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Abstract: Fractional calculus is defined by expanded integer order integration and differentiation. In
this paper, multiple mathematical models of a nonlinear dual-tank device are precisely formulated
by fractional calculus. Using the accurate model, a multivariable fractional-order controller is
designed for nonlinear devices. The merits of the fractional-order design include: (1) control of
multivariable nonlinearities, (2) compensation of uncertainties, and (3) elimination of coupling effects.
Simulations and experiments are conducted to verify the precision of the fractional order models and
the effectiveness of the multivariable fractional-order control system design.
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1. Introduction

Tank devices, which are the subject of control in this paper, are widely used in oil,
gas, chemical, pharmaceutical, food, and other plants. The chemical products and energy
produced in these plants are essential to our daily lives and must operate day and night
without interruption. Plants produce products by controlling temperature, pressure, and
flow rate to cause the desired chemical and physical reactions in raw materials, and
the process is continuous. Chemical products such as iron and resins require precise
temperature control because they solidify at lower temperatures. The plant must continue
to operate as long as possible after the start of production, and the goals of control are to
ensure safety, increase productivity, and improve economic efficiency. In order to achieve
these goals, process control research is actively conducted. The dual-tank device used in
this paper is widely used in the process field because it heats the material to be heated
indirectly, allowing slow and uniform heating of the material, and is stable and resistant to
temperature fluctuations.

Many of the phenomena that occur in process systems are mathematically nonlinear,
making it difficult to design precise control systems. In general, when designing control
systems for nonlinear systems, nonlinear systems are often linearized and linear control
theory is applied [1–5]. In this case, however, linearization often degrades the performance
of the entire control system and determines the controllable range. For this reason, research
has been conducted on adaptive control and optimal control to satisfy the specified control
performance, as well as on control systems that handle nonlinear systems [6–9]. Sliding
mode control is one of the control methods for control systems with nonlinear elements. It is
applied to servo systems because of its excellent robustness [10–14]. Furthermore, operator
theory has been studied as a control theory for handling nonlinear systems. Operator
theory can represent a plant as a map from the input space to the output space, allowing
control of the system in the time domain. It also has the advantages of easy robust stability
analysis in the presence of uncertainty and extensibility to multi-input/output systems,
and has been applied to a variety of control objects [15–22].
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Process control is a multivariable control in which multiple values such as temperature,
flow rate, pressure, and liquid level are controlled simultaneously. In the tank device that
is the target of control in this paper the temperature and liquid volume in the tank must be
controlled at the same time. When many control variables are controlled simultaneously,
each control system generates interference in each other’s input/output. If the model of
the control system includes the effects of interference, errors may occur between the actual
plant and the model, leading to a reduction in control performance. In control systems
where interference exists, unlike single-input single-output control, it is necessary to design
the control system and apply stability conditions that take into account the interference that
occurs in the plant. Control system design based on operator theory has attracted attention
because it considers the bounded-input bounded-output stability of the plant and can be
easily extended to multi-input multi-output systems.

In a previous study, the heat exchange and liquid level processes of a dual-tank
device were modeled using integer calculus and operator theory to control the liquid
temperature and liquid level, respectively, [23]. In that study, a multi-input multi-output
control system was designed to perform single-input single-output target-value tracking
for the heat exchange process in a dual-tank device and then perform target-value tracking
for the liquid level process after the target-value tracking is stabilized. However, the model
constructed in that study assumes a constant liquid volume in TANK1, and thus cannot
control the liquid level and temperature simultaneously—the temperature rises even when
a liquid cooler than the liquid in TANK1 flows into the system. Therefore, it is necessary to
develop a new mathematical model for the case of variable liquid volume. In addition, in
that study, the control system design is an integer-order control system. The integer-order
derivative is a series of derivatives with properties similar to those of ordinary derivatives
because the order of the derivatives is an integer, making it a general modeling; however,
modeling with fractional-order calculus can represent more complex phenomena than
conventional integer-order calculus modeling.

Based on the above, this paper has two objectives. The first is to realize a control
system that can simultaneously control liquid temperature and liquid level. In previous
studies, heating by a heater was the only way to control the liquid temperature, and the
temperature did not decrease even if low-temperature liquid was allowed to flow into
the physical model. This paper focuses on the fact that the temperature decreases when
low-temperature liquid flows into TANK1 in a real plant, and confirms that the physical
model can reproduce the decrease in liquid temperature. Temperature control is performed
by using the temperature drop due to pumping liquid as well as heater-based heating as
input. Second, modeling is performed in which the liquid temperature and liquid level
are expressed in fractional-order derivatives. In other words, in this paper, the goal is to
improve modeling accuracy by using fractional calculus for the heat exchange and liquid
level processes in the tank device under control. Fractional calculus is a concept that extends
the derivative, which is usually expressed in terms of integers, to whole real numbers, and
has been applied in various fields of research in recent years [24,25]. It is believed that the
use of fractional differential orders allows for simpler expressions of complex phenomena
than those of integer orders. The use of fractional order derivatives in modeling controls
multivariate nonlinearities, compensates for uncertainties, and eliminates coupling effects.
Based on the above objectives, the accuracy of the heat exchange process and liquid level
process models expressed in fractional calculus derivatives and the effectiveness of a
multivariable fractional-order control system design are verified through simulations and
experiments to validate a control system that can simultaneously control liquid temperature
and liquid level. Simulation and experiments show that the proposed modeling and control
system design using fractional calculus can simultaneously control liquid temperature and
liquid level, compensate for uncertainties, and eliminate coupling effects by improving the
accuracy of the model.
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2. Mathematical Preparation
2.1. Fractional Calculus

Fractional calculus is a calculus that extends the definition of calculus, originally
defined only for integers, to include real numbers [26]. Fractional calculus is not a new
concept, with early systematic work having been carried out as early as the 19th century.
In recent years, fractional calculus has been applied to the field of control in an increasing
number of engineering applications. There are many phenomena that can be expressed
using fractional calculus, such as the stress generated in a viscoelastic damper, which
consists of a spring and damper, and the heat flux generated in a semi-infinitely extending
thermocouple. There are several definitions of fractional calculus, but in this paper, the
Grünwald–Letnikov definition, which is based on finite differences, is used. This definition
can be derived by generalizing the finite difference, which is the defining equation for the
derivative. The Grünwald–Letnikov definition is shown in Equation (1).

dq f (t)
dtq ≡ lim

N→∞

((
t − t0

N

)−q N−1

∑
k=0

Γ(k − q)
Γ(k + 1)Γ(−q)

f
(

t − k
t − t0

N

))
(1)

Since numerical computations by computer cannot realize the computation of the limit
contained in Equation (1), the G1-Algorithm expression, as shown in Equation (2), is used
in the simulations and experiments.

dq f (t)
dtq = ∆t−q

m−1

∑
k=0

Γ(k − q)
Γ(k + 1)Γ(−q)

f (t − k∆t) (2)

2.2. Newmark-β Method

In this section, we explain the derivation of numerical solutions of differential equa-
tions using fractional calculus. In this paper, the control target is expressed as a fractional
differential equation, and its solution must be obtained. However, in general, it is difficult to
obtain analytical solutions for fractional differential equations. For example, one study [27]
established the basic structure of the exponential Euler difference form for Caputo–Fabrizio
fractional-order differential equations (CF-FODEs) with multiple lags. It is necessary to
derive a numerical solution, and for this, this paper uses the Newmark-β method, which is
a method for obtaining a solution by integrating differential equations at each small time
interval that is also used in general differential equation analysis [28].

The algorithm of the Newmark-β method is shown below. First, the output y(t) and
its first-, second-, and q-order derivatives at time t are described by using two parameters
γ and β as follows.

y(t) = ∆y(t) + y(t − 1) + ∆tẏ(t − 1) +
(

0.5 − β

γ

)
∆t2ÿ(t − 1) (3)

ẏ(t) = ẏ(t − 1) +
γ

β∆t
∆y(t) (4)

ÿ(t) =
1

β∆t2

[
∆y(t) +

(
β − β

γ

)
∆t2ÿ(t − 1)

]
(5)

dqy(t)
dtq =

1
Γ(1 − q)

[I0 + ∆It + It−1] (6)

where ∆y(t), I0, ∆It, It−1 is as follows.



Fractal Fract. 2024, 8, 27 4 of 17

∆y(t) = y(t)− y(t − 1)− ∆tẏ(t − 1)−
(

0.5 − β

γ

)
∆t2ÿ(t − 1) (7)

I0 =
y(0)

tq (8)

∆It =
∆t−q

(1 − q)(2 − q)

(
γ

β

)[
∆y(t) + (2 − q)

(
β

γ

)
∆tẏ(t − 1)

]
(9)

It−1 =
∆t
2

[
ẏ(0)

tq + 2
t−2

∑
j=1

ẏ(j)
(t − j∆t)q +

ẏ(t − 1)
∆tq

]
(10)

In this way, the fractional first-order differential equation can be replaced by the
equation for the variable ∆y, which can be solved to obtain the output y(t) and its first-,
second-, and q-order derivatives at time t, respectively. Depending on how γ and β are
taken, the solution may diverge if the sampling time ∆t is not sufficiently small.

3. Modeling
3.1. Fractional Heat Exchange Process

The tank device under control in this paper is a dual tank separated by a solid wall
(Figure 1) that uses indirect resistance heating to control the TANK2 liquid temperature.
The heat generated from the heater is transferred to TANK2 via the liquid in TANK1, and
the temperature of the liquid in TANK2 is controlled by this method. In modeling this
device, the parameters shown in Table 1 are applied.

Table 1. Modeling parameters.

Parameter Definition Value

D̂1 Inside diameter (TANK1) 32 cm
D̂2 Inside diameter (TANK2) 11 cm
D̂0 Inner diameter 4.0 cm
δ Thickness of wall 2.0 cm

hb
Distance between botttoms of

TANK1 and TANK2 20 cm

hs Water level (TANK2) 35 cm
α1 Heat transfer coefficient 5.0 × 10−5 kJ/(s · cm2· ◦C)
α2 Heat transfer coefficient 1.5 × 10−4 kJ/(s · cm2· ◦C)

k Thermal conductivity of
TANK wall 1.7 × 10−4 kJ/(s · cm2· ◦C)

CTA TANK1 wall heat capacity 47 kJ/◦C

C2
Heat capacity of water in

TANK2 5.6 kJ/◦C

CTB TANK2 wall heat capacity 10 kJ/◦C
cw Specific heat of water 4.2 × 10−3 kJ/(◦C · g)
ρw Density of water 1.0 g/cm3

g acceleration of gravity 9.8 × 102 cm/s2

θ1i Temperature of influent liquid 18 ◦C
θ1 Liquid temperature (TANK1) ◦C
θ2 Liquid temperature (TANK2) ◦C
θ̂1 Outer wall temperature ◦C
θ̂2 Inner wall temperature ◦C
h Water level (TANK1) cm

C1
Heat capacity of water in

TANK1 kJ/◦C

ro Liquid volume of effluent L/min
ri Liquid volume of influent L/min
H Heat supplied by heater kJ/s
λ Thermal conductivity kJ/(s · m ·◦ C)
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Figure 1. Cross-section of tank device.

The liquid in the tank is kept at a constant temperature by an agitator, and heat
is transferred by heat conduction within the solid wall of the tank. Heat conduction is
a phenomenon in which heat is transferred by a temperature gradient within the same
material, and the amount of heat follows Fourier’s law of heat conduction. If the heat flux
moving per unit time is qHF [J/s · m2] and the thermal conductivity of the medium is λ
[J/s · m2 · ◦C], heat conduction within the same material can be expressed by Equation (11)
to obtain the temperature distribution θ(x) of the medium at position x.

qHF = λ
dθ(x)

dx
(11)

Here, the thermal conductivity λ is a specific value for each medium material. Next,
we consider the heat exchange that takes place between the liquid in the tank and the solid
wall of the tank. The heat exchange phenomenon that takes place between two different
kinds of objects is called heat transfer, and the heat flux qHF [J/s · m2] resulting from this is
obtained from the heat transfer coefficient α [J/s · m2 · K] and the temperature difference
between the objects ∆θ [K] by Equation (12).

qHF = α∆θ (12)

Heat exchange is a series of phenomena in which heat is transferred by heat conduction
and heat transfer, and the amount of heat transferred is expressed as the product of a
coefficient and a temperature difference in both phenomena.

The amount of heat transferred by heat conduction occurring within the side of the
tank solid wall at a radial distance r from the center axis of TANK2, Qs [J/s], is expressed
by the product of heat flux and heat transfer area using Equation (13).

Qs = 2πr(h − (hb + δ))λ
dθ(r)

dr
(13)

Integrating Equation (13) with respect to temperature θ, the amount of heat transferred
within the solid wall is expressed by Equation (14), using the surface temperature of the
solid walls θ̂2 and θ̂1.
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Qs =
2πλ(h − (hb + δ))

ln
( D̂2+2δ

D̂2

) (θ̂2 − θ̂1) (14)

Assuming that the amount of heat transferred by heat transfer between the liquid in
the tank and the solid wall is equal to the amount of heat transferred by heat conduction in
the solid wall, the amount of heat Qs transferred from the liquid in TANK1 to the liquid in
TANK2 by heat exchange at the tank side can be expressed by Equation (15).

Qs =
π(h − (hb + δ))

1
α1(D̂2+2δ)

+ 1
2k ln

(
D̂2+2δ

D̂2

)
+ 1

α2D̂2

(θ1 − θ2) (15)

Similarly, the heat quantity Qb [J/s] transferred from the liquid in TANK1 to the liquid
in TANK2 by heat exchange at the tank bottom is expressed by Equation (16).

Qb =
πD̂2

2

4( δ
λ + 1

α1
+ 1

α2
)
(θ1 − θ2) (16)

From Equations (15) and (16), the heat quantity Qa [J/s] transferred from the liquid in
TANK1 to the liquid in TANK2 due to the heat exchange that occurs throughout the tank is
expressed by Equation (17).

Qa = Qs + Qb = k(θ1 − θ2) (17)

k is expressed in Equation (18).

k =
π(h − (hb + δ))

1
α1(D̂2+2δ)

+ 1
2k ln

(
D̂2+2δ

D̂2

)
+ 1

α2D̂2

+
πD̂2

2

4( δ
λ + 1

α1
+ 1

α2
)

(18)

Next, the concept of the heat balance of the tank is explained. Let Qi, Qo [J] be the heat
value, H [J] be the heater output, Ti, To [C] be the liquid temperature, Fi, Fo [m3/s] be the
flow rate, V [m3] be the liquid volume, cp [kJ/kg · K] be the specific heat, and ρ [kg/m3]
be the density. Then, Equation (19) shows the equation for the heat quantity change in the
tank for the heat quantity flowing in, the heat quantity flowing out, and the heat quantity
supplied from the heater in Figure 2.

dQ1

dt
= Qin − Qout + H (19)

The heat quantity Q can be expressed as Q = ρcpVT, and is substituted into the
Equation (19).

ρcp
d{VT}

dt
= FiρcpTi − FoρcpTo + H (20)

Equation (20) can be transformed as in Equation (21), because in this paper we are
considering the case where the liquid volume in the tank changes for TANK1.

V
dT
dt

= FiTi − FoTo +
1

ρcp
H − T

dV
dt

(21)

Since the time variation of the heat quantity related to the liquid inside TANK1 and
TANK2 can be considered to be equal to the heat balance of each liquid over a small
time period, the heat quantity and heat balance equations derived above can be used to
formulate the equations for each tank. In TANK1, the amount of heat change in a small
time period is determined by the heat supplied from the control input, the heat flow rate
that varies with the liquid entering and leaving the tank, the amount of heat transferred by
heat exchange, and the amount of heat absorbed by the solid walls of the tank. In TANK2,
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it is determined by the amount of heat transferred by the heat exchange and the amount of
heat absorbed by the solid wall of the tank.

Figure 2. Tank heat balance.

Next, the heat exchange model equation for a dual-tank device is expressed using
fractional calculus. In previous studies, it has been found that heat transfer phenomena can
be described more accurately by expressing the amount of heat absorbed by the tank solid
walls in fractional calculus. The heat transfer model is extended to a fractional dimension
in this paper, which can represent the outflow of heat from the solid wall of TANK1 and the
change in liquid temperature near the individual tank walls caused by the flow of liquid in
the tank. A model expressing the amount of heat absorbed by the solid wall of the tank in
fractional calculus is shown in Equations (22) and (23).

C1
dθ1

dt
= ρwcwriθ1i − ρwcwr0θ1 + H

+ k(θ2 − θ1)− χq
dqθ1

dtq

− ρwcwθ1
dV
dt

C2
dθ2

dt
= k(θ1 − θ2)− χp

dpθ2

dtp

(22)

(23)

χq and χp are expressed as in Equations (24) and (25).

χq =
d1−qCTA

dt1−q (24)

χp =
d1−pCTB

dt1−p (25)

The advantage of modeling a heat exchange process such as Equations (22) and (23)
using fractional-order derivatives over existing modeling is that it can produce a greater
variety of waveforms than conventional modeling using integer-order derivatives. Typi-
cally, heat exchange modeling is represented using integer-order derivatives; however, the
heat exchange modeling used in this paper uses fractional-order derivatives and can model
phenomena that cannot be represented by conventional modeling.

From Equations (22) and (23), the differential Equation (26) is derived.

C1C2B
d2θ2

dt2 + (C1 + C2 + ρwcwriC2B)
dθ2

dt
+ ρwcwriθ2 + (ρwcwriBχp + χp)

dpθ2

dtp

+ χq
dqθ2

dtq + C1χpB
dp+1θ2

dtp+1 + C2χqB
dq+1θ2

dtq+1 + χqχpB
dp+qθ2

dtp+q = ρwcwriθ1i + H (26)

Solving Equation (26) for θ2 yields a model of the heat exchange process. The coeffi-
cients χq and χp are determined by considering the dimension of the model. Specifically,
the dimension of χq is [J/K · s1−q] and that of χp is [J/K · s1−p]. This confirms that the
dimensions of the left and right sides of the heat balance equation match.
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3.2. Fractional Liquid Process

The area A of the liquid surface of TANK1 and the area a of the outlet at the bottom of
TANK1 are expressed by Equations (27) and (28).

A =
π

4

[
D̂2

1 −
(

D̂2 + 2δ
)2
]

(27)

a =
πD̂2

0
4

(28)

Letting the inflow into TANK1 be ri(t) and the outflow be ro(t), Equation (29) is
obtained for the time variation of the liquid level h(t) in TANK1.

Aḣ(t) = ri(t)− ro(t) (29)

The inflow ri(t) is the control input and is observable. The outflow ro(t) is expressed
as the product of the cross-sectional area of the outlet and the velocity of the outflow.
The velocity v(t) at which the liquid in the container flows out through the small hole is
obtained from Torricelli’s theorem and is expressed as in Equation (30).

v(t) =
√

2gh(t) (30)

Therefore, the outflow from TANK1 is obtained as in Equation (31).

ro(t) = a
√

2gh(t) (31)

From Equations (29)–(31), we obtain Equation (32) as the model equation for the liquid
level system.

ḣ(t) =
1
A

ri(t)−
a
A

√
2gh(t) (32)

Here, the inflow rate ri(t) has a role as a cooling input for liquid temperature control
in addition to its role as an input for liquid level control in the dual-tank device used in this
paper. Therefore, the inflow rate ri(t) includes the interference from the heater in addition
to the input r′i(t) from the pump, and is considered to be expressed by Equation (33).

ri(t) = r′i(t) +
1

ρcw(θ1 − θi)
H (33)

Next, the liquid level model of the tank is expressed using fractional order derivatives.
In a real plant, the liquid level oscillates due to the effects of circulators and pumping of
liquid. In this paper, this is expressed as uncertainty due to perturbation by fractional
calculus, and Equation (34) is added to the liquid level.

Dqw(G1 sin(ω1t) + G2 cos(ω2t))

≃(G1ω1)
qw

[
sin
(

ω1t +
πqw

2

)
+

(ω1t)−1−qw

Γ(−qw)
+

(ω1t)−3−qw

Γ(−qw − 2)

]
(34)

+(G2ω2)
qw

[
cos
(

ω2t +
πqw

2

)
+

(ω2t)−2−qw

Γ(−qw − 1)
+

(ω2t)−4−qw

Γ(−q − 3)

]
4. Multivariable Fractional-Order Nonlinear Control Feedback System Design

Comparison with existing control methods is performed before designing the control
system. The authors of [29] introduced a fractional-order integral derivative controller for a
class of integrating systems involving time delays. The stability region is explored through
the complex root boundary analysis, which explicitly provides the search space of fractional-
order integral derivative controller parameters for integrating time delay systems of any
order. The authors of [30] proposed a hybrid fuzzy fractional order proportional integral-
fractional order proportional derivative controller as a new expert control technique to
tackle automatic generation control profitably in isolated and interconnected multi-area
power systems. These control methods are based on a control system design that uses
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fractional calculus. Therefore, in this paper, modeling using fractional calculus is performed
to improve the accuracy of models in chemical plants, and control systems are designed
based on operator theory. The advantage of control system design based on operator theory
is that it facilitates robust stability analysis in the presence of uncertainty and is highly
scalable to multi-input/output systems. A nonlinear feedback control system based on
operator theory is designed using the models of the heat exchange process and liquid level
process of the tank system constructed in the previous section. An overview of the proposed
method is shown in Figure 3. For the operators in Figure 3, N = (N1, N2), D = (D1, D2)
represent the plant and A = (A1, A2), B = (B1, B2), S = (S1, S2), F = (F1, F2), P̃ = (P̃1, P̃2),
Φ = (Φ1, Φ2), R = (R1, R2), C = (C1, C2) represent the controller.

F
P̃

S̃

r + e r∗+ a
u

+ +

ũ z
+ w y

b

−−

−
+

FD

+

−
+

−

g̃
+

−
+

−
C B−1 R−1 D−1 N

A

Q

P̃ F

S

Φ−1

Plant

Figure 3. Proposed control system.

4.1. Fractional Liquid Temperature Control Design

Transforming the model equation derived in the previous section, we obtain the
plant P1 : Z1 → Y1. The operators N1, D−1

1 satisfying right factorization P1(z1)(t) =

N1D−1
1 (z1)(t) are shown in Equations (35) and (36).

N1 :



C1C2B d2x1(t)
dt2 + (ρwcwri + k)Bχp

dpx1(t)
dtp

+(C1 + C2 + C2Bρwcwri)
dx1(t)

dt + ρwcwrix1(t)

+χq
dqx1(t)

dtq + C1χpB dp+1x1(t)
dtp+1 + C2χqB dq+1x1(t)

dtq+1

+χqχpB dp+qx1(t)
dtp+q = w1(t)

θ2(t) = x1(t)

(35)

D1 : z1(t) = I(w1(t)) (36)

Next, we design controllers A1, B1 that satisfy the Bezoo equality A1N1 + B1D1 = M.
Let M be a unimodular operator. When A1, B1 is a stable operator satisfying the Bezoo
equation, the plant has a right-irreducible decomposition and the nonlinear feedback
system becomes stable. The operators designed using the design coefficient Kt are shown
in Equations (37) and (38).

A1 : b1(t) = (1 − Kt)

(
C1C2B

d2θ2(t)
dt2 + (C1 + C2 + C2Bρwcwri)

dθ2(t)
dt

+ρwcwriθ2(t) + (ρwcwri + k)Bχp
dpθ2(t)

dtp + χq
dqθ2(t)

dtq + C1χpB
dp+1θ2(t)

dtp+1 (37)

+C2χqB
dq+1θ2(t)

dtq+1 + χqχpB
dp+qθ2(t)

dtp+q

)
B1 : e1(t) = Ktu1(t) (38)

A tracking compensator was designed to compensate for tracking performance. In
Figure 3, C1m , C21 is a follow-up compensator that operates with the difference between
TANK2 temperature θ2 and target temperature as input and a controller that calculates
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the amount of liquid pumped based on the difference in liquid temperature, and C1s is
a controller that operates with TANK1 temperature θ1 as feedback. C1s is a follow-up
compensator that operates with the TANK1 temperature θ1 as feedback.

C1m : r1m(t) = KPt1 r̃1(t) + KIt1

∫ t

t0

r̃1(τ)dτ (39)

C1s : r1s(t) = KPt2 e1m(t) + KIt2

∫ t

t0

e1m(τ)dτ (40)

C21 : r21(t) = KPtw r̃1(t) + KItw

∫ t

t0

r̃1(τ)dτ (41)

4.2. Fractional Liquid Level Control Design

Similar to the liquid temperature control design, the right-hand decomposition N2, D2
and stabilizing compensators A2, B2 of the plant are designed as follows. where Kw is the
design coefficient.

N2 :
{

ẋ2(t) = w2(t)− a
A

√
2gx2(t)

y2(t) = x2(t)
(42)

∆N2 : Dq(G1 sin(ω1t) + G2 cos(ω2t)) (43)

D2 : u2(t) = Aw2(t) (44)

A2 : b2(t) = (1 − Kw)

(
ẏ2(t) +

a
A

√
2gy2(t)

)
(45)

B2 : e2(t) =
Kp

A
u2(t) (46)

where for the signal z2(t) appearing at the plant N2, D2, the interference from the heater
shown during modeling is included, in addition to the liquid level control input u2(t). The
tracking compensator is designed in the same way.

C2 : r2(t) = KPw r̃2(t) + KIw

∫ t

t0

r̃2(τ)dτ (47)

4.3. Interference Design

In the dual-tank device under control in this paper, when liquid temperature and liquid
level are controlled simultaneously, each control input/output affects the other control
input/output, resulting in interference. Therefore, the design must take interference into
account. The effect of interference on liquid temperature control and liquid level control
is expressed using the operator G. In the heat exchange process, the liquid is heated by a
heater, but the temperature also changes due to external inflow of liquid. Therefore, when
liquid is pumped to control the liquid level in the liquid level control system, interference
occurs with the temperature control system. This can be expressed in a mathematical
expression using the operator G12 : U2 → U1, which gives Equation (48).

G12(u2(t)) = ρwcwθ1iu2(t) (48)

Next, the liquid level process is designed in the same way. In the liquid temperature
control method used in this paper, the controller C21 orders the liquid to be pumped to
TANK1 if the liquid temperature becomes too high. This changes the amount of liquid
pumped and affects the liquid level control operation. However, the output from the heater
does not become zero during this time. This results in the need for extra cooling for the
amount of heat from the heater, so the amount of liquid pumped increases according to the
amount of heat supplied by the heater. This can be expressed in a mathematical expression
using the operator G21 : U1 → U2, which gives Equation (49).

G21(u1(t)) =
u1(t)

ρwcw(θ1 − θ1i)
(49)
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4.4. Uncertainty Compensation Design

The feedback system of uncertainty compensation is shown in Figure 4.

Figure 4. Uncertainty compensation.

In the actual process, the dual-tank device has uncertainties that are not included in
the model. The process Pi + ∆Pi including this uncertainty is expressed as in Equation (50).

Pi + ∆Pi = (Ni + ∆Ni)D−1
i (50)

As an example, consider the case where i = 1, j = 2. In this case, the signal ũ1 can be
expressed as in Equation (51), in which g̃12 is the ideal interference without uncertainty.

ũ1 = u1 − F1(y1) + F1N1(ω̃1)

= R1(D1(ω̃1)− g̃12) (51)

If R1 is designed as a linear operator, Equation (51) is expressed as in Equation (52).

R1D1(ω̃1)− F1N1(ω̃1) = u1 − F1(y1) + R1(g̃12) (52)

The signal ω̃1 can be transformed as in Equation (53) since D−1
1 is a linear operator.

ω̃1 = D−1
1 (z̃1 + g̃12) = D−1

1 (z̃1) + D−1
1 (g̃12) (53)

Substituting the signal ω̃1 into Equation (51) and transforming it, we obtain Equation (54).

R1(z̃1) + R1(g̃12)− F1P1(z̃1)− F1P1(g̃12)

= u1 − F1(y1) + R1(g̃12) (54)

Here, by designing F1P1 = I and R1 = I, where I is an identity map, it is expressed as
in Equation (55).

u1 + g̃12 = F1(y1) (55)

Thus, the ideal output and the output with uncertainty are equal, and the uncertainty
can be compensated.

4.5. Coupling Effect Elimination Design

The control system that eliminates coupling effects is shown in Figure 5.
In this section, we consider the case i = 1, j = 2. When controlling liquid temperature

and liquid level simultaneously, there is mutual interference in terms of the heat supplied
and the amount of liquid pumped. In Figure 3, z1(t) is represented by Equation (56).

z1(t) =u1 + g12 − ϕ−1
1 S1P(z1) + ϕ−1

1 S̃1P̃1(u1) (56)

where ϕ1 and ϕ−1
1 can be transformed as in Equation (57) when designed as linear operators.
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ϕ−1
1 (ϕ1 + S1P1)(z1) = g12 + ϕ−1

1 (ϕ1 + S̃1P̃1)(u1) (57)

Therefore, the controller is designed to satisfy the relationship in Equation (57). Each
operator is designed with S1 = I and ϕ−1(α1)(t) = 1

n α1, where 1
n α1 is the bounded signal

and n is the design parameter. By considering ϕ−1
1 and ϕ1, we obtain Equation (58).

z1 → u1 (58)

Equation (58) shows that the input signal Z1 and the output U1 of operator B−1
1 are

equal, thus eliminating coupling effects.

Figure 5. Elimination of coupling effects.

4.6. Control System Design Details

Finally, the details of the control system design used in this paper are shown in
Figure 6. For plants D, N, ∆N and controllers A, B, R, C, F, S, S̃, P̃, Φ in the control
system, subscripts of 1 are related to the liquid temperature control system and those of
2 to the liquid level control system. C21 refers to a controller that calculates the amount
of liquid pumped based on the difference in liquid temperature, and G12, G21 refers to
interference between the liquid temperature control system and the liquid level control
system. Figure 6 shows a detail of the control system design proposed in this paper, and
Figure 3 shows a compact version of the control system design in Figure 6.

C1m C1s B−1
1 R−1

1

G21
C21

D−1
1 N1

∆N1

A1

r∗1 +

r̃1 r1m+

+

e1m r1s

+

e1 u1

+ +

ũ1 z̃1

+ z1
w1

+

+

y1

b1

−−

θ1

−

C2 B−1
2 R−1

2

G12

D−1
2 N2

∆N2

A2

r∗2 + r̃2 r2 +

e2

u2 + + ũ2

z̃2

+

z2

w2 + y2
+

b2

−−
+
g21

+
g12

r21

+

+
D−1

1 N1 F1

F1

ω̃1 −
+

−

g̃12
+

+
D−1

2 N2 F2

F2

ω̃2 − +

−

g̃21
+

P̃1

S̃1

S1

Φ−1
1

−
+

−

P̃2

S̃2

S2

Φ−1
2

−
+

−

Figure 6. Details of the proposed control system.
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5. Results and Discussion
5.1. Simulation Results

This section presents the simulation results of the proposed control system. The
simulation results were obtained using MATLAB R2023a(MATLAB9.14), which is one of
the most effective software products for system engineering. The simulation parameters
are shown in Table 2 and the simulation results of the proposed control system are shown
in Figures 7 and 8. A control parameter that generates a slight overshoot for θ2 was set, and
the overshoot was reduced by pumping liquid. From Figures 7 and 8, it can be seen that
the liquid flow rate increases when θ2 exceeds the target value and the cooling operation is
performed. Finally, it can be seen that the liquid temperature and liquid level follow the
target values.

Table 2. Simulation parameters.

Parameter Definition Value

Simulation time 3500 s
Sampling time 1.0 s

rw Target liquid level 40 cm
rt Target liquid temperature 26 ◦C

yw0 Initial value 35 cm
yt0 Initial value 25 ◦C
KPt Proportional gain 3.0
KIt Integral gain 0.0015
KPw Proportional gain 1.0
KIw Integral gain 0.003
KPtw Proportional gain 50
KItw Integral gain 0.02

p Differential factorial 0.95
q Differential factorial 1.05

qw Differential factorial 5/14
G1 Gain 0.001
G2 Gain 0.0005
ω1 Angular frequency π/30 rad/s
ω2 Angular frequency 3π/4 rad/s
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Figure 7. Simulation results: liquid temperature and heater output. The dotted line is reference
temperature.
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Figure 8. Simulation results: liquid level and input rate. The dotted line is reference water level.

5.2. Exprimental Results

This section presents the results of experiments on the proposed control system using
an actual device. Figures 9 and 10 show the results of the experiment with the initial
and target TANK2 liquid temperatures of 25 ◦C and 26 ◦C, respectively, and the initial
and target TANK1 liquid levels of 35 cm and 40 cm, respectively. The parameters used
in the experiments are shown in Table 3. Figures 9 and 10 show that both liquid level
and liquid temperature can follow the target values while performing cooling operation
when θ2 exceeds the target value in the experiment just as in the simulation. When a slight
overshoot occurs for θ2, it can be confirmed that the overshoot is reduced by pumping
liquid. Both the liquid temperature and the liquid level are finally able to follow the
target values.

Table 3. Expriment parameters.

Parameter Definition Value

Sampling time 1.0 s
Outside temperature 22 ◦C

rw Target liquid level 40 cm
rt Target liquid temperature 26 ◦C

yw0 Initial value 35 cm
yt0 Initial value 25 ◦C
θi Inflow liquid temperature 20 ◦C

KPt Proportional gain 1.8
KIt Integral gain 0.0024
KPw Proportional gain 1.1
KIw Integral gain 0.003
KPtw Proportional gain 15
KItw Integral gain 0.001

p Differential factorial 1.1
q Differential factorial 1.05

qw Differential factorial 5/14
G1 Gain 0.001
G2 Gain 0.0005
ω1 Angular frequency π/30 rad/s
ω2 Angular frequency 3π/4 rad/s
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Figure 9. Experimental results: liquid temperature and heater output. The dotted line is reference
temperature.
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Figure 10. Experimental results: liquid level and input rate. The dotted line is reference water level.

6. Conclusions

In this paper, we proposed a control system that can simultaneously track and control
liquid level and temperature for a multi-input/output dual-tank device expressed using
fractional calculus, and confirmed its operation through simulations and experiments. First,
by considering the heat balance when the liquid volume in TANK1 changes during the heat
exchange process, we constructed a model that can reproduce the temperature drop caused
by the inflow of low-temperature liquid. Next, we designed a control system that can
simultaneously control the liquid temperature and liquid level. For the liquid temperature
control, heating by a heater and the temperature decrease that results from pumping liquid
were used as inputs. Furthermore, modeling by fractional calculus was confirmed to
control multivariate nonlinearity, compensate for uncertainties, and eliminate coupling
effects. In conclusion, the simulation and experimental results show the effectiveness of the
multivariable fractional-order controller design for a nonlinear dual-tank device. Previous
control methods cannot simultaneously control liquid temperature and liquid level, but
in this paper, the model was designed with a variable liquid volume, so simultaneous
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control was possible in simulation and experiment. The settling time was reduced by
2500 s compared to the previous control method. No overshooting or undershooting
occurred, and the system was found to be stable even after following the target value. As for
future development, because this paper describes a control system design using fractional-
order derivatives based on operator theory, it is possible to propose a control system that
compensates for tracking using fractional-order derivatives for a tracking compensator as
well. In addition, it is expected that the control system design for interference introduced in
this paper can be improved by designing the control system as a fractional-order derivative.
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