
Citation: Kalimulina, E.Y. Finiteness

of One-Valued Function Classes in

Many-Valued Logic. Fractal Fract.

2024, 8, 29. https://doi.org/10.3390/

fractalfract8010029

Academic Editor: Carlo Cattani

Received: 15 November 2023

Revised: 26 December 2023

Accepted: 27 December 2023

Published: 29 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Finiteness of One-Valued Function Classes in Many-Valued Logic
Elmira Yu. Kalimulina

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute),
127051 Moscow, Russia; eyk@iitp.ru

Abstract: This paper addresses the theoretical issues in k-valued logic, which are crucial for de-
veloping solutions in various fields of science and technology. One of the fundamental issues is a
complete description of the closed classes of functions of three-valued logic. The explicit description
of closed classes in multivalued logic is an open problem. In this study, we consider a special case
of the finite generation of all closed classes of three-valued logic through the operation of superpo-
sition. Previously, we considered the issue of the finite generation of classes containing a subset of
single-variable functions. We have also provided a description of superlattices (lattices of lattices)
containing a precomplete class of unary functions. The finite generation of these superlattices is
proved. On the basis of these results, in this paper, we have proven that any class containing any
of the precomplete classes from the set of single-valued functions is also finitely generated. The
main result of this paper consists of three theorems on the finite generation of classes containing
precomplete classes of single-valued functions and classes including all monotone unary functions.
Thus, the obtained theoretical result provides easily verifiable criteria for the finiteness of classes of
multivalued logic functions. It allows you to use simple procedures instead of cumbersome explicit
constructs. The finite generation of overlattices allows the development of digital computing circuits
that are crucial for practical applications. The proofs are based on an explicit description of these
classes by an induction in the number of variables and essentially use the properties of functionally
closed (Burle) classes of functions.

Keywords: k-valued logic; finiteness in many-valued logic; closed classes; three-valued logic
functions; superposition operation; precomplete classes; unary functions; majority function;
monotone unary functions

1. Introduction

In recent times, the significance of computation schemes based on k-valued logic,
particularly ternary logic, has become relevant again. The rapid growth in supercomputing
and quantum computing and their extensive usage in the field of artificial intelligence has
resulted in a resurgence in interest in k-valued logic [1]. In particular, the research and
development of algorithms based on k-valued logic are important for machine learning and
neural networks [2,3]. In particular, machine learning and neural network algorithms based
on k-valued logic significantly reduce the computational time required to solve problems
compared with algorithms based on binary logic [2,3]. In addition, k-valued logic is highly
relevant in the modeling of complex dynamical systems, where causal relations play a
crucial role [4]. It is also used in logical dynamical systems [5], the modern control and
stabilization of unmanned systems [6], cyber-physical systems [7], data transmission [8,9],
optimal network routing [10,11], and quantum cryptography [12]. A comprehensive
analysis of the use of k-valued logic in various applications has been provided in the
research paper [9]. Among the wide range of applications, data aggregation schemes stand
out because the development of three-valued logic algorithms has proven to be drastically
more efficient and cost-effective than two-valued logic [13,14]. In particular, it is effective
in providing a stable Internet connection for users in high-speed trains outside areas with

Fractal Fract. 2024, 8, 29. https://doi.org/10.3390/fractalfract8010029 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8010029
https://doi.org/10.3390/fractalfract8010029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0001-7158-040X
https://doi.org/10.3390/fractalfract8010029
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8010029?type=check_update&version=1

Fractal Fract. 2024, 8, 29 2 of 16

stable cellular network coverage. By using a nonbinary number system to encode, for
example, the states of an LTE modem, we can significantly reduce the complexity and
number of internal computations. The transition from two-valued logic to multivalued
logic reduces the number of computational operations and increases the speed of data
processing. Fuzzy sets in this case are approximated by finite discrete sets. The general
state of the system is determined by the complex predicate Y(·) as a superposition of
other predicates on the original set {Pk}. The complete construction of the predicate and a
detailed description of traffic aggregation are given in [14].

We also note several theoretical papers devoted to topics connecting k-valued logic
with algebraic problems and matrix group/semigroup representation. In [15], using the
semitensor product form of matrices, the authors suggested expressing k-valued logical
function into its algebraic form, which establishes an equivalent relation between unary
logical operators and their structure matrices. In [16], conjunctive and disjunctive normal
forms of k-valued logic have been introduced, and the completeness of k-valued logic
by constructing an adequate set of connectives is discussed, which was then extremely
compressed by constructing a proper set of generators. The paper in [17] presents a
construction for the classification of subalgebras for all algebras of finite-valued functions.
In addition, it is shown that the classes of this classification are disjoint.

Another interesting area of theoretical research explores the interaction of many-
valued logic, Markov processes with jumps, and the stability of dynamical systems. In the
scientific paper in [18], the authors provided a comprehensive study of the stability aspects
of k-valued logic networks, considering the influence of Markov jumps. To facilitate the
analysis, they introduce an equivalent Markov jump system using a semitensor product of
matrices combined with multivalued logic functions. As part of their study, the authors
proposed two deterministic criteria for assessing the finite-time stability of distributions
of k-valued logic networks subject to Markov processes with jumps. The study in [19]
investigates the optimal control problem of switched k-valued logic control networks
with state-dependent switching signals. It provides a mathematical representation of the
switched k-valued logic control networks and presents a condition that is both necessary
and sufficient for their stabilization.

A complete description of all closed classes of functions of k-valued logic is the most
important problem in the application of k-valued logic [20]. The finite generation of all
closed classes ensures that digital circuits can be implemented with the desired function
and algorithms [21].

Emil Post presented a complete description of closed classes of Boolean functions
concerning superposition in his famous papers [22,23]. This result allowed us to solve
numerous problems in the field of binary logic and in the computer industry. It was also
demonstrated that all classes of closed binary logic are finitely generated with respect to
superposition operations. However, a detailed description of k-valued logic is impossible
because the transition to k-valued logic leads to the emergence of a continuum of closed
classes with respect to superposition operations.

In fact, in the case of k-valued logic, no finitely generated classes exist, as evidenced by
the example of Yanov and Muchnik [24]. Therefore, the problem of describing all finitely
generated classes of k-valued logic remains open.

The completeness problem has a solution if we consider some special operators. To
describe a sublattice of closed classes, we can start with the lattice of all functions and define
subsets that are closed, for example, under the superposition operator. The superposition
operator combines two functions to form a new function by applying each function in the
pair to the same input data and then combining the results. The description of a sublattice
of closed classes may include identifying the various closed classes and defining the closure
properties of their elements under the action of the superposition operator. This can be
achieved by studying the properties of the functions of each class and their composition.

The finite generation of all closed classes of two-valued logic with respect to the su-
perposition operation is a special case considered in [25]. In [26], the operation of binary

Fractal Fract. 2024, 8, 29 3 of 16

superposition is considered and defined by functions of k-valued logic based on their rep-
resentation in the binary number system. The authors of [27] investigated the requirement
of implicit completeness in three-valued logic from the perspective of precomplete classes.

The sublattice of closed classes itself forms a lattice structure, the elements of which
are closed classes, and the ordering relation is based on inclusion. Each closed class in this
lattice is a set of functions that can be composed of other functions of the same class to
create new functions belonging to the same class. Several sufficient conditions for finite
generation are known. The most famous examples include all unary functions, choice
functions, and majority functions in the class. The majority function takes a set of inputs
and returns true (or 1) if most inputs are true (1) and false (or 0) otherwise. The choice
function takes only one element from a nonempty set. Unary functions operate on a single
input. The existence of majority, choice, and unary functions is important not only in terms
of class finiteness in many-valued logic theory but also in computational complexity theory,
formal languages, automata theory, algorithm design, voting systems, and data processing.
Thus, although this paper is rather theoretical, all the results obtained here are significant
in their respective fields of study and have been widely researched and studied in the field
of computer science. In [9,28], a description of superlattices containing some precomplete
class of unary functions is also given, and the problem of checking the finite generation of
classes containing some subclass of a function of one variable is studied. It has been proven
that overlattices can be finitely generated. Any class consisting of monotonic functions and
containing each monotonic function of one variable is finitely generated. These classes do
not include a choice function, a majority function, all single-valued functions, or a set of all
single-valued functions precompleted for all single-valued functions. This paper continues
the study of the theoretical problems of k-valued (in particular, ternary) logic [9,28]. As
mentioned above, in two-valued logic, there are several sufficient conditions for finitely
generated classes [29]. Similar conditions can be found for multivalued logic. If they
are satisfied, then the class is finitely generated. From a practical point of view, these
conditions mean that we do not need to provide a complete description of a class to test
its finiteness. However, it is sufficient to check the conditions for some special functions.
These conditions must be such that they can be easily verified. One of these conditions
is the presence in the class (multivalued logic functions) of one-valued functions. In this
paper, based on the previously proven results [9,25,28], we show that any class containing
any of the precomplete classes of the set of unary functions is finitely generated. These
conditions must be such that they can be easily verified. One of these conditions is the
presence in the class (multivalued logic functions) of single-valued functions.

In this paper, based on the previously proven results of [9,25,28], we show that any class
containing any of the prerecomplete classes of the set of unary functions is finitely generated.

1.1. Paper Structure

This paper consists of the following sections: Section 2, Section 3 (auxiliary results),
Section 4 (main results), and the conclusion. Section 2 includes the necessary notations, the
definition of k-valued logic functions, and preliminary results. This section provides the
fundamental Burle’s result, which describes all functionally closed classes of functions of
k-valued logic that are called Burle’s classes [29]. This theorem plays a vital role in k-valued
logic theory. The proofs presented in this paper significantly use the following properties
of Burle’s classes: Pk(1) is a precomplete class in LQk ∪ Pk(1), LQk ∪ Pk(1) is a precomplete
class in P(2)

k ∪ Pk(1), P(l)
k ∪ Pk(1) is a precomplete class in P(l+1)

k ∪ Pk(1) for 2 ⩽ l ⩽ k − 2,

P(k−1)
k ∪ Pk(1) is a precomplete class in Pk.

Relationship between Lemmas and Proof Scheme

The concept of the proof is based on the explicit construction of the corresponding
classes of functions. Preliminary results prove the existence of closed classes of functions
that are monotonic under linear order operations (functions that have the necessary prop-
erties) and give their explicit construction. Then, it is shown that the functions have an

Fractal Fract. 2024, 8, 29 4 of 16

explicit representation in the form of elementary functions (a specific type of expansion
is given) from the finite-generated classes. We consider the narrowing of this class of
functions to a class of functions with exactly two variables and three values.

The main part shows that if a monotonic function of many variables takes three values,
then there is a set composed of such functions, containing monotonic functions that essen-
tially depend on exactly two variables and take three values. These are exactly the functions
discussed in the section with preliminary results, and they have the necessary properties.

There are many technical lemmas that provide intermediate steps in our proofs.
The first auxiliary result is given by Lemmas 1 and 2. We consider linear order and

monotonicity in relation to the two operations of maximum and minimum (symbols). These
operations are defined below, and the corresponding subsets of the function are denoted by
the letters D and K. Accordingly, the classes of monotone functions considered with respect
to these operations are denoted as f K and f D. In the intermediate results, the lemmas
regarding these two operations are proved. They will be considered separately, but the
evidence is the same; therefore, it will be given only for one of the classes. Lemma 1 and
Lemma 2 provide a general description of the set of all monotone functions with respect to
linear order operation (not only for one-valued functions). These lemmas only establish
that a closed class is exactly the join of all monotone functions from the finitely generated
sets. Lemma 1 and Lemma 2 are lemmas about the existence of closed classes for monotone
functions. They guarantee some property for a certain class of function but do not provide
the explicit construction of such a class.

Lemma 3 explicitly describes the system that generates such a class and establishes
that this class exists and is not empty. This class is generated by applying the expansion (1)
to all subfunctions from Lemma 3. Note that these results apply to all monotone functions
and define the widest possible class of functions, which in our case is redundant because
the class of arbitrary functions may not be finite. Therefore, we further prove Lemma 4,
which specifically describes the class of functions of interest, i.e., monotone functions for
three-valued logic. Lemma 5 proves that the classes of monotone functions with respect to
the operations of maximum and minimum coincide and constitute the closed finite class
of monotone functions of interest, i.e., M. Lemmas 4 and 5 directly describe the class of
monotone functions consisting of only two- and one-variable functions.

Lemma 6 is based on Lemmas 4 and 5 and gives the explicit representation of monotone
functions exactly in the form of functions from M(2) (the set of all monotone functions that
take at most two values) to the set M3(1) (one-place functions of 3-valued logic). Thus, the
overall result is narrowed to a set of specific functions with s representation in the form of
matrices. It establishes that any monotone function consisting of only two and one variables
can be composed of other functions within the same class to produce new functions within
the same class. Any class consisting of monotonic functions and containing each monotonic
function of one variable is finitely generated.

Thus, taken together, Lemmas 1–6 provide an explicit description (construction) of the
class of functions that are monotonic with respect to linear order. These results guarantee
not only the existence of such a class but also provide an explicit design for its construction.

It is shown that for any monotonic function from this class that satisfies the monotonic-
ity condition (condition (2), the function depends significantly on more than one variable.
In Lemma 6, it is already shown that these two classes exhaust the entire set of all monotone
functions that take no more than two values.

In the main part of the paper, Lemma 7 establishes the property of an arbitrary
monotone function from class P3: if linear-order conditions are satisfied for a monotone
function, then the function depends significantly on more than one variable. Lemmas 8
and 9 establish that for such functions, it is possible to construct an identical function that
will depend on (n − 1) variables and will have the same properties. This is a general result
for functions of many variables.

Lemmas 10 and 11 are based on Lemmas 7–9. They restrict the result for functions of
many variables to the case of functions that essentially depend on two variables. Thus, any

Fractal Fract. 2024, 8, 29 5 of 16

monotonic function can be associated with a function of two variables and is contained in a
finitely generated class (Lemma 12).

Thus, Lemmas 7–12 from the main results section establish that the functions of
3-valued logic (the description of which is completely determined by Lemmas 1–6) generate
sets of functions that satisfy the basic properties defining a closed class of monotone
functions. Thus, we obtain a comparison of the class of monotonic functions with a certain
class of functions {g}, which are specified explicitly and have the necessary properties.

Theorem 2 proves the finite generation of classes containing all monotone unary func-
tions. In Theorem 3, we proved that the constructed set of monotone functions essentially
depends on exactly two variables (but it is a 3-valued logic function).

As a result, we established that the set of monotone functions f (x1, . . . , xn), n > 1,
takes three values if it is combined with the class M3(1) and contains a monotone function
that essentially depends on exactly two variables and takes three values. In other words, F
contains exactly the class of functions and properties considered in the lemmas. On the
basis of the properties that have been proved on these Lemmas, we can conclude that class
F is finitely generated.

Theorem 4 provides the criteria for F to be a finite-generated class. In this way, we
reduce the problem to checking criteria that must be satisfied.

2. Preliminary Results and Definitions on k-Valued Functions

Let us begin with some recall and definitions of k-valued logic functions. Let Ek be the
set {0, 1, . . ., k − 1}. For any n ∈ N the set En

k = Ek × . . . × Ek︸ ︷︷ ︸
n

is a Cartesian power, and the

mapping f : En
k → Ek is a single-valued function of k-valued logic. The set of all functions

of k-valued logic is denoted by Pk. Furthermore, we assume that k = 3 in most cases, so the
set P3 will be considered.

Let F be a closed class of Pk, then F(n) is the set of all functions in F that depend on
the variables x1, . . ., xn. F(n) is the set of all functions F that take at most n values. CR(F)
is the set of all precompleted classes in the closed class F ⊆ Pk . PSk is the set of all unary
functions that take exactly k values. A complete description of the prior completeness
superlattice in the Pk(1) class for k = 3 can be found in [9,28]. Just recall a few important
definitions and one theorem.

Definition 1. A function f (x1, . . ., xn) that takes two or fewer values is sublinear if (1 ⩽ i ⩽ n)
for any number of variables i, where (1 ⩽ i ⩽ n), and for any two elements α, β ∈ Ek, one of the
following relationships holds:

• either for any γ1, . . ., γi−1, γi+1, . . ., γn ∈ Ek

f (γ1, . . ., γi−1, α, γi+1, . . ., γn) = f (γ1, . . ., γi−1, β, γi+1, . . ., γn),

• or for any γ1, . . ., γi−1, γi+1, . . ., γn ∈ Ek

f (γ1, . . ., γi−1, α, γi+1, . . ., γn) ̸= f (γ1, . . ., γi−1, β, γi+1, . . ., γn).

The set of all quasi-linear functions in Pk is denoted by LQk. The problem of enumer-
ating all closed classes of k-valued logic containing all functions of one variable was solved
by G.A. Burle [29].

Theorem 1 (see [29]). The following and only these classes, which contain all k-valued logic func-
tions of one variable, are functionally closed classes: Pk(1), LQk ∪ Pk(1), P(2)

k ∪ Pk(1), . . ., P(k−1)
k ∪

Pk(1), Pk.

The k-valued classes Pk(1), LQk ∪ Pk(1), P(2)
k ∪ Pk(1), . . ., P(k−1)

k ∪ Pk(1), Pk are Burle’s
classes. An overlattice of a class G is the set of all classes F ⊆ Pk such that G ⊆ F.

Fractal Fract. 2024, 8, 29 6 of 16

3. Auxiliary Theorems and Proofs of Technical Lemmas
3.1. Finite Generation of Classes Containing Precomplete Classes of One-Valued Functions

Theorem 2. Let F ⊆ P3, G ∈ CR(P3(1)), G ⊆ F. Then, class F is finitely generated.

Proof. Let us consider an overlattice of a class G as the set of all classes F ⊆ Pk such that
G ⊆ F. The overlattice description for all G ∈ CR(P3(1)) (accordingly, F ∈ P3(1)) is given
in [30]. Therefore, it is sufficient to prove the finite generation of the already described
classes. If G = L3(1), then the overlattice G consists of the following closed classes: L3(1),
L3, P3(1), LQ3 ∪ P3(1), P(2)

3 ∪ P3(1), P3.

Let V be a precomplete class in PS3. If G = V ∪ P(2)
3 (1), then its overlattice consists of

the classes V ∪ P(2)
3 (1), P3(1), V ∪ P(2)

3 (1) ∪ LQ3, P3(1) ∪ LQ3, V ∪ P(2)
3 (1) ∪ P(2)

3 , P3(1) ∪
P(2)

3 , P3.
Because for all precomplete classes in PS3, the proof is the same as in [28], we set the

class V to be fixed. Then, it is sufficient to prove that the following nine classes are finitely
generated: L3(1), P3(1), V ∪ P(2)

3 (1), LQ3 ∪ P3(1), P(2)
3 ∪ P3(1), P3, L3, V ∪ P(2)

3 (1) ∪ LQ3,

V ∪ P(2)
3 (1) ∪ P(2)

3 .
For the convenience of the proof, we split them into the following groups:

1. L3(1), P3(1), V ∪ P(2)
3 (1) consist of a finite number of functions.

2. LQ3 ∪ P3(1), P(2)
3 ∪ P3(1), P3 are Burle’s classes (see [29]), where a finite generation

has already been proved.
3. L3 =

{
{x + y(mod3), 1}

}
.

4. V ∪ P(2)
3 (1) ∪ LQ3. Burle [29] proved that for any function f ∈ LQ3, the following

function representation holds:

f (x1, . . ., xn) = φ(
{

φ1(x1) + . . . + φn(xn)
}
(mod2)),

where φ, φ1, . . ., φn are functions from P3(1). Using this representation, Burle showed
that P3(1) is precomplete in LQ3 ∪ P3(1). Because this representation includes addition
by mod 2, it is easy to see that only functions from P(2)

3 (1) are used in this expansion.

Therefore, V ∪ P(2)
3 (1) is precomplete in V ∪ P(2)

3 (1) ∪ LQ3. This proves that class

V ∪ P(2)
3 (1) ∪ LQ3 is finitely generated.

5. V ∪ P(2)
3 (1) ∪ P(2)

3 .

Burle’s proof of precompleteness for LQ3 ∪ P3(1) ∈ P(2)
3 ∪ P3(1) [29] is completely the

same for this case, because it is completely based only on the unary functions that take no
more than two values.

Therefore, V ∪ P(2)
3 (1) ∪ LQ3 is precompleted in V ∪ P(2)

3 (1) ∪ P(2)
3 . This proves the

finite generation of the class V ∪ P(2)
3 (1) ∪ P(2)

3 , and the finite generation of V ∪ P(2)
3 (1) ∪

LQ3 already been proved.

3.2. Finite Generation of Classes Containing All Monotone Unary Functions

We already proved the finite generation of classes containing all unary functions or
some precomplete class of unary functions.

A similar problem may be developed for classes of one-place functions satisfying the
monotonic condition with respect to linear order.

Definitions and Auxiliary Results

For simplicity, let x1 ∨ x2 ∨ . . . ∨ xn denote the maximum, and let x1x2. . .xn and
x1&x2. . .&xn denote the minimum of the set of variables x1, x2, . . ., xn.

Fractal Fract. 2024, 8, 29 7 of 16

Let ◦ ∈ {∨, &}. Then, for any subset of α̃, β̃ ∈ En
3 , the notation α̃ ◦ β̃ means

γ̃ = (α1 ◦ β1, . . ., αn ◦ βn), where for any i = 0, 1, . . ., n αi ◦ βi is the maximum of the set
αi, βi, if ◦ = ∨, then – αi ◦ βi is the minimum from αi, βi.

We define the following sets of monotone functions of 3-valued logic:

• D is the set of all monotone functions such that for any collections α̃1, α̃2 ∈ En
3 , the

following inequality holds f (α̃1 ∨ α̃2) ⩽ f (α̃1) ∨ f (α̃2),
• K is the set of all monotone functions such that for any collections α̃1, α̃2 ∈ En

3 , the
following inequality holds f (α̃1&α̃2) ⩽ f (α̃1)& f (α̃2),

• M(2) is the set of all monotone functions that take at most two values and functions
from the set M3(1),

where M is the set of all monotone functions with respect to the linear order (0 < 1 < 2)
from P3, and M3(1) is the set of all monotone functions that essentially depend on at most
one variable.

Furthermore, we will be interested in the finite generation of closed classes F ⊂ P3
that satisfy the following conditions: M3(1) ⊆ F, F ⊆ M.

Lemmas 1 and 2 provide intermediate auxiliary results. They describe the set of all
monotone functions with respect to the linear-order operation (not only one-valued).

Lemma 1. The set D is a closed class and exactly is the join of all monotone functions from the
finitely generated class F (of monotone functions of one variable) with the maximum of a binary set
{x, y}: D =

{
{x ∨ y} ∪ M3(1)

}
.

Proof. First, let us show that D is a closed class. Since class D contains the function x, it
is sufficient to show that the function g = f0(f1, . . ., fq) belongs to D if f0, f1, . . ., fq ∈ D.
Let g(x1, . . ., xn) = f0(f1(x1, . . ., xn), . . ., fq(x1, . . ., xn)). It is clear that g ∈ M. Consider
two arbitrary sets α̃1, α̃2 ∈ En

3 . Then, g(α̃1 ∨ α̃2) = f0(f1(α̃1 ∨ α̃2), . . ., fq(α̃1 ∨ α̃2)) ⩽
f0(f1(α̃1) ∨ f1(α̃2), . . ., fq(α̃1) ∨ fq(α̃2)) = f0(β̃1 ∨ β̃2) ⩽ f0(β̃1) ∨ f0(β̃2) = g(α̃1) ∨ g(α̃2),
where β̃i = (f1(α̃i), . . ., fq(α̃i)), i = 1, 2.

Second, we show that
{
{x ∨ y} ∪ M3(1)

}
⊆ D. For any sets α̃, β̃ ∈ E2

3 the fol-
lowing relation holds: max(α̃ ∨ β̃) = max{α1 ∨ β1, α2 ∨ β2} = max{α1, α2, β1, β2} =
max{max(α̃), max(β̃)}. Therefore, max(x, y) = x ∨ y ∈ D. Let f (x) be an arbitrary func-
tion from M3(1). Considering two cases a ≤ b and a ⩾ b, we obtain f (a ∨ b) = f (a) ∨ f (b),
and, therefore, M3(1) ⊆ D. Because D is a closed class, we obtain superpositions of
functions from M3(1), and functions x ∨ y are contained in D.

Third, we must show that D ⊆
{
{x ∨ y} ∪ M3(1)

}
. For a collection α̃, we denote α̃0

i as
the collection that coincides with the collection α̃ on all components, except, possibly, the
ith, which is equal to zero. Let f (x1, . . ., xn), n > 1 be an arbitrary function from D. Since
f is monotone (by the Definition of the class D), then f (ta) ⩾ f (ta0

i) for any i = 1, . . ., n,
and hence, f (α̃) ⩾ f (ta0

1) ∨ . . . ∨ f (ta0
n). At the same time, since α̃ = max

i=1,...,n
{α̃0

i }, then by

virtue of the property defining the class D, we have f (α̃) ⩽ f (α̃0
1) ∨ . . . ∨ f (α̃0

n). Therefore,
the decomposition f (x1, . . ., xn) = f (0, x2, . . ., xn) ∨ f (x1, 0, . . ., xn) ∨ . . . ∨ f (x1, x2, . . ., 0)
holds for any function f (x1, . . ., xn) ∈ D. Therefore, by applying this decomposition to
all subfunctions, we obtain f ∈

{
{x ∨ y} ∪ M3(1)

}
for any function f ∈ D. Therefore,

D =
{
{x ∨ y} ∪ M3(1)

}
.

The next statement is similar to the one proved above, so its proof is omitted.

Lemma 2. The set K is a closed class and exactly is the join of all monotone functions from the
finitely generated class F (of monotone functions of one variable) with the minimum from the set of
variables x, y: K =

{
{x&y} ∪ M3(1)

}
.

Lemmas 1 and 2 show that the set of all monotone functions is closed. They guarantee
some property for a certain class of function. The next question is, does this class exist? The
next Lemma 3 stands for a system that generates such a class.

Fractal Fract. 2024, 8, 29 8 of 16

Lemma 3. (on the generating system of the set of monotone functions)

{max(x, y), min(x, y), J0(x), J1(x), . . ., Jk−1(x), 0, . . ., k − 1} = M. (1)

Proof. It is obvious that max(x, y), min(x, y), J0(x), J1(x), . . ., Jk−1(x) are contained in M. Let
f ∈ M. Therefore, f (x1, . . ., xn) = Jk−1(x1) f (k − 1, x2, . . ., xn) ∨ . . . ∨ J1(x1) f (1, x2, . . ., xn) ∨
f (0, x2, . . ., xn). This equality can be verified directly by substituting the values of the
variable x1 and using the definition of monotonicity of the function f .

In accordance with Lemmas 1 and 2, we can assert that a closed class exists, is not
empty, and is generated by some system. By applying the expansion (1) to all subfunctions,
we obtain the system generated from the set of monotone functions.

Remark 1. The function f of two variables is represented as a matrix 3× 3, where aij = f (i, j), and
the one-valued function g can be represented as a column vector of height three, where ai = f (ai).

Lemmas 4 and 5 directly describe the class of monotone functions consisting of only
two and one variable functions. Thus, they narrow the general set to a set of concrete
functions. Lemma 6 based on these results gives the representation of monotone functions
exactly for 3-valued logic.

Lemma 4. x&y ∈
{
{x ∨ y} ∪ M3(1) ∪ {T(x, y)}

}
, where

T(x, y) =

0 0 0
0 0 0
0 0 1

Proof. Let us define the functions

f1(x, y) =

0 0 0
0 0 0
0 0 2

, f2(x, y) =

0 0 0
0 1 1
0 1 1

It is easy to see that the following equality holds: x&y = f1(x, y) ∨ f2(x, y).
Moreover, it is clear that f1(x, y) = J1(T(x, y)), f2(x, y) = T(J1(x), J2(y)). Hence,

x&y ∈
{
{x ∨ y} ∪ M3(1) ∪ {T(x, y)}

}
.

Lemma 5. {
M(2) ∪ {max}

}
=

{
M(2) ∪ {min}

}
= M.

Proof. Prove that
{

M(2) ∪ {max}
}
=

{
M(2) ∪ {min}

}
holds Let us define the functions

f1(x, y) =

0 0 0
0 0 0
0 0 2

, f2(x, y) =

0 0 0
0 1 1
0 1 1

Then, it is obvious that equality min(x, y) = max(f1(x, y), f2(x, y)) holds.
Let us define the functions

f3(x, y) =

1 1 2
1 1 2
2 2 2

, f4(x, y) =

0 2 2
2 2 2
2 2 2

Then, it is easy to check the following equality: max(x, y) = min(f3(x, y), f4(x, y)).

Well, then max(x, y) ∈
{

M(2) ∪ {min(x, y)}
}

, min(x, y) ∈
{

M(2) ∪ {max(x, y)}
}

.
Then, by Lemma 3

{
M(2) ∪ {max(x, y)}

}
= M =

{
M(2) ∪ {min(x, y)}

}
.

Fractal Fract. 2024, 8, 29 9 of 16

Definition 2. For any n ⩾ 2, the set of functions denoted by
∧n

a,b (accordingly
∨n

a,b), where
a ̸= b, a, b ∈ {0, 1, 2}, consisting of all functions depending on n variables, taking only the
values a, b and on tuples consisting of a and b that coincide with min(x1, . . ., xn) (accordingly
with max(x1, . . ., xn)), is called the set of conjunctions of length n on a, b (accordingly, the set of
conjunctions of length n to a, b).

An arbitrary function from the set
∧n

a,b (accordingly,
∨n

a,b) is called a conjunction of
length n by a, b (accordingly, a disjunction of length n by a, b).

Definition 3. A set
∧

a,b =
⋃

n⩾2

∧n
a,b (accordingly

∨
a,b =

⋃
n⩾2

∨n
a,b), where a ̸= b, a, b ∈ {0, 1, 2}

will be called the set of all conjunctions on a, b (i.e., the set of all disjunctions on a, b).

Note that, for any n ⩾ 2, by identifying variables from a function belonging to the
set

∧n
a,b (accordingly,

∨n
a,b), we can obtain a function from the set

∧2
a,b (accordingly,

∨2
a,b),

and using the superposition operation, we can make the reverse transition. Therefore, for
brevity, we often omit the enumeration of variables on which functions from the sets

∧
a,b

and
∨

a,b depend.

Lemma 6. Let ∨0,2 ∈ ∨
a,b, &0,2 ∈ ∧

a,b. Then M(2) =
{
{∨0,2} ∪ {&0,2} ∪ M3(1)

}
.

Proof. For all monotone functions, the expansion holds

f (x1, . . ., xn) = J2(x1) f (2, x2, . . ., xn) ∨ J1(x1) f (1, x2, . . ., xn) ∨ f (0, x2, . . ., xn)

(see Lemma 3).
Note that for functions that take only the values zero and two, instead of x ∨ y, you

can use any function that matches x ∨ y on sets consisting of zeros and twos. Likewise,
for xy.

Hence, for all functions taking values of zero and two, the following expansion holds:

f (x1, . . ., xn) = J2(x1)&0,2 f (2, x2, . . ., xn) ∨0,2 J1(x1)&0,2 f (1, x2, . . ., xn) ∨0,2 f (0, x2, . . ., xn).

Let f (x1, . . ., xn) take values of zero and one. Then f (x1, . . ., xn) = j1(g(x1, . . ., xn)),
where g(x1, . . ., xn) is obtained from f (x1, ..., xn) by replacing value one with value two in
the value table.

Because g(x1, . . ., xn) takes values of one and two, then, as proved above, we obtain
g ∈

{
{∨0,2} ∪ {&0,2} ∪ M3(1)

}
; hence, f (x1, . . ., xn), taking values of zero and one, is

contained in
{
{∨0,2} ∪ {&0,2} ∪ M3(1)

}
.

The same scheme is true for functions that take values of one and two. Hence

M(2) ⊆
{
{∨0,2} ∪ {&0,2} ∪ M3(1)

}
.

The inverse inclusion is obvious.

Denote by f D, f K, f M(2)
, f DM(2)

, f KM(2)
monotone functions of 3-valued logic such

that they do not belong to the sets D, K, M(2), DM(2) = D ∩ M(2), KM(2) = K ∩ M(2)

accordingly. It follows from the definition of class D that if sets (combinations) α̃, β̃ ∈ En
3

for a function f (x1, . . ., xn), n > 1 exist such that the following condition holds:

f (α̃ ∨ β̃) > f (α̃) ∨ f (β̃) (2)

then a function f (x1, . . ., xn), n > 1 does not belong to the class D.
In this case, we say that the condition (2) holds on sets α̃, β̃.

Fractal Fract. 2024, 8, 29 10 of 16

4. Main Results

Lemma 7. Let f (x1, . . ., xn), n ⩾ 1 be an arbitrary monotone function from P3 which satisfies
condition (2). Then, f (x1, . . ., xn) significantly depends on more than one variable.

Proof. (by contradiction). Let f (x1, . . ., xn) = j(xk) for some xk, k = 1, . . ., n, and for some
function j(x) ∈ M3(1).

Let us consider two arbitrary sets α̃, β̃ ∈ En
3 . By our assumption, f (α̃ ∨ β̃) = j(αk ∨ βk).

Without loss of generality, we can assume that αk > βk. Then, f (α̃ ∨ β̃) = j(αk ∨ βk) =
j(αk) = f (α̃) and f (α̃) ∨ f (β̃) = j(αk) ∨ j(βk) = j(αk) = f (α̃).

Hence, for any pair of sets α̃, β̃ ∈ En
3 , the following equality holds:

f (α̃ ∨ β̃) = f (α̃) ∨ f (β̃),

but this contradicts the condition (2).

Lemma 8. Let f (x1, . . ., xn), n > 1 be an arbitrary monotone function from P3 which satisfies
condition (2) on such subsets α̃, β̃ from En

3 that j (1 ⩽ j ⩽ n), and a (a ∈ E3) exist, and
αj = β j = a. Then, function g(x1, . . ., xj−1, xj+1, . . ., xn) = f (x1, . . ., xj−1, xi, xj+1, . . ., xn)
satisfies condition (2).

Proof. Set γ̃ = (α1, . . ., αj−1, αj+1, . . ., αn), δ̃ = (β1, . . ., β j−1, β j+1, . . ., βn). Then, g(γ̃ ∨ δ̃) =

f (α̃ ∨ β̃) > f (α̃) ∨ f (β̃) = g(γ̃) ∨ g(δ̃), that is, for the function g, the condition (2) holds on
sets γ̃, δ̃.

The next statement is similar to the one proved above, so its proof is omitted.

Lemma 9. Let f (x1, . . ., xn), n > 1 be an arbitrary monotone function from P3 that satisfies
condition (2) on such sets α̃, β̃ from En

3 that 1 ⩽ i, j ⩽ n, i < j exist and αi = αj, βi = β j. Then, a
function g(x1, . . ., xj−1, xj+1, . . ., xn) = f (x1, . . ., xj−1, xi, xj+1, . . ., xn) satisfies the condition (2).

Lemma 10. For any monotone function f D(x1, . . ., xn), n ⩾ 2, there exists a monotone function
gD(x1, . . ., xn) ∈

{
{ f D(x1, . . ., xn)} ∪ M3(1)

}
such that the condition (2) holds on such sets

α̃, β̃ ∈ En
3 that gD(α̃&β̃) = gD(α̃) = gD(β̃) = 0, gD(α̃ ∨ β̃) = 1.

Proof. Since f D(x1, . . ., xn) ∈ D, the condition (2) holds for this. Let us consider two sets
α̃, β̃ such that f D(α̃ ∨ β̃) > f D(α̃) ∨ f D(β̃). The sets α̃ and β̃ are incomparable; otherwise,
there is a contradiction with the condition (2).

Consider four sets: Γ = {α̃&β̃, α̃, β̃, α̃ ∨ β̃}. Consider also the set

SΓ = { f D(α̃&β̃), f D(α̃), f D(β̃), f D(α̃ ∨ β̃)}.

It is clear that |SΓ| ⩾ 2. Otherwise, we have a contradiction with the condition (2).
Let |SΓ| = 2. Denote by a the minimum element of SΓ, and by b—the maximum

element. Due to the inequality f D(α̃ ∨ β̃) > f D(α̃) ∨ f D(β̃) it is clear that f D(α̃ ∨ β̃) = b,
f D(α̃) = a, f D(β̃) = a. Then, we have f D(α̃&β̃) = a by the monotonicity of the function f D.

Denote by j(x) a function M3(1) such that j(a) = 0 and j(b) = 1. Consider a function
g(x1, . . ., xn) = j(f D(x1, . . ., xn)) that satisfies the relation g(α̃&β̃) = j(f D(α̃&β̃)) = j(a) = 0.
Analogically, g(α̃) = 0, g(β̃) = 0, g(α̃ ∨ β̃) = 1.

By these equalities, the function g satisfies the condition (∗), namely g(α̃ ∨ β̃) >
g(α̃) ∨ g(β̃). Hence, g /∈ D holds according to the definition of class D.

Let |SΓ| = 3. Then, f D(α̃ ∨ β̃) = 2 holds surely, since f D is monotone. By the
condition (2) no other element from SΓ cannot be equal to 2.

Consider a function h(x1, . . ., xn) = j2(f D(x1, . . ., xn)). For this h(α̃ ∨ β̃) = j2(f D(α̃ ∨
β̃)) = j(2) = 1. Analogically, h(α̃&β̃) = h(α̃) = h(β̃) = 0, since f D(α̃), f D(β̃), f D(α̃&β̃) < 2.

Fractal Fract. 2024, 8, 29 11 of 16

By these equalities, the function h satisfies the condition (2), specifically, h(α̃ ∨ β̃) >
h(α̃) ∨ h(β̃). Hence, h /∈ D holds according to the definition of the class D.

Lemma 11. For any monotone function f D(x1, . . ., xn), n ⩾ 2 there is a monotone function
gD(x, y), which depends essentially on two variables such that gD(x, y) ∈

{
{ f D(x1, . . ., xn)} ∪

M3(1)
}

.

Proof. The condition (2) holds by definition of the class D for function f D(x1, . . ., xn), n ⩾ 2:
there are sets α̃, β̃ ∈ En

3 such that f (α̃ ∨ β̃) > f (α̃) ∨ f (β̃).
If j (1 ⩽ j ⩽ n) exists such that αj = β j, then by Lemma 8 we have a function that

depends on a smaller number of variables for which the condition (2) holds. Therefore, this
function does not belong to the class D.

If i, j (1 ⩽ i, j ⩽ n, i < j) exists such that αi = αj, βi = β j, then by Lemma 9 we obtain
a function depending on a smaller number of variables, and this function satisfies the
condition (2), and therefore does not belong to class D.

Let α̃ = (α1, . . ., αn), β̃ = (β1, . . ., βn) such that for any j (1 ⩽ j ⩽ n) αj ̸= β j and for
any i, j (1 ⩽ i, j ⩽ n, i < j) either αi ̸= αj or βi ̸= β j.

The set {(α1, β1), . . ., (αn, βn)} is contained in the set {(0, 1), (1, 0), (2, 0), (0, 2), (1, 2), (2, 1)}.
There, n ⩽ 6, but by Lemma 7, n ⩾ 2.

Let at least one of the sets α̃, β̃ include one. By our assumption for any j (1 ⩽ j ⩽ n)
αj ̸= β j. Then, there is i (1 ⩽ i ⩽ n) such that either αi = 0, βi = 1 or αi = 1, βi = 2
(without loss of generality, we can assume that αi < βi).

In addition, without loss of generality, assume that i = 1. Then, we can consider a
function g(x1, . . ., xn) = f (j(x1), . . ., xn), where

j(x1) =

{
α1, x1 = 0;
β1, x1 > 0.

The condition (2) for a function g holds on sets γ̃ = (0, α2, . . ., αn), δ̃ = (2, β2, . . ., βn).
If one is included in at least one of sets γ̃, δ̃, then we continue to follow a similar pattern.
We can then assume that a condition (2) for the function f D(x1, . . ., xn) holds on sets of
zeros and twos.

That is, the sets α̃, β̃ consist of zeros and twos. Because for any j (1 ⩽ j ⩽ n) αj = β j
and for any i, j (1 ⩽ i, j ⩽ n, i < j) either αi ̸= αj or βi ̸= β j the set {(α1, β1), . . ., (αn, βn)}
is contained in the set {(2, 0), (0, 2)}. Therefore, n ⩾ 2, but by Lemma 7 n ⩾ 2. Hence,
n = 2.

A similar statement is true for class K. This is proven in a similar way.

Lemma 12. For any monotone function f K(x1, . . ., xn), n ⩾ 2, a monotone function gK(x, y)
depends essentially on two variables such that gK(x, y) ∈

{
{ f K(x1, . . ., xn)} ∪ M3(1)

}
.

Theorem 3. Let the monotone function f (x1, . . ., xn), n ⩾ 2 take three values. Then, the set{
{ f (x1, . . ., xn)} ∪ M3(1)

}
contains a monotone function that essentially depends on exactly two

variables and takes three values.

Proof. (induction by the number of variables).

n = 3 (induction base)

Let f = f (x1, x2, x3).

(i) If variables xi, xj (i ̸= j, i, j = 1, 2, 3) of function f exist such that when they are
identified, we obtain a function that depends essentially on more than one variable,
and there is a set α̃ = (α1, α2, α3) such that αi = αj and f (α̃) = 1, then it is clear that,
by identifying the variables xi and xj, we obtain the desired monotone function that

Fractal Fract. 2024, 8, 29 12 of 16

essentially depends on exactly two variables and takes three values, since f (0, 0, 0) = 0
and f (2, 2, 2) = 2.

(ii) Suppose that there is no such pair of variables, i.e., for any identification of two
variables of the function f , we obtain a function that depends on less than two variables.
By f (0, 0, 0) = 0 and f (2, 2, 2) = 2 for each identification, we can obtain only functions
from M3(1) ∩ T0 ∩ T2. There are only three possible ways to choose a pair of variables
for identification.

Suppose the functions f (x, x, y), f (x, y, x), f (y, x, x) are known. Then, the values
of the initial function f (x!, x2, x3) are defined on all sets except six which all have three
different elements. Because the value of f (1, 1, 1) is uniquely defined, it is clear that
if f (x, x, y) = r(x) or f (x, x, y) = r(y), then f (x, y, x), f (y, x, x) ∈ {r(x), r(y)} for any
function r from set M3(1) ∩ T0 ∩ T2. For every function r from M3(1) ∩ T0 ∩ T2, namely for
J2, J1, and function e1

1, we must consider the following eight cases:

1. f (x, x, y) = r(x), f (x, y, x) = r(x), f (y, x, x) = r(x),

2. f (x, x, y) = r(x), f (x, y, x) = r(x), f (y, x, x) = r(y),

3. f (x, x, y) = r(x), f (x, y, x) = r(y), f (y, x, x) = r(x),

4. f (x, x, y) = r(x), f (x, y, x) = r(y), f (y, x, x) = r(y),

5. f (x, x, y) = r(y), f (x, y, x) = r(x), f (y, x, x) = r(y),

6. f (x, x, y) = r(y), f (x, y, x) = r(x), f (y, x, x) = r(x),

7. f (x, x, y) = r(y), f (x, y, x) = r(y), f (y, x, x) = r(y),

8. f (x, x, y) = r(y), f (x, y, x) = r(y), f (y, x, x) = r(x).

Consider the following cases:

1. If r = J2 or r = J1, then the function f (x1, x2, x3) takes two values. However, this is a
contradiction with the initial condition. There is only one case remaining: when the
function f (x1, x2, x3) is defined as follows: f (x, x, z) = x, f (x, y, y) = y, f (z, y, z) = z,
i.e., f is a majority function of three variables that demonstrates the constant substitu-
tion operation. By substituting one for the first variable, we obtain g from M \ M(2),
which depends essentially on two variables. Specifically,

g(x, y) =

0 1 1
1 1 1
1 1 2

.

2. It is easy to see that f (x1, x2, x3) = r(x1).
3. It is easy to see that f (x1, x2, x3) = r(x2).
4. For any function r from M3(1) ∩ T0 ∩ T2, the equality f (0, 2, 0) = 2 and f (0, 2, 2) = 0

hold. However, this contradicts the monotonicity of the function f (x1, x2, x3).
5. For any function r from M3(1) ∩ T0 ∩ T2 the equality f (2, 0, 0) = 2 and f (2, 2, 0) = 0

hold. However, this contradicts the monotonicity of the function f (x1, x2, x3).
6. It is easy to see that f (x1, x2, x3) = r(x3).
7. For any function r from M3(1) ∩ T0 ∩ T2 the equality f (2, 0, 0) = 2, f (2, 2, 0) = 0 hold.

However, this contradicts the monotonicity of the function f (x1, x2, x3).
8. For any function r from M3(1) ∩ T0 ∩ T2 the equality f (0, 2, 0) = 2, f (2, 2, 0) = 0 hold.

However, this contradicts the monotonicity of the function f (x1, x2, x3).

(iii) Suppose we have variables xi, xj (i ̸= j, i, j = 1, 2, 3) of function f , whose identification
gives a function that essentially depends on two variables.

(a) By identifying variables xk and xl (k ̸= l, k, l = 1, 2, 3), we obtain a function
that takes only three values. If k = i and l = j, then the theorem is proven.
Let (i, j) ̸= (k, l), then by identification of xk, xl , we can obtain a function that
takes three values but depends essentially on no more than one variable. This
function can only be a selector function e3

i , where i = 0, 1, 3. Then, it is obvious

Fractal Fract. 2024, 8, 29 13 of 16

that f (0, 0, 0) = 0, f (1, 1, 1) = 1, f (2, 2, 2) = 2. Then, the identification of any
pair of variables xi, xj, gives the desired function from M \ M(2).

(b) By identifying any pair of variables, we obtain a function that takes at most two
values. Consider a set α̃ such that f (α̃) = 1. Since identification of any pair of
variables gives a function that takes at most two values, then αi ̸= αj is necessary
to fulfill with i ̸= j, i, j = 1, 2, 3.

Without loss of generality, we can assume that α1 = 2, α2 = 0, α3 = 1. Consider a
set β̃ such that β1 = 2, β2 = β3 = 0, and a set γ̃ such that γ1 = 2, γ2 = γ3 = 1. By the
monotonicity of the function f (x, y, z), we obtain f (β̃) ⩽ f (α̃).

Therefore, we have either f (β̃) = 0 or f (β̃) = 1. Let f (β̃) = 1, then by identifying
the variables x2, x3, we have a function taking three values. However, this contradicts the
assumption. Consequently, we have f (β̃) = 0. Similarly, we find that f (γ̃) = 2. Consider
a function g(x2, x3) derived from f (x, y, z) by substituting the constant 2 instead of the
variable x1.

It is clear that g(β2, β3) = g(0, 0) = 0, g(α2, α3) = g(0, 1) = 1, g(γ2, γ3) = g(1, 1) = 2.
From these equalities and from the fact that β3 ̸= α3, β2 = α2 and γ3 = α3, γ2 ̸= α2 follows
that variables x2 and x3 are essential for g(x2, x3). Hence, g(x2, x3) is the required function
that takes three values and depends essentially on exactly two variables.

We have shown how to obtain from M \ M(2) a function g that depends essentially
on two variables. This can be performed by identifying the variables and substituting
constants into an arbitrary function f from M \ M(2), where f depends essentially on
three variables.

n > 3 (by the inductive assumption)

Consider a set α̃ such that f (α̃) = 1. Because n > 3, then i, j : αi = αj exist, i ̸= j.

(i) If a set α̃ consists of zeros and twos only and is such that f (α̃) = 1, then we identify
the variables xi and xj. Suppose that we obtain a function r that essentially depends
on only one variable by the identity of variables xi, xj. Then, from one hand, we have
r(0) = 0 and r(2) = 2 since f (0̃) = 0 and f (2̃) = 2, and by f (α̃) = 1, we have either
r(0) = 1, or r(2) = 1 from the other hand. We obtained a contradiction.

(ii) Let all tuples α̃ such that f (α̃) = 1 contain one. Let us take one of these sets. Because
n > 3 there are i, jsuchthatαi = αj, i ̸= j. Let αi1 = . . . = αim = 1, m > 0. Suppose that
by identifying the numbers xi and xj, we obtain a function r that depends essentially
only on one variable. Then, it is clear that r ∈ {en

i1
, . . ., en

im}, since otherwise we obtain
that either r(0) = 1, or r(2) = 1. Hence, we have f (1̃) = 1. Then, by identifying
at least one pair of variables of the function f (x1, . . ., xn), we obtain a function that
depends on more than one variable. The inductive step has been performed. Suppose
the identification of any two variables results in a function that essentially depends on
one variable. Let us prove that this is not true if f essentially depends on n variables.

(a) If, for any identification of two numbers, we obtain the function en
i (the number i

is the same for all identifications), then we obtain a contradiction with the fact
that f depends essentially on n variables, since we obtain f = en

i .
(b) Suppose variables xi1 , xj1 exist such that we obtain en

k1
by their identification.

Also, suppose variables xi2 , xj2 exist such that we obtain en
k2

by their identification;
moreover, we have en

k1
̸= en

k2
. Therefore, we have k1 ̸= k2.

(1) k1 /∈ {i1, j1}.
Consider a set α̃ such that αk1 = 2, αj = 1 for any j ̸= k1, and a set β̃ such that βk2 = 1,
β j = 2 for any j ̸= k2. Then α̃ ⩽ β̃, f (α̃) = 2, f (β̃) = 1, but this contradicts the
monotonicity of the function f .

(2) k1 = i1. Note that in this case k2 ̸= i1.

Fractal Fract. 2024, 8, 29 14 of 16

(2.1) k2 /∈ {i2, j2}.

(2.1.1) k2 ̸= j1. Consider a set α̃ such that αk1 = 2, αj1 = 2, αj = 1 for any
j ̸= k1, j1, and a set β̃ such that βk2 = 1, β j = 2 for any j ̸= k2. Then
α̃ ⩽ β̃, f (α̃) = 2, f (β̃) = 1, but this contradicts the monotonicity of the
function f .

(2.1.2) k2 = j1. Then, en
k2

= en
j1
= en

i1
= en

k1
, this contradicts our assumption.

(2.2) k2 = i2.

(2.2.1) k2 = j1. Then, en
k2

= en
j1
= en

i1
= en

k1
, this contradicts our assumption.

(2.2.2) k2 ̸= j1.

(2.2.2.1) j2 ∈ {i1, j1}. Then, en
k2

= en
j1
= en

i1
= en

k1
, this contradicts our

assumption.
(2.2.2.2) j2 /∈ {i1, j1}. Consider a set α̃ such that αk1 = 2, αj1 = 2, αj = 1

for any j ̸= k1, j1, and a set β̃ such that βk2 = 1, β j2 = 1, β j = 2 for
any j ̸= k2, j2. Then, α̃ ⩽ β̃, f (α̃) = 2, f (β̃) = 1, but this contradicts
the monotonicity of the function f .

(2.3) k2 = j2. In the same way (2.2).

(3) k1 = j1. In the same way (2).

Thus, for any i1, j1, i2, j2, k1, k2, there is either a contradiction with the monotonicity of
the function f or with the fact that it depends essentially on n variables.

Consequently, there are variables of the function f identifying which one obtains a
function that depends essentially on more than one variable.

Now, we are ready to formulate and prove the final result.

Theorem 4 (on finite generation of classes of monotone functions containing all unary
monotone functions). Let F ⊆ M, M3(1) ⊆ F. Then F is a finitely generated class.

Proof. We consider four possible cases to prove this theorem:

1. Case I. x ∨ y ∈ F, x&y ∈ F.
2. Case II. x ∨ y ∈ F, x&y /∈ F.
3. Case III. x ∨ y /∈ F, x&y ∈ F.
4. Case IV. x ∨ y /∈ F, x&y /∈ F.

In Case I, we obtain a class that coincides with M. In Case II and Case III, we obtain
one class that satisfies satisfies the conditions of the theorem and differs from M and M3(1).
In Case IV, we have two subclasses in M(2).

Case II. Let x ∨ y ∈ F, x&y /∈ F.

(1) For any function f ∈ F the following condition holds: f ∈
{
{x ∨ y} ∪ M3(1)

}
. In

this case, a class F = D =
{
{x ∨ y} ∪ M3(1)

}
is finitely generated.

(2) The function f D ∈ F exists.

By Lemma 11, it is sufficient to consider f D(x, y) (similarly, we can prove the existence
f K(x, y) by Lemma 12). By Lemma 10 we can assume f D(ã ∨ b̃) = 1, f D(ã) = f D(b̃) =
f D(ã&b̃) = 0 for some sets ã, b̃. Hence, for function f D(x, y) on sets ã, b̃, the condition (∗)
holds; therefore, sets ã = (α1, α2) and b̃ = (β1, β2) are incomparable. Suppose that α1 < β1,
α2 < β2. Then,

f D(p(x), q(y)) =

0 0 0
0 0 0
0 0 1

, where p(x) =

α1
α1
β1

, q(y) =

β2
β2
α2

.

Fractal Fract. 2024, 8, 29 15 of 16

Application of Lemma 4 yields x&y ∈
{
{x ∨ y} ∪ M3(1) ∪ { f D(x, y)}

}
, and con-

sequently, by Lemma 3, we obtain that
{
{x ∨ y} ∪ M3(1) ∪ { f D(x, y)}

}
= M. Hence,{

D ∪ { f D(x, y)}
}
= M.

Then, on the one hand, we have
{
{x ∨ y} ∪ M3(1)

}
= D ⊂ F, and on the other hand,

f D ∈ F. It has been proved above that the set D =
{
{x ∨ y} ∪ M3(1)

}
is precomplete in

M. From this, it follows that F = M. Case II has been considered and the theorem has
been proved.

5. Conclusions

In this paper, two theorems on the finiteness generation of classes containing precom-
plete classes of one-valued functions, and classes containing all monotone unary functions
are proved. These results enable us to explicitly describe a class that contains a subclass of
one-variable functions and provide a description of a supergroup of classes from Pk that
contains the full class of unary functions. Similar conditions were previously described
for binary logic. In this paper, we present their counterpart for many-valued logic. The
main challenge with many-valued logic is that we cannot explicitly describe closed classes.
The only thing that can be performed is to apply certain criteria to determine whether
the class is complete or not. If these criteria are met, then the class is considered to be
finitely generated. It is important that these conditions can be easily verified. Specifically,
this condition is expressed in terms of one-valued functions. It has been proven that all
classes containing one of the precomplete classes of the set of unary functions are finitely
generated. The main result of this paper consists of two theorems on the finite generation
of classes containing precomplete classes of one-valued functions and classes containing all
monotone unary functions. Thus, the theoretical result provides a criterion for checking
the finiteness of classes of functions in multivalued logic.

The finite generation of overlattices means that we can develop consistent computation
schemes that are quite useful for applications. Although this paper is rather theoretical,
the results obtained here are all significant in their respective areas of study and may be
applied extensively in computer science. In practice, the proved theorems mean that we
can construct circuit schemes or algorithms explicitly for general cases.

Some problems remain open. On the basis of the considerations above, it is possible
to construct a diagram of the inclusions of monotone classes that contain all monotone
functions. It can also be proven that this inclusion diagram of monotone classes includes
all unary monotone functions. For further research, we plan to consider finitely generated
classes that do not contain the majority functions and a choice function. In addition, there
is an example of a class whose finite generation cannot be proven via the one sufficient
condition described in the first part of this paper. However, the method of modeling
constants allows proving their finite generation based on the fact that a class {Pk} is
finitely generated.

Funding: This publication was prepared with the support of the Russian Foundation for Basic
Research according to the research project No. 20-01-00575_A.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Bykovsky, A.Y. Heterogeneous Network Architecture for Integration of AI and Quantum Optics by Means of Multiple-Valued

Logic. Quantum Rep. 2020, 2, 126–165. [CrossRef]
2. Aizenberg, I. Multiple-Valued Logic and Complex-Valued Neural Networks. In Claudio Moraga: A Passion for Multi-Valued Logic

and Soft Computing; Seising, R., Allende-Cid, H., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 153–171.
[CrossRef]

3. Kunze, H. Engineering Mathematics and Artificial Intelligence: Foundations, Methods, and Applications; Mathematics and Its
Applications: Modelling, Engineering, and Social Sciences; CRC Press: Boca Raton, FL, USA, 2024.

http://doi.org/10.3390/quantum2010010
http://dx.doi.org/10.1007/978-3-319-48317-7_10

Fractal Fract. 2024, 8, 29 16 of 16

4. Luo, C.; Wang, H.; Zheng, Y. Controllability of k-Valued Fuzzy Cognitive Maps. IEEE Trans. Fuzzy Syst. 2020, 28, 1694–1707.
[CrossRef]

5. Kong, X.; Sun, Q.; Li, H. Survey on Mathematical Models and Methods of Complex Logical Dynamical Systems. Mathematics
2022, 10, 3722. [CrossRef]

6. Xiaojie, W.; Chao, L.; Chen, L. The feedback stabilization of finite-state fuzzy cognitive maps. Trans. Inst. Meas. Control 2022,
44, 2485–2499. [CrossRef]

7. Pfeifer, A.; Lohweg, V. Classification of Faults in Cyber-Physical Systems with Complex-Valued Neural Networks. In Proceedings
of the 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras, Sweden,
7–10 September 2021; pp. 1–7. [CrossRef]

8. Bykovsky, A.Y. Multiple-Valued Logic Modelling for Agents Controlled via Optical Networks. Appl. Sci. 2022, 12, 1263.
[CrossRef]

9. Kalimulina, E.Y. Lattice Structure of Some Closed Classes for Three-Valued Logic and Its Applications. Mathematics 2022, 10, 94.
[CrossRef]

10. Kalimulina, E.Y. On Exponential Convergence of Dynamic Queueing Network and Its Applications. In Distributed Computer and
Communication Networks; Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V., Eds.; Springer: Cham, Switzerland, 2020; pp. 463–474.

11. Kalimulina, E.Y. Analysis of Unreliable Open Queueing Network with Dynamic Routing. In Distributed Computer and Communica-
tion Networks; Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V., Eds.; Springer: Cham, Switzerland, 2017; pp. 355–367.

12. Bykovsky, A.Y.; Vasiliev, N.A. Data Verification in the Agent, Combining Blockchain and Quantum Keys by Means of Multiple-
Valued Logic. Appl. Syst. Innov. 2023, 6, 51. [CrossRef]

13. Kalimulina, E.Y. Lattice Structure of Some Closed Classes for Non-binary Logic and Its Applications. In Mathematical Methods for
Engineering Applications; Yilmaz, F., Queiruga-Dios, A., Santos Sánchez, M.J., Rasteiro, D., Gayoso Martínez, V., Martín Vaquero, J.,
Eds.; Springer: Cham, Switzerland, 2022; pp. 25–34.

14. Kalimulina, E.Y. Application of Multi-Valued Logic Models in Traffic Aggregation Problems in Mobile Networks. In Proceedings
of the 2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT), Baku,
Azerbaijan, 13–15 October 2021; pp. 1–6. [CrossRef]

15. Cheng, D.; Feng, J.e.; Zhao, J.; Fu, S. On adequate sets of multi-valued logic. J. Frankl. Inst. 2021, 358, 6705–6722. [CrossRef]
16. Cheng, D.; Liu, Z.; Qi, H. Completeness and normal form of multi-valued logical functions. J. Frankl. Inst. 2020, 357, 9871–9884.

[CrossRef]
17. Malkov, M.A. Algebra of Finite-Valued Functions: Classification of Functions and Subalgebras, Essential and Fictitious Subalge-

bras. Pure Appl. Math. J. 2019, 8, 30–36. [CrossRef]
18. Ding, X.; Li, H. Stability analysis of multi-valued logical networks with Markov jump disturbances. Int. J. Control 2022,

95, 554–561. [CrossRef]
19. Xu, N.; Chen, Y.; Xue, A.; Zhao, X.; Sun, P. Set stabilization and optimal control of switched multi-valued logical control networks

with state-dependent switching signals. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 1952–1956. [CrossRef]
20. Yablonskiy, S.; Gavrilov, G.; Kudryavtsev, V. Logical Algebra Functions And Post Classes; Nauka: Moscow, Russia, 1966.
21. Parhami, B.; McKeown, M. Arithmetic with binary-encoded balanced ternary numbers. In Proceedings of the 2013 Asilomar

Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 3–6 November 2013; pp. 1130–1133. [CrossRef]
22. Post, E.L. Introduction to a General Theory of Elementary Propositions. Am. J. Math. 1921, 43, 163–185. [CrossRef]
23. Post, E.L. The Two-Valued Iterative Systems of Mathematical Logic. (AM-5); Princeton University Press: Princeton, NJ, USA, 1941.
24. Yanov, Y.I.; Muchnik, A. The Existence of a k-Valued Closed Class that Has No Finite Basis. Doklady Akad. Nauk SSSR 1959, 127, 44.
25. Esin, A.; Yavorskiy, R.; Zemtsov, N. Brief Announcement Monitoring of Linear Distributed Computations. In Distributed

Computing; Dolev, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 566–568.
26. Podol’ko, D.K. A family of classes of functions closed with respect to a strengthened superposition operation. Mosc. Univ. Math.

Bull. 2015, 70, 79–83. [CrossRef]
27. Starostin, M.V. Implicitly Maximal Classes and Implicit Completeness Criterion in the Three-Valued Logic. Mosc. Univ. Math.

Bull. 2018, 73, 82–84. [CrossRef]
28. Kalimulina, E.Y. Mutual Generation of the Choice and Majority Functions. In Mathematical Methods for Engineering Applications;

Yilmaz, F., Queiruga-Dios, A., Martín Vaquero, J., Mierluş-Mazilu, I., Rasteiro, D., Gayoso Martínez, V., Eds.; Springer: Cham,
Switzerland, 2023; pp. 49–57.

29. Burle, G. Classes ofk-valued logic containing all functions of a certain variable. Diskretn. Anal. 1967, 10, 3–7.
30. Posypkin, M.A. On closed classes containing precomplete classes of the set of all one-place functions. Mosc. Univ. Math. Bull.

1997, 52, 58–59.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TFUZZ.2019.2921263
http://dx.doi.org/10.3390/math10203722
http://dx.doi.org/10.1177/01423312221085785
http://dx.doi.org/10.1109/ETFA45728.2021.9613451
http://dx.doi.org/10.3390/app12031263
http://dx.doi.org/10.3390/math10010094
http://dx.doi.org/10.3390/asi6020051
http://dx.doi.org/10.1109/AICT52784.2021.9620244
http://dx.doi.org/10.1016/j.jfranklin.2021.07.003
http://dx.doi.org/10.1016/j.jfranklin.2020.06.026
http://dx.doi.org/10.11648/j.pamj.20190802.11
http://dx.doi.org/10.1080/00207179.2020.1803410
http://dx.doi.org/10.1109/TCSII.2020.3046269
http://dx.doi.org/10.1109/ACSSC.2013.6810470
http://dx.doi.org/10.2307/2370324
http://dx.doi.org/10.3103/S0027132215020059
http://dx.doi.org/10.3103/S0027132218020067

	Introduction
	Paper Structure

	Preliminary Results and Definitions on k-Valued Functions
	Auxiliary Theorems and Proofs of Technical Lemmas
	Finite Generation of Classes Containing Precomplete Classes of One-Valued Functions
	Finite Generation of Classes Containing All Monotone Unary Functions

	Main Results
	Conclusions
	References

