algorithms 1 and 2):
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Algorithm 1 GSJCOPMM algorithm to solve (1) subject to IBCs.

Stage 1. Given α̂, β̂, ℓ, T , N, ν(x, t), νi(x, t) and f j, i = 1, 2, . . . , m, j = 1, 2, 3, 4.

Stage 2.

Define the basis ψ
(α̂,β̂)
ℓ,i (x) and ϕ

(α̂,β̂)
T ,j (t), the matrices

A, G, H, η
(m)
N (t), ξ

(m)
ℓ,N (x), Ψ

(α̂,β̂)
ℓ,N (x), Φ

(α̂,β̂)
T ,N (t),

and calculate the elements of matrices G, H2, η
(1)
N (t), ξ

(2)
ℓ,N(x), D(ν(x,t)), and

D(νi(x,t)), i = 1, 2, . . . , m.

Stage 3.

Calculate the matrices:
1. Ψ

(α̂,β̂)
ℓ,N (x)A Φ

(α̂,β̂)
T ,N (t),

2. Ψ
(α̂,β̂)
ℓ,N (x)A (GΦ

(α̂,β̂)
T ,N (t) + η

(1)
N (t)),

3. (H2 Ψ
(α̂,β̂)
ℓ,N (x) + ξ

(2)
ℓ,N(x))A Φ

(α̂,β̂)
T ,N (t),

4. Ψ
(α̂,β̂)
ℓ,N (x)A D(ν(x,t))Φ

(α̂,β̂)
T ,N (t),

5. Ψ
(α̂,β̂)
ℓ,N (x)A D(νi(x,t))Φ

(α̂,β̂)
T ,N (t), i = 0, 1, . . . , m.

Stage 4. Define RN(x, t) as in Equation (67).
Stage 5. List RN(xi, tj) = 0, i, j = 0, 1, . . . , N, defined in Equation (68).
Stage 6. Use Mathematica’s built-in numerical solver to solve the system obtained in [Output 5].
Stage 6. Calculate yN(x, t) defined in Equation (62) (Homogeneous IBCs).
Stage 7. Calculate q(x, t) and yN(x, t) defined in Equation (75) (Non-homogeneous IBCs).

Algorithm 2 GSJCOPMM algorithm to solve (1) subject to DBCs.

Stage 1. Given α̂, β̂, ℓ, T , N, ν(x, t), νi(x, t) and f j, i = 1, 2, . . . , m, j = 1, 2, 3, 4.

Stage 2.
Define the basis ψ

(α̂,β̂)
ℓ,i (x), the matrices A, H, εT ,N(x, t), ξ

(m)
ℓ,N (t), Ψ

(α̂,β̂)
ℓ,N (x), and

calculate the elements
of matrices H2, ξ

(1)
T ,N(t), ξ

(2)
ℓ,N(x), D̂(ν(x,t)), and D̂(νi(x,t)), i = 1, 2, . . . , m.

Stage 3.

Calculate the matrices:
1. Ψ

(α̂,β̂)
ℓ,N (x)A Ψ

(α̂,β̂)
T ,N (t),

2. Ψ
(α̂,β̂)
ℓ,N (x)A (HΨ

(α̂,β̂)
T ,N (t) + ξ

(1)
T ,N(t)),

3. (H2 Ψ
(α̂,β̂)
ℓ,N (x) + ξ

(2)
ℓ,N(x))A Ψ

(α̂,β̂)
T ,N (t),

4. Ψ
(α̂,β̂)
ℓ,N (x)A (D̂(ν(x,t))

Ψ
(α̂,β̂)
T ,N (t) + εT ,N(x, t)),

5. Ψ
(α̂,β̂)
ℓ,N (x)A (D̂(νi(x,t))

Ψ
(α̂,β̂)
T ,N (t) + εT ,N(x, t)), i = 0, 1, . . . , m.

Stage 4. Define RN(x, t) as in Equation (67).
Stage 5. List RN(xi, tj) = 0, i, j = 0, 1, . . . , N, defined in Equation (68).
Stage 6. Use Mathematica’s built-in numerical solver to solve the system obtained in [Output 5].
Stage 6. Calculate yN(x, t) defined in Equation (62) (Homogeneous DBCs).
Stage 7. Calculate q(x, t) and yN(x, t) defined in Equation (75) (Non-homogeneous DBCs).

7. Convergence and Error Analysis

Here, we look at the suggested method’s convergence and error estimations. The
space SN , defined as follows, is our primary area of interest,

SN =

Span
{

ψ
(α̂,β̂)
ℓ,i (x)ϕ(α̂,β̂)

T ,j (t) : i, j = 0, 1, . . . , N
}

, forIBCs,

Span
{

ψ
(α̂,β̂)
ℓ,i (x)ψ(α̂,β̂)

T ,j (t) : i, j = 0, 1, . . . , N
}

, forDBCs.

Additionally, the error between y(x, t) and its approximation yN(x, t) can be defined by

EN(x, t) = |y(x, t)− yN(x, t)|. (76)
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The numerical scheme’s error is examined in the paper via the use of the L∞ norm
error estimation

∥ EN ∥∞ =∥ y−yN ∥∞= max
(x,t)∈I

|y(x, t)− yN(x, t)|, I = [0, ℓ]× [0, T ]. (77)

In the following, Theorem 5 discusses the error estimate when the solution satisfies
IBCs, while Theorem 6 discusses it when DBCs are considered.

Theorem 5. Assume that y(x, t) = t2 x (ℓ− x) υ(x, t) and that yN(x, t) has the expression (62)
and represents the best possible approximation (BPA) for y(x, t) out of SN . Then,

∥ EN ∥∞≤ 1
4
(ℓ T )2 Wq,N(ℓ, T ), q = max

{
α̂, β̂,−1/2

}
< N + 1, (78)

where

Wq,N(ℓ, T ) = K1
ℓ

2λ

(
e ℓ
4

)N
(N + 1)q−N−1 + K2

T
2λ

(
e T
4

)N
(N + 1)q−N−1 + K3

ℓ T
22λ

(
e2 ℓ T

16

)N

(N + 1)2(q−N−1), (79)

where the constants Ki, i = 1, 2, 3, are defined as follows:

K1 = max
(x,t)∈I

|∂
N+1 υ(x, t)

∂ xN+1 |, K2 = max
(x,t)∈I

|∂
N+1 υ(x, t)

∂ tN+1 |, K3 = max
(x,t)∈I

| ∂2N+2 υ(x, t)
∂ xN+1 ∂ tN+1 |. (80)

Proof. Let υN(x, t) be the interpolating polynomial for υ(x, t) at the points (xi, tj),

i, j = 0, 1, . . . , N, where xi, (0 ≤ i ≤ N) and tj, (0 ≤ j ≤ N) are the roots of J (α̂,β̂)
ℓ,N+1(x) and

J (α̂,β̂)
T ,N+1(t), respectively, such that N > q − 1. Then, the function υ(x, t) can be written

as [55]:

υ(x, t) = υN(x, t) +
∂N+1 υ(ηx, t)

∂ xN+1 (N + 1)!
Q1(x) +

∂N+1 υ(x, ηt)

∂ tN+1 (N + 1)!
Q2(t)−

∂2N+2 υ(η′x, η′t)
∂ xN+1 ∂ tN+1 ((N + 1)!)2 Q1(x)Q2(t), (81)

where Q1(x) = ∏N
i=0 (x − xi), Q2(t) = ∏N

j=0 (t − tj), ηx, η′x ∈ [0, ℓ], and ηt, η′t ∈ [0, T ].
This is to acquire that:

∥ υ−υN ∥∞≤ K1 ℓ
N+1

(N+1)!c̃N
∥ J (α̂,β̂)

ℓ,N+1(x) ∥∞ + K2 T N+1

(N+1)!c̃N
∥ J (α̂,β̂)

T ,N+1(t) ∥∞

+ K3 (ℓ T )N+1

((N+1)!)2(c̃N)2 ∥ J (α̂,β̂)
ℓ,N+1(x) ∥∞∥ J (α̂,β̂)

T ,N+1(t) ∥∞
,

(82)

where c̃N = ℓN+1 cN+1
N+1 = Γ(2N+λ+2)

(N+1)! Γ(N+λ+1) , and cN+1
N+1 is the leading coefficient of J (α̂,β̂)

ℓ,N+1(x).
Using the expression [52] (formula (7.32.2)), we derive:

∥ J (α̂,β̂)
ℓ,N+1 ∥∞≃ (N + 1)q, (83)

and thus the inequality (82) takes the form:

∥ υ−υN ∥∞≤ K1
ℓN+1Γ(N+λ+1)(N+1)q

Γ(2N+λ+2) + K2
T N+1Γ(N+λ+1)(N+1)q

Γ(2N+λ+2)

+K3 (ℓ T )N+1 Γ2(N+λ+1)(N+1)2q

Γ2(2N+λ+2) .
(84)
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By utilizing results (see [56] (pp. 232–233)),

Γ(m + λ) = O (mλ−1 m!), (2m)! =
1√
π

4m m! Γ(m + 1/2), m! = O
(√

2π m
(m

e

)m)
, (85)

the inequality (84) takes the form:

∥ υ−υN ∥∞≤ Wq,N(ℓ, T ), (86)

where

Wq,N(ℓ, T ) = K1
ℓ

2λ

(
e ℓ
4

)N
(N + 1)q−N−1 + K2

T
2λ

(
e T
4

)N
(N + 1)q−N−1 + K3

ℓ T
22λ

(
e2 ℓ T

16

)N

(N + 1)2(q−N−1). (87)

Now, consider the approximation y(x, t) ≃ YN(x, t) = t2 x (ℓ− x)υN(x, t); then,

∥ y−YN ∥∞≤ 1
4
(ℓ T )2 ∥ u − υN ∥∞ ≤ 1

4
(ℓ T )2 Wq,N(ℓ, T ). (88)

Since yN(x, t) ∈ SN represents the BPA to y(x, t), then

∥ y−yN ∥∞≤ ∥ y − h ∥∞, ∀h ∈ SN , (89)

and therefore,

∥ y−yN ∥∞≤ ∥ y − YN ∥∞ ≤ 1
4
(ℓ T )2 Wq,N(ℓ, T ). (90)

□

Theorem 6. Assume that y(x, t) = t x (ℓ− x)(T − t) υ(x, t) and that yN(x, t) has the expression
(63) and represents the BPA for y(x, t) out of SN . Then,

∥ EN ∥∞≤ 1
16

(ℓ T )2 Wq,N(ℓ, T ), q = max
{

α̂, β̂,−1/2
}
< N + 1, (91)

where Wq,N(ℓ, T ) is defined by (79).

Proof. Following the same procedures in the proof of Theorem 5, we obtain (91). □

The next corollary demonstrates how quickly the resulting errors are convergent.

Corollary 3. For all N > q − 1, the following estimate holds:

∥ EN ∥∞= O
((

e2 ℓ T
16

)N

Nq−N−1

)
. (92)

The stability of error, or the process of estimating the propagation of error, is the focus
of the subsequent theorem.

Theorem 7. Given any two iterative estimates of y(x, t), the result is:

|yN+1 − yN | ≲ O
((

e2 ℓ T
16

)N

Nq−N−1

)
, N > q − 1. (93)
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Proof. We have

|yN+1 − yN | = |yN+1 − y + y − yN | ≤ |y−yN+1|+ |y−yN | ≤∥EN+1 ∥∞ +∥ EN ∥∞.

By considering (92), we can obtain (93). □

Remark 3. While relative error can be a useful measure in certain situations, the choice to utilize
absolute error in our study was driven by considerations of stability, consistency with established
literature, practical interpretation, and the characteristics of the problem at hand. We believe that
using absolute error allows for a reliable and meaningful assessment of the accuracy of our proposed
method in solving MTVO-TFDWEs.

8. Numerical Simulations

In order to show how the approach presented in Section 6 works and how efficient it
is, four examples are provided in this section. The assessment is based on MAE between
the precise and approximate solutions. We show in Example 1 that, for certain simple cases
of the functions ν(x, t) and νj(x, t), j = 1, 2, . . . , m, we can use GSJCOPMM to find the
precise solution to the given numerical problem, whether it involves IBCs or DBCs, and
that it has a polynomial solution of degree N. This solution can be found by combining

ψ
(α̂,β̂)
ℓ,i (x), ϕ

(α̂,β̂)
T ,j (t), i, j = 0, 1, . . . , N − 2. Otherwise, some numerical solutions are obtained

with high accuracy. Additionally, the choice of examples in our study is motivated by
the desire to cover different conditions, compare with existing results, showcase accuracy
and efficiency, and demonstrate practical relevance. These examples collectively provide a
comprehensive assessment of the performance and applicability of our proposed method
for solving MTVO-TFDWEs.

In addition, Tables 1–4 display the calculated errors that were obtained to produce
numerical solutions yN(x, t) using GSJCOPMM with N = 0, 1, . . . , 14. In these tables,
excellent computational results are obtained. The comparisons between GSJCOPMM and
other techniques in [57,58] are presented in Tables 5 and 6. The tables show that, compared
to the other methods, GSJCOPMM gives the most accurate results. Furthermore, as
can be seen in Figures 1, 2, 3, 4a, 5a, 6, 7, 8a, 9a, and 10, the precise and approximate
solutions in Examples 1–4 have a high level of agreement. The absolute and log errors in
Figures 4b, 5b, and 9 serve to illustrate the convergence and stability of the solutions to the
given Problems 2 and 3 when applying GSJCOPMM and using different N, α̂, and β̂. The
choice of parameter combinations enables us to fine-tune our method, which leads to the
most accurate results.
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Figure 3. Error functions and their heat map graphs using (N = 12, α̂ = 0, β̂ = 1/2) for Example 2.
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Figure 4. Error results using (α̂ = 0, β̂ = 1/2) for Example 2 associated with IBCs.
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(N = 1, 2, 3, α̂ = β̂ = 1/2). (a) Approximate solution plots at t = 0.3 associated with IBCs; (b)
approximate solution plots t = 0.1 associated with DBCs.
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Figure 8. Approximate solution plots for Example 3 associated with IBCs or DBCs using (N = 1, 2, 3,
α̂ = β̂ = 1/2). (a) Approximate solution plots at t = 0.3 associated with IBCs; (b) approximate
solution plots t = 0.1 associated with DBCs.
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Figure 9. Graph of Log10EN for Example 3 associated with IBCs (a) or DBCs (b) using (N =

0, 1, . . ., 12, α̂ = β̂ = 1/2) .
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(a) Absolute errors at t = 0.3 with IBCs. (b) Heat map graph of E14(x, t) with IBCs.

E14(x,0.3)
E13(x,0.3)

0.0 0.2 0.4 0.6 0.8 1.0
0

2.0×10-9
4.0×10-9
6.0×10-9
8.0×10-9
1.0×10-8
1.2×10-8
1.4×10-8

x

Ab
so
lu
te
Er
ro
r

(c) Absolute errors at t = 0.3 with DBCs. (d) Heat map graph of E14(x, t) with DBCs.

Figure 10. Error results and their heat map graphs using (α̂ = β̂ = 1/2) for Example 4.

Problem 1. Consider the following MTVO-TFDE equation [57,58]:

c
0D

ν(x,t)
t y(x, t)+ c

0D
ν1(x,t)
t y(x, t)+ yt(x, t) = yxx(x, t)+ g(x, t), (x, t) ∈ [0, 1]× [0, 1], (94)

subject to IBCs:
y(x, 0) = 0, yt(x, 0) = 0, y(0, t) = 0, y(1, t) = 0, (95)

or DBCs:
y(x, 0) = 0, y(x, 1) = 0, y(0, t) = 0, y(1, t) = 0, (96)

where g(x, t) is selected such that the solution to (94) is y(x, t) = 100 x3 t3 (1 − x)(1 − t).
The application of GSJCOPMM to obtain approximated solutions with the two cases of

IBCs (95) and DBCs (96) using N = 2, . . ., 7, ν(x, t) = 2 − 0.3 e−x t and ν1(x, t) = 2 − 0.6 e−x t

gives acceptable accuracy, as shown in Table 1. Figure 1a,c demonstrates that the obtained solutions
achieve an accuracy of 10−21 at N = 7, aligning with the exact solution depicted in Figure 1b.

Figure 9. Graph of Log10EN for Example 3 associated with IBCs (a) or DBCs (b) using (N = 0, 1, . . . , 12,
α̂ = β̂ = 1/2).
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Figure 10. Error results and their heat map graphs using (α̂ = β̂ = 1/2) for Example 4.
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The application of GSJCOPMM to obtain approximated solutions with the two cases of

IBCs (95) and DBCs (96) using N = 2, . . ., 7, ν(x, t) = 2 − 0.3 e−x t and ν1(x, t) = 2 − 0.6 e−x t

gives acceptable accuracy, as shown in Table 1. Figure 1a,c demonstrates that the obtained solutions
achieve an accuracy of 10−21 at N = 7, aligning with the exact solution depicted in Figure 1b.
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Table 1. MAEs of Example 1 using various α̂, β̂, and N.

α̂ β̂ IBCs/DBCs N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

0 0 IBCs 1.3 × 10−16 2.3 × 10−17 1.9 × 10−18 2.4 × 10−19 2.7 × 10−20 2.4 × 10−21

DBCs 2.6 × 10−16 3.4 × 10−17 3.5 × 10−18 3.9 × 10−19 3.6 × 10−20 1.6 × 10−20

CPU time 0.231 0.312 0.401 0.421 0.451 0.515

1/2 1/2 IBCs 2.4 × 10−16 1.3 × 10−17 4.1 × 10−18 7.2 × 10−19 1.8 × 10−20 2.5 × 10−21

DBCs 2.7 × 10−16 3.6 × 10−17 3.8 × 10−18 3.9 × 10−19 4.4 × 10−20 2.7 × 10−20

CPU time 0.232 0.313 0.403 0.422 0.453 0.517

−1/2 −1/2 IBCs 1.5 × 10−16 2.8 × 10−17 4.8 × 10−18 1.2 × 10−19 1.8 × 10−20 2.6 × 10−21

DBCs 1.6 × 10−16 3.6 × 10−17 1.9 × 10−18 1.9 × 10−19 5.4 × 10−20 2.1 × 10−20

CPU time 0.221 0.310 0.402 0.422 0.450 0.517

1 0 IBCs 3.3 × 10−15 4.3 × 10−16 3.7 × 10−17 2.2 × 10−18 1.8 × 10−19 3.1 × 10−21

DBCs 3.9 × 10−16 3.6 × 10−17 2.1 × 10−18 1.9 × 10−19 2.6 × 10−20 2.2 × 10−20

CPU time 0.233 0.314 0.407 0.425 0.458 0.519

0 1 IBCs 4.3 × 10−15 2.3 × 10−16 4.5 × 10−17 4.4 × 10−18 1.7 × 10−19 2.9 × 10−21

DBCs 2.9 × 10−16 3.2 × 10−17 2.5 × 10−18 3.8 × 10−19 8.6 × 10−20 2.3 × 10−20

CPU time 0.234 0.315 0.407 0.426 0.451 0.519

Table 2. MAEs of Example 2 using various α̂, β̂, and N.

α̂ β̂ IBCs/DBCs N = 0 N = 1 N = 2 N = 5 N = 8 N = 12

0 0 IBCs 1.2 × 10−1 4.3 × 10−2 2.9 × 10−3 5.8 × 10−5 1.5 × 10−8 5.5 × 10−13

DBCs 1.0 × 10−1 1.1 × 10−2 6.1 × 10−3 4.0 × 10−5 1.2 × 10−8 4.5 × 10−12

CPU time 0.101 0.122 0.232 0.432 0.521 0.735

1/2 1/2 IBCs 1.3 × 10−1 4.4 × 10−2 2.8 × 10−3 5.4 × 10−5 1.2 × 10−8 5.4 × 10−13

DBCs 1.1 × 10−1 1.1 × 10−2 5.9 × 10−3 4.2 × 10−5 1.4 × 10−8 4.0 × 10−12

CPU time 0.102 0.123 0.234 0.433 0.525 0.745

−1/2 −1/2 IBCs 1.4 × 10−1 3.3 × 10−2 2.1 × 10−3 4.9 × 10−5 1.3 × 10−8 5.7 × 10−13

DBCs 1.2 × 10−1 1.3 × 10−2 5.2 × 10−3 3.9 × 10−5 1.5 × 10−8 4.7 × 10−12

CPU time 0.101 0.121 0.231 0.433 0.520 0.732

1 0 IBCs 1.5 × 10−1 3.9 × 10−2 3.0 × 10−3 6.0 × 10−5 2.5 × 10−8 4.5 × 10−13

DBCs 1.3 × 10−1 1.4 × 10−2 6.2 × 10−3 3.3 × 10−5 2.0 × 10−8 3.5 × 10−12

CPU time 0.104 0.124 0.234 0.435 0.521 0.738

0 1 IBCs 1.7 × 10−1 4.5 × 10−2 2.7 × 10−3 5.1 × 10−5 1.3 × 10−8 5.5 × 10−13

DBCs 1.7 × 10−1 1.6 × 10−2 6.5 × 10−3 4.5 × 10−5 1.8 × 10−8 4.1 × 10−12

CPU time 0.102 0.125 0.237 0.438 0.529 0.741

Table 3. MAEs of Example 3 using various α̂, β̂, and N.

α̂ β̂ IBCs/DBCs N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

0 0 IBCs 1.4 × 10−4 3.3 × 10−6 2.2 × 10−8 4.8 × 10−10 2.5 × 10−12 4.4 × 10−13

DBCs 1.2 × 10−4 2.1 × 10−6 1.1 × 10−8 3.2 × 10−10 2.3 × 10−12 6.8 × 10−14

CPU time 0.231 0.401 0.451 0.521 0.601 0.735

1/2 1/2 IBCs 1.0 × 10−4 2.1 × 10−6 2.4 × 10−8 4.4 × 10−10 2.2 × 10−12 5.4 × 10−14

DBCs 1.3 × 10−4 2.1 × 10−6 4.9 × 10−8 4.3 × 10−10 2.1 × 10−12 4.2 × 10−14

CPU time 0.233 0.405 0.454 0.525 0.607 0.740

−1/2 −1/2 IBCs 1.5 × 10−4 2.4 × 10−6 2.3 × 10−8 2.4 × 10−10 1.4 × 10−12 5.7 × 10−14

DBCs 1.1 × 10−4 1.5 × 10−6 4.2 × 10−8 2.9 × 10−10 3.5 × 10−12 2.2 × 10−13

CPU time 0.240 0.410 0.459 0.528 0.610 0.740

1 0 IBCs 1.2 × 10−4 2.3 × 10−6 3.1 × 10−8 5.0 × 10−10 3.5 × 10−12 8.2 × 10−14

DBCs 1.3 × 10−4 2.5 × 10−6 5.2 × 10−8 4.3 × 10−10 3.0 × 10−12 6.5 × 10−14

CPU time 0.238 0.409 0.458 0.529 0.608 0.739

0 1 IBCs 1.8 × 10−4 2.3 × 10−6 2.4 × 10−8 5.2 × 10−10 2.3 × 10−12 4.5 × 10−13

DBCs 1.7 × 10−4 2.5 × 10−6 5.5 × 10−8 3.5 × 10−10 2.8 × 10−12 6.1 × 10−14

CPU time 0.237 0.407 0.456 0.527 0.608 0.738
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Table 4. MAEs of Example 4 using various α̂, β̂, and N.

α̂ β̂ IBCs/DBCs N = 2 N = 4 N = 6 N = 8 N = 10 N = 14

1 1 IBCs 1.2 × 10−2 2.3 × 10−3 2.0 × 10−4 3.8 × 10−5 2.1 × 10−6 4.5 × 10−9

DBCs 1.1 × 10−2 3.3 × 10−3 2.2 × 10−4 4.8 × 10−5 3.1 × 10−6 2.2 × 10−8

CPU time 0.235 0.402 0.454 0.522 0.604 0.988

3/2 1/2 IBCs 1.3 × 10−2 4.3 × 10−3 5.0 × 10−4 3.7 × 10−5 2.6 × 10−6 4.4 × 10−9

DBCs 2.2 × 10−2 3.1 × 10−3 2.4 × 10−4 3.5 × 10−5 2.7 × 10−6 4.4 × 10−8

CPU time 0.230 0.317 0.411 0.430 0.460 0.980

1/2 3/2 IBCs 2.2 × 10−2 4.3 × 10−3 3.0 × 10−4 3.9 × 10−5 2.3 × 10−6 4.6 × 10−9

DBCs 4.2 × 10−2 3.2 × 10−3 1.5 × 10−4 5.8 × 10−5 2.9 × 10−6 4.4 × 10−8

CPU time 0.234 0.319 0.412 0.429 0.459 0.991

2 3 IBCs 3.2 × 10−2 4.3 × 10−3 1.0 × 10−4 1.8 × 10−5 2.2 × 10−6 4.6 × 10−9

DBCs 5.2 × 10−2 3.4 × 10−3 2.3 × 10−4 3.6 × 10−5 2.0 × 10−6 6.1 × 10−9

CPU time 0.239 0.320 0.413 0.430 0.461 1.001

3 2 IBCs 1.7 × 10−2 2.8 × 10−3 2.5 × 10−4 2.8 × 10−5 2.4 × 10−6 4.7 × 10−9

DBCs 2.3 × 10−2 4.3 × 10−3 2.5 × 10−4 3.9 × 10−5 2.8 × 10−6 4.6 × 10−9

CPU time 0.238 0.319 0.412 0.428 0.458 0.998

Table 5. The method’s comparisons [57,58] and GSJCOPMM in Example 2 with IBCs and DBCs.

GSJCOPMM (IBCs) GSJCOPMM (DBCs) [57] (IBCs) [58] (DBCs)
(x, t) (α̂ = β̂ = 1, N = 10) (α̂ = β̂ = 1, N = 8) (k = 1, M = 10) (N = M = 8)

(0.1, 0.1) 1.47 × 10−14 3.15 × 10−9 3.05 × 10−4 1.69 × 10−7

(0.2, 0.2) 4.34 × 10−15 1.09 × 10−8 8.35 × 10−6 1.12 × 10−7

(0.3, 0.3) 2.55 × 10−15 4.39 × 10−9 2.35 × 10−7 1.97 × 10−8

(0.4, 0.4) 5.41 × 10−16 1.48 × 10−8 5.40 × 10−7 1.33 × 10−7

(0.5, 0.5) 2.08 × 10−16 8.08 × 10−9 6.60 × 10−8 1.38 × 10−8

(0.6, 0.6) 4.88 × 10−15 3.43 × 10−9 1.53 × 10−7 1.36 × 10−7

(0.7, 0.7) 4.78 × 10−13 2.28 × 10−9 3.73 × 10−8 1.04 × 10−7

(0.8, 0.8) 8.71 × 10−12 1.70 × 10−9 1.06 × 10−7 1.90 × 10−6

(0.9, 0.9) 5.22 × 10−11 3.71 × 10−9 6.65 × 10−8 4.68 × 10−5

Table 6. The method’s comparisons [57,58] and GSJCOPMM in Example 3 with DBCs.

GSJCOPMM GSJCOPMM [58] [57] [57]
(x, t) (α̂ = β̂ = 1, N = 10) (α̂ = β̂ = 1, N = 7) (M = N = 7) (k = 1, M = 7) (k = 1, M = 10)

(0.1, 0.1) 1.39 × 10−14 1.1 × 10−13 1.29 × 10−13 5.62 × 10−8 1.04 × 10−12

(0.2, 0.2) 3.66 × 10−15 6.2 × 10−13 3.41 × 10−12 1.87 × 10−8 8.61 × 10−12

(0.3, 0.3) 2.07 × 10−15 7.5 × 10−13 2.37 × 10−12 1.34 × 10−7 1.11 × 10−12

(0.4, 0.4) 1.60 × 10−15 1.6 × 10−12 4.27 × 10−11 3.25 × 10−7 6.39 × 10−13

(0.5, 0.5) 2.58 × 10−15 2.6 × 10−12 9.46 × 10−11 2.57 × 10−7 2.06 × 10−12

(0.6, 0.6) 4.64 × 10−15 3.3 × 10−12 1.14 × 10−10 1.66 × 10−7 5.52 × 10−12

(0.7, 0.7) 2.07 × 10−14 4.6 × 10−12 3.26 × 10−11 8.95 × 10−8 3.11 × 10−12

(0.8, 0.8) 2.39 × 10−14 1.7 × 10−10 1.93 × 10−9 3.78 × 10−8 8.14 × 10−13

(0.9, 0.9) 3.60 × 10−13 1.2 × 10−9 1.32 × 10−8 3.34 × 10−8 1.89 × 10−12

Problem 1. Consider the following MTVO-TFDE equation [57,58]:

c
0D

ν(x,t)
t y(x, t) + c

0D
ν1(x,t)
t y(x, t) + yt(x, t) = yxx(x, t) + g(x, t), (x, t) ∈ [0, 1]× [0, 1], (94)

subject to IBCs:
y(x, 0) = 0, yt(x, 0) = 0, y(0, t) = 0, y(1, t) = 0, (95)

or DBCs:
y(x, 0) = 0, y(x, 1) = 0, y(0, t) = 0, y(1, t) = 0, (96)

where g(x, t) is selected such that the solution to (94) is y(x, t) = 100 x3 t3 (1 − x)(1 − t).
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The application of GSJCOPMM to obtain approximated solutions with the two cases of IBCs
(95) and DBCs (96) using N = 2, . . . , 7, ν(x, t) = 2 − 0.3 e−x t and ν1(x, t) = 2 − 0.6 e−x t gives
acceptable accuracy, as shown in Table 1. Figure 1a,c demonstrates that the obtained solutions
achieve an accuracy of 10−21 at N = 7, aligning with the exact solution depicted in Figure 1b.

Remark 4. It is worth noting that, although the precise solution to (94) is a polynomial, the
obtained approximate solutions did not give this precise solution; this is because of the com-
plexity form of the two functions ν(x, t), ν1(x, t). However, in other special cases, for instance,
ν(x, t) = x t, ν1(x, t) = 2x t, for all available values of α̂ and β̂, the precise solution is obtained
using N = 2, where the expansion coefficients ci,j = 0, i, j = 0, 1, 2, have the form:

c0,0 =
100(α̂β̂3+4α̂β̂2+5α̂β̂+2α̂+β̂3+4β̂2+5β̂+2)

(α̂+β̂+2)2
(α̂+β̂+3)2 , c0,1 =

200(α̂β̂2+3α̂β̂+2α̂+β̂2+3β̂+2)
(α̂+β̂+2)2

(α̂+β̂+3)(α̂+β̂+4)
, c0,2 = 200(α̂β̂+α̂+β̂+1)

(α̂+β̂+2)(α̂+β̂+3)2
(α̂+β̂+4)

,

c1,0 = − 100(−α̂β̂2−3α̂β̂−2α̂+β̂3+3β̂2+2β̂)
(α̂+β̂+2)2

(α̂+β̂+3)(α̂+β̂+4)
, c1,1 = − 200(β̂+2)(β̂−α̂)

(α̂+β̂+2)2
(α̂+β̂+4)2 , c1,2 = − 200(β̂−α̂)

(α̂+β̂+2)(α̂+β̂+3)(α̂+β̂+4)2 ,

c2,0 = − 200(β̂2+3β̂+2)
(α̂+β̂+2)(α̂+β̂+3)2

(α̂+β̂+4)
, c2,1 = − 400(β̂+2)

(α̂+β̂+2)(α̂+β̂+3)(α̂+β̂+4)2 , c2,2 = − 400
(α̂+β̂+3)2

(α̂+β̂+4)2 .

Remark 5. Although errors smaller than 10−16 may not have direct practical significance, in-
creasing the value of N can still meaningfully improve accuracy in numerical computations. The
choice of N depends on the specific requirements and desired level of accuracy for the problem under
consideration. We emphasize that the relative improvement in accuracy should be considered when
evaluating the meaningfulness of different values of N.

Problem 2. Consider the following MTVO-TFDE equation [57,58]:

(
c
0D

ν(x,t)
t +

4

∑
j=1

1
j + 1

c
0D

νj(x,t)
t

)
y(x, t) + yt(x, t) =

1
3

yxx(x, t) + g(x, t), (x, t) ∈ [0, 1]× [0, 1], (97)

subject to IBCs:
y(x, 0) = 0, yt(x, 0) = 0, y(0, t) = 0, y(1, t) = 0, (98)

or DBCs:
y(x, 0) = 0, y(x, 1) = sin(π x), y(0, t) = 0, y(1, t) = 0, (99)

where g(x, t) is selected such that the solution to (97) is y(x, t) = t3 sin (π x).
The application of GSJCOPMM to obtain approximated solutions to (97), subject to IBCs

(98) or DBCs (99), respectively, using N = 0, 1, 2, 5, 8, 12, ν(x, t) = 2 − 0.3 e−x t and νj(x, t) =
2 − (0.1)(j + 3) e−x t, j = 1, 2, 3, 4, gives acceptable accuracy, as shown in Table 2. Figure 3a,c
demonstrates that the obtained solutions achieve an accuracy of 10−13 at N = 12, aligning with the
approximate and exact solutions depicted in Figure 2. Additionally, we may obtain valuable insights
into the developments gained by applying GSJCOPMM from the heat map graphs displayed in
Figure 3b,d and supported by the error graphs in Figures 4a and 5a.

Problem 3. Consider the following MTVO-TFDE equation [57,58]:(
c
0D

ν(x,t)
t +

5

∑
j=1

1
j + 1

c
0D

νj(x,t)
t

)
y(x, t) +

1
2

yt(x, t) =
1
3

yxx(x, t) + g(x, t), (x, t) ∈ [0, 1]× [0, 1], (100)

subject to IBCs:

y(x, 0) = sin (x), yt(x, 0) = − cos (x), y(0, t) = − sin (t), y(1, t) = sin (1 − t), (101)
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or DBCs:

y(x, 0) = sin(x), y(x, 1) = sin(x − 1), y(0, t) = − sin(t), y(1, t) = sin(1 − t), (102)

where g(x, t) is selected such that the solution to (100) is y(x, t) = sin(x − t).
The application of GSJCOPMM to obtain approximated solutions to (100) subject to IBCs

(101) or DBCs (102), respectively, using N = 2, 4, 6, 8, 10, 12, ν(x, t) = 1.8 + 0.2 sin(x t) and
νj(x, t) = 1.8 − (0.1)j + 0.2 sin (x t), j = 1, 2, 3, 4, 5, gives acceptable accuracy for the solutions
obtained, as shown in Table 3 and Figure 7a,c. These solutions reach an agreement of an accuracy of
10−14 at N = 12, aligning with the approximate and exact solutions depicted in Figure 6. Again,
the heat map graphs displayed in Figure 7b,d and the error graphs in Figures 8a and 9a confirm the
effectiveness of GSJCOPMM.

Remark 6. In view of the presented CPU time (in seconds), our approach has efficient performance.
The calculations show that the memory consumption was excellent. For example, the calculated
CPU time using N = 10 is 6% slower than N = 7 and, moreover, requires increasing by 20% the
memory consumption of RAM compared to the N = 7 calculation. The numerical examples and
comparisons provided in our paper highlight the superior accuracy and efficiency of our algorithm,
solidifying its potential for solving MTVO-TFDEs effectively. When we compared the resource use
of our method to that described in [57,58], we saw that those papers did not provide CPU time and
memory usage. However, based on our analysis, our approach demonstrates better performance
compared to the referenced methods.

Problem 4. Consider the following MTVO-TFDE equation:(
c
0D

ν(x,t)
t +

2

∑
j=1

c
0D

νj(x,t)
t

)
y(x, t) + yt(x, t) = yxx(x, t) + g(x, t), (x, t) ∈ [0, 1]× [0, 1], (103)

subject to IBCs:

y(x, 0) = E 1
2 ,0(x) + 1, yt(x, 0) =

2√
π

, y(0, t) = et2
(1 + er f (t)), y(1, t) = et2

(1 + er f (t)) + E 1
2 ,0(1), (104)

or DBCs:

y(x, 0) = E 1
2 ,0(x) + 1, y(x, 1) = (1 + er f (1))e + E 1

2 ,0(x), y(0, t) = et2
(1 + er f (t)), y(1, t) = et2

(1 + er f (t)) + E 1
2 ,0(1), (105)

where g(x, t) is selected such that the solution of (103) is

y(x, t) = E 1
2 ,1(t) + E 1

2 ,0(x), (106)

and where the functions

er f (x) =
2√
π

∫ x

0
e−t2

dtandEα,β(x) =
∞

∑
k=0

xk

Γ(kα + β)
(107)

are the Gaussian error function and the generalized Mitta–Leffler function, respectively. The
application of GSJCOPMM to obtain approximated solutions to (103) subject to IBCs (104) or
DBCs (105), respectively, using N = 2, 4, 6, 8, 10, 14, ν(x, t) = 1 + x t and ν1(x, t) = 2 − x t,
ν2(x, t) = 3

2 − 1
4 x t, gives acceptable accuracy, as shown in Table 4, and error graphs as shown in

Figure 10. These solutions reach an agreement of an accuracy of 10−9 at N = 14.

9. Conclusions

This study presents a generalized form of shifted JPs that fulfill homogeneous IBCs
or DBCs. Then, by making use of the OMs derived in Sections 4 and 5 with the SCM, an
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approximation algorithm for the given MTVO-TFDWE is established. Three examples,
including MTVO-TFDWE (1), were tested using the suggested technique, GSJCOPMM, to
prove its high accuracy and efficiency. The examples were subjected to either the IBCs (2)
or the DBCs (3). It would be great to see our results generalized to other kinds of initial and
boundary conditions. Studying the system’s behavior in different settings would provide
interesting insights and make our conclusions even more applicable. Additionally, the
theoretical results obtained in this study can be developed to deal with more complex ver-
sions of MTVO-TFDWEs, such as multi-dimensional multi-term Caputo’s time-fractional
mixed sub-diffusion and diffusion-wave equations. Additionally, incorporating adaptive
strategies and parallel computing techniques could further enhance the efficiency and scal-
ability of the algorithm. Overall, this research contributes to the advancement of numerical
methods for MTVO-TFDWEs and opens up avenues for exploring their applications in
various fields.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Description
DEs Differential equations
FDEs Fractional differential equations
VOFDEs Variable-order fractional differential equations
MTVO Multi-term variable-order
TFDWEs Time-fractional diffusion-wave equations
MTVO-TFDWEs Multi-term variable-order time-fractional diffusion-wave equations
IBCs Initial boundary conditions
DBCs Dirichlet boundary conditions
OMs Operational matrices
Ods Ordinary derivatives
VOFDs Variable-order fractional derivatives
SCM Spectral collocation method
VOFC Variable-order fractional calculus
JPs Jacobi polynomials
GSJPs Generalized shifted Jacobi polynomials
GSJCOPMM Generalized shifted Jacobi collocation operational matrix method
BPA Best possible approximation
MAE Maximum absolute error
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14. Rapaić, M.R.; Pisano, A. Variable-order fractional operators for adaptive order and parameter estimation. IEEE Trans. Autom.
Contr. 2013, 59, 798–803. [CrossRef]

15. Izadi, M.; Yüzbasi, S.; Adel, W. Two novel Bessel matrix techniques to solve the squeezing flow problem between infinite parallel
plates. Comput. Math. Math. Phy. 2021, 61, 2034–2053. [CrossRef]

16. Coimbra, C.F.M. Mechanics with variable-order differential operators. AdP 2003, 515, 692–703. [CrossRef]
17. Lin, R.; Liu, F.; Anh, V.; Turner, I. Stability and convergence of a new explicit finite-difference approximation for the variable-order

nonlinear fractional diffusion equation. Appl. Math. Comput. 2009, 212, 435–445. [CrossRef]
18. Birajdar, G.A.; Rashidi, M.M. Finite Difference Schemes for Variable Order Time-Fractional First Initial Boundary Value Problems.

Appl. Appl. Math. 2017, 12, 112–135.
19. Patnaik, S.; Semperlotti, F. Variable-order particle dynamics: Formulation and application to the simulation of edge dislocations.

Philos. Trans. R. Soc. A 2020, 378, 0190290. [CrossRef] [PubMed]
20. Blaszczyk, T.; Bekus, K.; Szajek, K.; Sumelka, W. Approximation and application of the Riesz-caputo fractional derivative of

variable order with fixed memory. Meccanica 2022, 57, 861–870. [CrossRef]
21. Abd-Elhameed, W.M.; Ahmed, H.M. Spectral solutions for the time-fractional heat differential equation through a novel unified

sequence of Chebyshev polynomials. AIMS Math. 2024, 9, 2137–2166. [CrossRef]
22. Paola, M.D.; Alotta, G.; Burlon, A.; Failla, G. A novel approach to nonlinear variable-order fractional viscoelasticity. Philos. Trans.

R. Soc. A 2020, 378, 20190296. [CrossRef] [PubMed]
23. Burlon, A.; Alotta, G.; Paola, M.D.; Failla, G. An original perspective on variable-order fractional operators for viscoelastic

materials. Meccanica 2021, 56, 769–784. [CrossRef]
24. Ahmed, H.M. A new first finite class of classical orthogonal polynomials operational matrices: An application for solving

fractional differential equations. Contemp. Math. 2023, 4, 974–994. [CrossRef]
25. Napoli, A.; Abd-Elhameed, W.M. An innovative harmonic numbers operational matrix method for solving initial value problems.

Calcolo 2017, 54, 57–76. [CrossRef]
26. Izadi, M.; Yüzbasi, S.; Adel, W. A new Chelyshkov matrix method to solve linear and nonlinear fractional delay differential

equations with error analysis. Math. Sci. 2023, 17, 267–284. [CrossRef]
27. Izadi, M.; Sene, N.; Adel, W.; El-Mesady, A. The Layla and Majnun mathematical model of fractional order: Stability analysis and

numerical study. Results Phys. 2023, 51, 106650. [CrossRef]
28. Liu, J.; Li, X.; Wu, L. An operational matrix of fractional differentiation of the second kind of Chebyshev polynomial for solving

multiterm variable order fractional differential equation. Math. Probl. Eng. 2016, 2016, 7126080. [CrossRef]
29. Youssri, Y.H.; Abd-Elhameed, W.M.; Ahmed, H.M. New fractional derivative expression of the shifted third-kind Chebyshev

polynomials: Application to a type of nonlinear fractional pantograph differential equations. J. Funct. Spaces 2022, 2022, 3966135.
[CrossRef]

30. Abd-Elhameed, W.M.; Alkenedri, A.M. New formulas for the repeated integrals of some Jacobi polynomials: Spectral solutions of
even-order boundary value problems. Int. J. Appl. Comput. Math. 2021, 7, 166. [CrossRef]

31. Sheikhi, S.; Matinfar, M.; Firoozjaee, M.A. Numerical solution of variable-order differential equations via the Ritz-approximation
method by shifted Legendre polynomials. Int. J. Appl. Comput. Math. 2021, 7, 22. [CrossRef]

32. El-Sayed, A.A.; Baleanu, D.; Agarwal, P. A novel Jacobi operational matrix for numerical solution of multi-term variable-order
fractional differential equations. J. Taibah Univ. Sci. 2020, 14, 963–974. [CrossRef]

33. Nagy, A.M.; Sweilam, N.H.; El-Sayed, A.A. New operational matrix for solving multiterm variable order fractional differential
equations. J. Comp. Nonlinear Dyn. 2018, 13, 011001–011007. [CrossRef]

34. El-Sayed, A.A.; Agarwal, P. Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre
polynomials. Math. Meth. Appl. Sci. 2019, 42, 3978–3991. [CrossRef]

35. Wang, L.F.; Ma, Y.P.; Yang, Y.Q. Legendre polynomials method for solving a class of variable order fractional differential equation.
CMES-Comp. Model. Eng. 2014, 101, 97–111.

https://doi.org/10.1080/10652469308819027
https://doi.org/10.2478/s11534-013-0208-2
https://doi.org/10.1016/j.camwa.2014.03.003
https://doi.org/10.1109/TAC.2013.2278136
https://doi.org/10.1134/S096554252131002X
https://doi.org/10.1002/andp.200351511-1203
https://doi.org/10.1016/j.amc.2009.02.047
https://doi.org/10.1098/rsta.2019.0290
https://www.ncbi.nlm.nih.gov/pubmed/32389086
https://doi.org/10.1007/s11012-021-01364-w
https://doi.org/10.3934/math.2024107
https://doi.org/10.1098/rsta.2019.0296
https://www.ncbi.nlm.nih.gov/pubmed/32389079
https://doi.org/10.1007/s11012-021-01316-4
https://doi.org/10.37256/cm.4420232716
https://doi.org/10.1007/s10092-016-0176-1
https://doi.org/10.1007/s40096-022-00468-y
https://doi.org/10.1016/j.rinp.2023.106650
https://doi.org/10.1155/2016/7126080
https://doi.org/10.1155/2022/3966135
https://doi.org/10.1007/s40819-021-01109-z
https://doi.org/10.1007/s40819-021-00962-2
https://doi.org/10.1080/16583655.2020.1792681
https://doi.org/10.1115/1.4037922
https://doi.org/10.1002/mma.5627


Fractal Fract. 2024, 8, 68 26 of 26

36. Chen, Y.M.; Wei, Y.Q.; Liu, D.Y.; Yu, H. Numerical solution for a class of nonlinear variable order fractional differential equations
with Legendre wavelets. Appl. Math. Lett. 2015, 46, 83–88. [CrossRef]

37. Bushnaq, S.; Shah, K.; Tahir, S.; Ansari, K.J.; Sarwar, M.; Abdeljawad, T. Computation of numerical solutions to variable order
fractional differential equations by using non-orthogonal basis. AIMS Math. 2022, 7, 10917–10938. [CrossRef]

38. Chen, Y.M.; Liu, L.Q.; Li, B.F.; Sun, Y. Numerical solution for the variable order linear cable equation with Bernstein polynomials.
Appl. Math. Comput. 2014, 238, 329–341. [CrossRef]

39. Shen, S.; Liu, F.; Chen, J.; Turner, I.; Anh, V. Numerical techniques for the variable order time fractional diffusion equation. Appl.
Math. and Comput. 2012, 218, 10861–10870. [CrossRef]

40. Moghaddam, B.P.; Machado, J.A.T. Extended algorithms for approximating variable order fractional derivatives with applications.
J. Sci. Comput. 2017, 71, 1351–1374. [CrossRef]

41. Ahmed, H.M. Enhanced shifted Jacobi operational matrices of derivatives: Spectral algorithm for solving multiterm variable-order
fractional differential equations. Bound. Value Probl. 2023, 2023, 108. [CrossRef]

42. Shen, J.; Tang, T.; Wang, L. Spectral Methods: Algorithms, Analysis and Applications; Springer: Berlin/Heidelberg, Germany, 2011;
Volume 41.

43. Abd-Elhameed, W.M.; Ahmed, H.M.; Youssri, Y.H. A new generalized Jacobi Galerkin operational matrix of derivatives: Two
algorithms for solving fourth-order boundary value problems. Adv. Differ. Equ. 2016, 2016, 22. [CrossRef]

44. Abd-Elhameed, W.M.; Ahmed, H.M. Tau and Galerkin operational matrices of derivatives for treating singular and Emden-Fowler
third-order-type equations. Int. J. Mod. Phys. C 2022, 33, 2250061. [CrossRef]

45. Heydari, M.H.; Hooshmandasl, M.R.; Ghaini, F.M.M.; Cattani, C. Wavelets method for the time fractional diffusion-wave equation.
Phys. Lett. A 2015, 379, 71–76. [CrossRef]

46. Jiang, H.; Liu, F.; Turner, I.; Burrage, K. Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations
in a finite domain. Comput. Math. Appl. 2012, 64, 3377–3388. [CrossRef]

47. Nigmatullin, R.R. To the theoretical explanation of the universal response. Phys. Status Solidi (B) Basic Res. 1984, 123, 739–745.
[CrossRef]

48. Nigmatullin, R.R. Realization of the generalized transfer equation in a medium with fractal geometry, phys. status solidi, b basic
res. Phys. Status Solidi (B) Basic Res. 1986, 133, 425–430. [CrossRef]

49. Luchko, Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl.
2011, 374, 538–548. [CrossRef]

50. Liu, Y.; Yamamoto, M. Uniqueness of orders and parameters in multi-term time-fractional diffusion equations by short-time
behavior. Inverse Probl. 2022, 39, 024003. [CrossRef]

51. Cheng, J.; Nakagawa, J.; Yamamoto, M.; Yamazaki, T. Uniqueness in an inverse problem for a one dimensional fractional diffusion
equation. Inverse Probl. 2009, 25, 115002. [CrossRef]

52. Szegö, G. Orthogonal Polynomials, 4th ed.; American Mathematical Soc.: Providence, RI, USA, 1975; Volume XXIII.
53. Luke, Y.L. Mathematical Functions and Their Approximations; Academic Press: London, UK, 1975.
54. Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. More Special Functions; Integrals and Series; Gordon and Breach: New York, NY,

USA, 1990; Volume 3.
55. Narumi, S. Some formulas in the theory of interpolation of many independent variables. Tohoku Math. J. 1920, 18, 309–321.
56. Jeffrey, A.; Dai, H.H. Handbook of Mathematical Formulas and Integrals, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2008.
57. Heydari, M.H.; Avazzadeh, Z.; Haromi, M.F. A wavelet approach for solving multi-term variable-order time fractional diffusion-

wave equation. Appl. Math. Comput. 2019, 341, 215–228. [CrossRef]
58. Sadri, K.; Aminikhah, H. A new efficient algorithm based on fifth-kind Chebyshev polynomials for solving multi-term variable-

order time-fractional diffusion-wave equation. Int. J. Comput. Math. 2022, 99, 966–992. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.aml.2015.02.010
https://doi.org/10.3934/math.2022610
https://doi.org/10.1016/j.amc.2014.03.066
https://doi.org/10.1016/j.amc.2012.04.047
https://doi.org/10.1007/s10915-016-0343-1
https://doi.org/10.1186/s13661-023-01796-1
https://doi.org/10.1186/s13662-016-0753-2
https://doi.org/10.1142/S0129183122500619
https://doi.org/10.1016/j.physleta.2014.11.012
https://doi.org/10.1016/j.camwa.2012.02.042
https://doi.org/10.1002/pssb.2221230241
https://doi.org/10.1002/pssb.2221330150
https://doi.org/10.1016/j.jmaa.2010.08.048
https://doi.org/10.1088/1361-6420/acab7a
https://doi.org/10.1088/0266-5611/25/11/115002
https://doi.org/10.1016/j.amc.2018.08.034
https://doi.org/10.1080/00207160.2021.1940977

	Introduction 
	Basic Definition of Caputo VOFDs 
	An Overview of the Shifted JPs and Their Generalized Ones 
	An Overview of the Shifted JPs 
	Introducing GSJPs 

	Two OMs for Ods and VOFDs of T,j(,)(t) 
	Two OMs for Ods and VOFDs of ,i(,)(t)  
	Numerical Handling for MTVO-TFDWEs Subject to IBCs (2) or DBCs (3) 
	Homogeneous IBCs and DBCs 
	Non-Homogeneous IBCs and DBCs 

	Convergence and Error Analysis 
	Numerical Simulations 
	Conclusions 
	References

