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Abstract: This paper introduces a methodology for examining finite-approximate controllability
in Hilbert spaces for linear/semilinear ν-Caputo fractional evolution equations. A novel criterion
for achieving finite-approximate controllability in linear ν-Caputo fractional evolution equations is
established, utilizing resolvent-like operators. Additionally, we identify a control strategy that not
only satisfies the approximative controllability property but also ensures exact finite-dimensional
controllability. Leveraging the approximative controllability of the corresponding linear ν-Caputo
fractional evolution system, we establish sufficient conditions for achieving finite-approximative
controllability in the semilinear ν-Caputo fractional evolution equation. These findings extend and
build upon recent advancements in this field. The paper also explores applications to ν-Caputo
fractional heat equations.
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1. Introduction

In recent developments, there has been significant progress in the field of fractional
derivatives, particularly in formulations involving derivatives with respect to another
function. A noteworthy contribution is presented in [1], where a novel type of fractional
derivative, known as the Ψ-Caputo fractional derivative, is introduced. This derivative
incorporates an additional function Ψ and is designed to improve the accuracy of ob-
jective modeling. Advantages of the proposed Ψ-Caputo model lie in the flexibility to
choose both the classical differential operator and the Ψ function. This implies that, based
on the selected Ψ function, the classical differential operator can act on the fractional
integral operator or vice versa. In a subsequent study [2], the authors explored the unique-
ness/existence/stability of mild solutions for Ψ-Caputo fractional infinite dimensional
differential systems.

We will highlight a few selected scientific articles that serve as motivating references for
the study of approximate and finite-approximate controllability (reachability), recognizing
the enormous amount of relevant literature in this article.

• Several approaches have been employed to establish conditions for approximate reacha-
bility in infinite dimensional systems. Zhou, in [3,4], utilized the sequential approach to
derive conditions sufficient for the approximate reachability in nonfractional semilinear
infinite dimensional systems. Mahmudov, as referenced in [5], employed the resolvent ap-
proach, initially introduced by Bashirov and Mahmudov in [6] for linear evolution equations.
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Later, this method is successfully applied to fractional semilinear evolution systems in the
work of Sakthivel et al. in [7]. Thereafter, several researchers, Bora et al. [8], Kavitha et al. [9],
Haq et al. [10], Aimene [11], Bedi [12], Matar [13], Ge et al. [14], Grudzka et al. [15],
Ke et al. [16], Kumar et al. [17,18], Liu et al. [19], Sakthivel et al. [20], Wang et al. [21],
Yan [22], Yang et al. [23], Rykaczewski [24] have used different methods to study approximate
controllability for several fractional differential and integro-differential systems.

• Thereafter, several researchers, Vijayakumar et al. [25], Ding et al. [26], Bose et al. [27]
studied the approximate reachability for different kind of ν-fractional systems.

• Variational approach initially employed by Zuazua [28,29] reachability of the heat
equation has been adapted and extended by Li et al. [30], Mahmudov [31] to explore
these concepts in the context of semilinear evolution systems. Subsequently, this
method has been widely applied by various researchers to investigate the finite-
approximate reachability of various kinds of evolution systems. Notable contributions
include the works of Liu [32], Ding et al. [33], Wang et al. [34], Liu and Yanfang [35].

The potential impact of establishing finite-approximative controllability in the context
of ν-Caputo fractional evolution equations could be significant in several areas: Control
Design and Engineering Applications, Optimization of Control Systems, Robustness in
Control, Advance in Fractional Calculus Theory, Cross-disciplinary Impact, and Technolog-
ical Innovation. The concept of finite-approximate controllability implies a higher level of
robustness in controlling systems with fractional dynamics. This robustness can enhance
the stability and performance of controlled systems in the presence of uncertainties or
disturbances. It opens up avenues for more effective and reliable control strategies in
complex systems with fractional dynamics.

The paper addresses the concept of finite-approximative controllability, a more robust
form of approximative controllability that incorporates simultaneous approximative con-
trollability and finite-dimensional complete controllability. Notably, there is currently a gap
in the literature regarding finite-approximative controllability, specifically for ν-Caputo
fractional evolution equations. This study focuses on investigating the finite-approximative
controllability of ν-Caputo fractional evolution equations.

Here are the notations used in the paper.

• [0, d] ⊂ R.
• (Y,∥·∥) -Hilbert space.
• U− Hilbert space.
• C([0, d],Y) is the Banach space of continuous functions with values in Y.
• L2([0, d], U)−the Hilbert space measurable and of square integrable functions u :

[0, d] → U .
• ν ∈ C1([0, d],R) with ν is strictly increasing with v(0) ≥ 0 and ν′(t) > 0 for every

t ∈ [0, d], ν(t, s) := ν(t)− ν(s).

• ACn
v ([0, d],R) :=

{
g : [0, d] → R |

(
1

v′(t)
d
dt

)n−1
g ∈ AC([0, d],R)

}
• CDα,ν

0+ – ν-Caputo fractional derivative of order α,

We investigate the finite-approximative controllability of the ν-Caputo fractional
evolution semilinear system.{ CDα,ν

0+ v(t) = Av(t) + Bu(t) + F(t, v(t)), t ∈ [0, d],
v(0) = v0, 1

2 < α ≤ 1,
(1)

Here, A : D(A) ⊂ Y → Y is a closed linear operator generating C0-semigroup S :
[0, d] → L(Y), u ∈ L2([0, d], U), B : U → Y is a continuous linear map, F : [0, d]×Y → Y,
and y0 ∈ Y.

We define the approximate reachability and finite-approximate reachability notions
for the system (1).
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Definition 1. For the system described by Equation (1), the following concepts are defined:

(a) The ν-Caputo fractional system (1) is deemed to be approximately controllable over the interval
[0, d], if for any v0, vF ∈ Y, and for any given ϖ > 0, there exists a function u ∈ L2([0, d], U)
s. t. the mild solution v of the ν-Caputo fractional IVP (1) satisfies the conditions v(0) = v0
and ∥v(d)− vF∥ < ϖ.

(b) Denoting by ΠM the orthogonal projection from Y onto a finite-dimensional subspace M ⊂ Y,
the ν-Caputo fractional system (1) is considered finite-approximatively controllable on [0, d],
if ΠMv(d) = ΠMvF and it is also approximately controllable.

In this manuscript, we extend a variational method proposed in [36] to study finite-
approximate reachability of the linear ν-Caputo fractional evolution equation. Moreover,
we study finite-approximate reachability of semilinear ν-Caputo fractional evolution of
systems. Here are the main contributions of this manuscript:

• We extend a variational method from [36] to explore the finite-approximative reacha-
bility of linear ν-Caputo fractional evolution equations. Our investigation establishes
a criterion for the finite-approximative reachability of linear ν-Caputo fractional evo-
lution systems. This condition is articulated in terms of resolvent-like operators, as
specifically outlined in Criteria (iv) of Theorem 1. For ν(t) = t, this condition coincides
with that of [36].

• Additionally, we derive a closed explicit form of finite-approximative control that satis-
fies both the finite-dimensional complete reachability and the approximate reachability
criterion, as shown in the Formula (8). This control plays a pivotal role in the proofs of
Theorems 2 and 3. By utilizing the closed form of the finite-approximative control (8)
and the Schauder Fixed Point Theorem, we investigate the finite-approximate reacha-
bility of the semilinear ν-Caputo fractional evolution system. This result is novel even
for ν(t) = t. It is important to highlight that in [36], we focused on the case ν(t) = t
and employed a linearization method under the assumptions of continuity and uni-
form boundedness of the Frechet derivative F′(t, v). Moreover, in [36], Theorem 4
assumes compactness and analyticity of S(t), t > 0.

Section 2 provides preliminary remarks, setting the foundation for the subsequent dis-
cussions.

In Section 3, we present a variety of results related to parameter-dependent charac-
teristics of positive linear compact operators. Our focus is on introducing resolvent-like
operators for the linear fractional ν-Caputo evolution equation. In addition, we define
essential conditions for finitely approximated controllability, expressed in the context of
resolvent-like operators.

Moving on to Section 4, we establish a control operator, denoted as Ξϖ , and prove the
existence of fixed points within this framework. Following that, we present the principal
outcome related to the finite-approximative controllability in the context of semilinear
ν-Caputo fractional evolution systems.

Finally, the article concludes with the presentation of two illustrative examples de-
signed to underscore and elucidate our principal findings. We show that the heat equation
is not only approximately controllable, but also finite-approximately controllable

2. Preliminaries

For F ∈ ACn
v ([0, d],R) the ν-Caputo type fractional derivative of order α > 0, α /∈ N,

is defined as follows(
CDα,ν

0+ F
)
(t) :=

1
W(n − α)

∫ t

0
ν
′
(s)(ν(t, s))n−α−1

(
1

ν
′(s)

d
ds

)n
F(s)ds,

=
1

W(n − α)

∫ t

0
(ν(t, s))n−α−1

(
d

dν(s)

)n
F(s)dν(s),
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where n = [α] + 1, [α] means the integer part of α , W(α) is Gamma function, see for
example [37].

We define family {Tα(ν(t, s)) : 0 ≤ s ≤ t}, {Vα(ν(t, s)) : 0 ≤ s ≤ t} of operators by

Tα(ν(t, s)) =
∫ ∞

0
ηα(θ)S((ν(t, s))αθ)dθ

Vα(ν(t, s)) =
∫ ∞

0
αθηα(θ)S((ν(t, s))αθ)dθ,

ηα(θ) =
∞

∑
n=1

(−θ)n−1

(n − 1)!W(1 − nα)
sin(nπα), θ ∈ (0, ∞),

ηα(θ) ≥ 0,
∫ ∞

0
ηα(θ)dθ = 1,∫ ∞

0
θ

ζ
αη(θ)dθ =

W(1 + ζ)

W(1 + αζ)
, ζ ∈ (−1, ∞).

Lemma 1. Operators Tα, Vα satisfies the following properties:

(i) For any 0 ≤ s ≤ t, Tα(ν(t, s)), Vα(ν(t, s)) are linear and bounded operators, and

∥Tα(ν(t, s))x∥ ≤ MS∥x∥, ∥Vα(ν(t, s))x∥ ≤ MS
W(α)

∥x∥, MS := sup
t≥0

∥S(t)∥.

(ii) {Tα(ν(t, s)) : 0 ≤ s ≤ t}, {Vα(ν(t, s)) : 0 ≤ s ≤ t} are compact, if {S(t) : t > 0} is com-
pact.

(iii) {Tα(ν(t, s)) : 0 ≤ s ≤ t}, {Vα(ν(t, s)) : 0 ≤ s ≤ t} are strongly continuous.

Now, we present the following definition of mild solutions of ν-Caputo fractional
semilinear evolution system (1).

Definition 2. For u ∈ L2([0, d], U), a function v ∈ C([0, d],Y) is called a mild solution of (1) if

v(t) = Tα(ν(t, 0))v0

+
∫ t

0
(ν(t, s))α−1Vα(ν(t, s))[Bu(s) + F(s, v(s))]ν′(s)ds, t ∈ [0, d].

3. Linear Systems

Here, our focus is on exploring the finite-approximative controllability of a linear
ν-Caputo fractional evolution system:{ CDα,ν

0+ v(t) = Av(t) + Bu(t), t ∈ [0, d],
v(0) = v0.

(2)

Finite-approximative controllability property was first studied in [28]. This property
is characterized not only by the small distance between y(d) and the target yF, but also by
the coincidence of the projections of y(d) and yF onto M.

The resolvent operator
(

ϖI + Wd
0

)−1
has proven utility in investigating the approxi-

mative controllability characteristics of both linear/semilinear systems, as referenced in [6].
In light of this, we introduce a criterion for finite-approximative controllability applicable to
ν-Caputo fractional linear evolution systems (2), which coincide with that of [36] for the case

v(t) = t. This criterion is expressed in terms of a resolvent-like map
(

ϖ(I − ΠM) + Wd
0

)−1
.

Our analysis establishes the equivalence between approximate controllability over the
interval [0, d] and finite-approximate controllability over the same interval for the ν-Caputo
fractional linear evolution system (2). Additionally, we derive a closed explicit form for the

finite-approximative control in terms of
(

ϖ(I − ΠM) + Wd
0

)−1
.
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Firstly, we mention some properties of resolvent operators.

Lemma 2 ([36]). Assume that W(ϖ), W : Y → Y, ϖ > 0, are linear positive operators.

(a) If
lim

ϖ→0+
∥W(ϖ)h − Wh∥ = 0, h ∈ Y,

then for a sequence {ϖm > 0} converging to 0 as m → ∞, we have

lim
m→∞

∥∥∥ϖm(ϖm I + W(ϖm))
−1ΠM

∥∥∥ = 0.

(b) For any ϖ > 0 we have
∥∥∥ϖ(ϖI + W(ϖ))−1ΠM

∥∥∥ < 1.

Next lemma shows relationship between the resolvent operator (ϖI + W)−1 and the
resolvent-like operator (ϖ(I − ΠM) + W)−1.

Lemma 3 ([36]). If W : Y → Y is a nonnegative linear operator, then ϖ(I − ΠM) +W : Y → Y

is invertible and ∥∥∥(ϖ(I − ΠM) + W)−1h
∥∥∥ ≤ 1

min(ϖ, δ)
∥h∥, h ∈ Y, (3)

where δ = min{⟨ΠMWΠM φ, φ⟩ : ∥ΠM φ∥ = 1}. In addition, if W : Y → Y is a positive linear
operator then

(ϖ(I − ΠM) + W)−1 =
(

I − ϖ(ϖI + W)−1ΠM

)−1
(ϖI + W)−1. (4)

Following that, we introduce a criterion that determines finite-approximate controlla-
bility for the ν-Caputo fractional evolution Equation (2).

Bounded linear operator (controllability operator) Ld
0 : L2([0, d], U) → Y defined by

Ld
0u :=

∫ d

0
(ν(d, s))α−1Vα(ν(d, s))Bu(s)ν′(s)ds;

Controllability Grammian is defined by

Wd
0 := Ld

0

(
Ld

0

)∗
=
∫ d

0
(ν(d, s))2(α−1)Vα(ν(d, s))BB∗V∗

α(ν(d, s))ν′(s)ds : Y → Y. (5)

Theorem 1. The following conditions are equivalent:

(a) System (2) is controllable approximately over [0, d];

(b) Wd
0 is a positive operator, i.e.,

〈
Wd

0 x, x
〉
> 0 for all 0 ̸= x ∈ Y;

(c) ϖ
(

ϖI + Wd
0

)−1
h → 0 as ϖ → 0+ , h ∈ Y;

(d) ϖ
(

ϖ(I − ΠM) + Wd
0

)−1
→ 0 as ϖ → 0+ , h ∈ Y;

(e) System (2) is finite-approximately controllable over [0, d].

Proof. The implications (a) ⇔ (b) ⇔ (c) are well known, see [6]. To show (c) ⇐⇒ (e), for
any ϖ > 0, h ∈ Y, introduce the functional Jϖ(·, h) : Y → R :

Jϖ(ϕ, h) =
1
2

∫ d

0

∥∥∥(ν(d, s))α−1B∗V∗
α(ν(d, s))ϕ

∥∥∥2
ds

+
ϖ

2
⟨(I − ΠM)ϕ, ϕ⟩ − ⟨ϕ, h − Tα(ν(d, 0))v0⟩.

Jϖ(·, h) is differentiable,
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J′ϖ(ϕ, h) = Wd
0 ϕ + ϖ(I − ΠM)ϕ − h + Tα(ν(d 0))v0

is monotonic strictly and so Jϖ(·, h) is convex strictly, as Wd
0 is positive. Hence, Jϖ(·, h) has

minimum ϕmin, which is unique, and calculated as:

Wd
0 ϕ + ϖ(I − ΠM)ϕ − h + Tα(ν(d, 0))v0 = 0,

ϕmin = −
(

ϖ(I − ΠM) + Wd
0

)−1
(Tα(ν(d, 0))v0 − h).

Thus for uϖ(s) = (ν(d, s))α−1B∗V∗
α(ν(d, s))ϕmin, we obtain

vϖ(d)− h

= Tα(ν(d, 0))v0 +
∫ d

0
(ν(d, s))α−1Vα(ν(d)− ν(s))Bu(s)ν′(s)ds − h

= Tα(ν(d, 0))v0 − h − Wd
0

(
ϖ(I − ΠM) + Wd

0

)−1
(Tα(ν(d, 0))v0 − h)

= Tα(ν(d, 0))v0 − h −
(

Wd
0 + ϖ(I − ΠM)− ϖ(I − ΠM)

)
×
(

ϖ(I − ΠM) + Wd
0

)−1
(Tα(ν(d, 0))v0 − h)

= ϖ(I − ΠM)
(

ϖ(I − πM) + Wd
0

)−1
(Tα(ν(d, 0))v0 − h). (6)

Thus

lim
ϖ→0+

∥vϖ(d)− h∥ = lim
ϖ→0+

ϖ

∥∥∥∥(I − ΠM)
(

ϖ(I − ΠM) + Wd
0

)−1
(Tα(ν(d, 0))y0 − h)

∥∥∥∥ = 0,

ΠM(vϖ(d)− h) = 0,

That is, the system given by Equation (2) is approximately controllable within the finite
interval [0, d]. Therefore, condition (c) implies condition (e). The reverse implication ((e) ⇒ (c))
is straightforward, as finite-approximate controllability naturally implies approximate control-
lability. Now, to establish (c) ⇒ (d), assume that for any h ∈ Y

lim
ϖ→0+

∥∥∥∥(ϖI + Wd
0

)−1
h
∥∥∥∥ = 0.

From (4), for any h ∈ Y∥∥∥∥ϖ
(

ϖ(I − ΠM) + Wd
0

)−1
h
∥∥∥∥ ≤

∥∥∥∥∥
(

I − ϖ
(

ϖI + Wd
0

)−1
ΠM

)−1
∥∥∥∥∥
∥∥∥∥ϖ
(

ϖI + Wd
0

)−1
h
∥∥∥∥

≤ 1

1 −
∥∥∥ϖ
(
ϖI + Wd

0
)−1ΠM

∥∥∥
∥∥∥∥ϖ
(

ϖI + Wd
0

)−1
h
∥∥∥∥. (7)

From

ϖ1

(
ϖ1 I + Wd

0

)−1
ΠM − ϖ

(
ϖI + Wd

0

)−1
ΠM

= ϖ1

(
ϖ1 I + Wd

0

)−1(
I + ϖ−1Wd

0 − I − ϖ−1
1 Wd

0

)
ϖ
(

ϖI + Wd
0

)−1
ΠM

= ϖ1

(
ϖ1 I + Wd

0

)−1(
ϖ−1Wd

0 − ϖ−1
1 Wd

0

)
ϖ
(

ϖI + Wd
0

)−1
ΠM

=
(

ϖ1 I + Wd
0

)−1(
ϖ1Wd

0 − ϖWd
0

)(
ϖI + Wd

0

)−1
ΠM

=
(

ϖ1 I + Wd
0

)−1
(ϖ1 − ϖ)Wd

0 W
(

ϖI + Wd
0

)−1
ΠM,
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it follows that ϖ
(

ϖI + Wd
0

)−1
ΠM is continuous in as a function of ϖ. Really,∥∥∥∥ϖ1

(
ϖ1 I + Wd

0

)−1
πM − ϖ

(
ϖI + Wd

0

)−1
ΠM

∥∥∥∥ ≤ |ϖ1 − ϖ|
ϖ1

→ 0 as ϖ1 → ϖ.

By (7), property of ϖ
(

ϖI + Wd
0

)−1
ΠM and Lemma 2, we obtain

γ = max
0≤ϖ≤1

∥∥∥∥ϖ
(

ϖI + Wd
0

)−1
ΠM

∥∥∥∥ < 1,∥∥∥∥ϖ
(

ϖ(I − ΠM) + Wd
0

)−1
h
∥∥∥∥ ≤ 1

1 − γ

∥∥∥∥ϖ
(

ϖI + Wd
0

)−1
h
∥∥∥∥.

Therefore, ϖ
(

ϖ(I − ΠM) + Wd
0

)−1
h converges to zero as ϖ → 0+ . The implication

(c) ⇒ (e) follows from (6).

Remark 1. The control

uϖ(s) = (ν(d)− ν(s))α−1B∗V∗
α(ν(d)− ν(s))

(
ϖ(I − ΠM) + Wd

0

)−1
(h − Tα(ν(d, 0))y0) (8)

provides approximate controllability and finite-dimensional exact controllability of (2).

4. Semilinear Systems

The Schauder fixed-point theorem is a result in functional analysis that guarantees the
existence of fixed points for certain types of mappings. This theorem is named after the
Polish mathematician Juliusz Schauder.

Here is a statement of the Schauder FPT:
Let Z be a non-empty convex, closed, and bounded subset of a complete normed

vector space. Let T : Z → Z be a compact map. Then, ∃z ∈ Z such that T (z) = z.
This theorem has applications in various areas of mathematics, including differential

equations, variational inequalities, and nonlinear functional analysis. It provides a powerful
tool for establishing the existence of solutions to certain types of equations and problems
involving self-maps on Banach spaces.

We introduce the succeeding assumptions:

Hypothesis 1. {S(t) : t > 0} is compact C0-semigroup, MS := supt≥0∥S(t)∥.

Hypothesis 2. Function F : [0, d]×Y → Y satisfies the Caratheodory conditions:

(a) F(s, ·) : Y → Y is continuous for any s ∈ [0, d],
(b) F(·, v) : [0, d] → Y is measurable for any v ∈ Y.

Hypothesis 3. ∃LF ∈ L∞([0, d]×Y) s. t. for all y ∈ Y

∥F(s, v)∥ ≤ LF(s), a.e., s ∈ [0, d].

By means of the control

uϖ(t, v) = B∗V∗
α(ν(d, t))

(
ϖ(I − πM) + Wd

0

)−1

×
(

h −Vα(ν(d, 0))v0 −
∫ d

0
(ν(d, s))α−1Vα(ν(d, s))F(s, v(s))ν′(s)ds

)
for ϖ > 0, define the following operator

Ξϖv(t) = Tα(ν(t, 0))v0
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+
∫ t

0
(ν(t, s))α−1Vα(ν(t, s))[Buϖ(s, v) + F(s, v(s))]ν′(s)ds.

Theorem 2. Assuming that (H1)-(H3) hold, the Equation (1) possesses at least one mild solution
belonging to C([0, d],Y).

Proof. Set
Bρ := {y ∈ C([0, d],Y) : ∥v∥ ≤ ρ}.

Step 1: For an arbitrary ϖ > 0, there is a ρ0 = ρ(ϖ) > 0 s. t. Ξϖ : Bρ0 → Bρ0 .
Indeed, the following two inequalities

∥Ξϖv(t)∥ ≤ ∥Vα(ν(t, 0))v0∥

+

∥∥∥∥∫ t

0
(ν(t, r))α−1Vα(ν(t, r))Buϖ(r, v)ν′(r)dr

∥∥∥∥
+

∥∥∥∥∫ t

0
(ν(t, r))α−1Vα(ν(t, r))F(r, v(r))ν′(r)dr

∥∥∥∥
≤ MS

W(α)
∥v0∥

+
MS MB
W(α)

∫ t

0
(ν(t, r))α−1∥uϖ(r, v)∥ν′(r)dr

+
MS MB
W(α)

∫ t

0
(ν(t, r))α−1∥F(r, v(r))∥ν′(r)dr

and

∥uϖ(s, v)∥ ≤ 1
ϖ

MBMS

[
∥h∥+ MS∥v0∥+

MS
W(α)

∥LF∥L∞
(ν(d, 0))α

α

]
.

These imply that for sufficiently large ρ0 > 0, ρ0 > 0

∥Ξϖv(t)∥ ≤ ρ0, y ∈ Bρ0 .

Step 2: Ξϖ is continuous.
Consider a sequence vk ∈ Bρ such that vk → v in Bρ as k → ∞. Given the hypothe-

ses (H2) and (H3), we can express, for every s ∈ [0, d],

F(r, vk(r)) → F(r, v(r)) as k → ∞,

and
∥F(r, vk(r))− F(r, v(r))∥ ≤ 2LF(r).

We have

∥Ξϖvk(r)− Ξϖv(r)∥

≤
∥∥∥∥∫ t

0
(ν(t, r))α−1Vα(ν(t, r))(F(r, vk(r))− F(r, v(r)))ν′(r)dr

∥∥∥∥
+

∥∥∥∥∫ t

0
(ν(t, r))α−1Vα(ν(t, r))BB∗V∗

α(ν(d, t))
(

ϖ(I − ΠM) + Wd
0

)−1
ν′(r)dr

×
∫ d

0
(ν(d, r))α−1Vα(ν(d, r))(F(r, vk(r))− F(r, v(r)))ν′(r)dr

∥∥∥∥
≤ MS

W(α)

∫ t

0
(ν(t, r))α−1Vα(ν(t, r))∥F(r, vk(r))− F(r, v(r))∥ν′(r)dr

+
1
ϖ

M2
S M2

B
W2(α)

(ν(d, 0))α

α

∫ d

0
(ν(d, r))α−1∥F(r, vk(r))− F(r, v(r))∥ν′(r)dr.
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We take limit as k → ∞ and use the Lebesgue dominated convergence theorem, to
obtain continuity

lim
k→∞

∥Ξϖvk(s)− Ξϖv(s)∥ = 0.

Step 3: Now, we prove
{

Ξϖy(·) : y ∈ Bρ0

}
is an equicontinuous family on [0, d].

First we show that
{

Ξϖy(s) : y ∈ Bρ0

}
is equicontinuous in Y. For any y ∈ Bρ0

and 0 ≤ s1 ≤ s2 ≤ d, we have

∥Ξϖv(s2)− Ξϖv(s1)∥
≤ ∥Tα(ν(s2, 0))y0 − Tα(ν(s1, 0))v0∥

+

∥∥∥∥∫ s2

s1

(ν(s2, s))α−1Vα(ν(s2, s))F(s, v(s))ν′(s)ds
∥∥∥∥

+

∥∥∥∥∫ s1

0

[
(ν(s2, s))α−1 − (ν(s1, s))α−1

]
Vα(ν(s2, s))F(s, v(s))ν′(s)ds

∥∥∥∥
+

∥∥∥∥∫ s1

0
(ν(s1, s))α−1[Vα(ν(s2, s))−Vα(ν(s1, s))]F(s, v(s))ν′(s)ds

∥∥∥∥
+

∥∥∥∥∫ s2

s1

(ν(s2, s))α−1Vα(ν(s2, s))Bu(s, v)ν′(s)ds
∥∥∥∥

+

∥∥∥∥∫ s1

0

[
(ν(s2, s))α−1 − (ν(s1, s))α−1

]
Vα(ν(s2, s))Bu(s, v)ν′(s)ds

∥∥∥∥
+

∥∥∥∥∫ s1

0
(ν(s1, s))α−1[Vα(ν(s2, s))−Vα(ν(s1, s))]Bu(s, v)ν′(s)ds

∥∥∥∥
=: I0 + I1 + I2 + ... + I6.

By Lemma 1, we have

I0 ≤ ∥Tα(ν(s2, 0))y0 − Tα(ν(s1, 0))y0∥

I1 ≤ MS∥LF∥∞
W(α)

(ν(s2, s1))
α−1

I2 ≤ MS∥LF∥∞
αW(α)

∫ s1

0

∣∣∣(ν(s2, s))α−1 − (ν(s1, s))α−1
∣∣∣ν′(s)ds.

Therefore, I1 → 0, I2 → 0 as s2 → s1. Let η be the arbitrary small positive, we write:

I3 ≤
∫ s1−η

0
(ν(s1, s))α−1∥Vα(ν(s2, s))−Vα(ν(s1, s))∥∥F(s, y(s))∥ν′(s)ds

+
∫ s1

s1−η
(ν(s1, s))α−1∥Vα(ν(s2, s))−Vα(ν(s1, s))∥∥F(s, y(s))∥ν′(s)ds

≤ ∥LF∥∞

∫ s1−η

0
(ν(s1, s))α−1ν′(s)ds sup

0≤s≤s1−η
∥Vα(ν(s2, s))−Vα(ν(s1, s))∥

+
2MS∥LF∥∞

W(α)

∫ s1

s1−η
(ν(s1, s))α−1ν′(s)ds.

It follows that, I3 → 0 as s2 → s1 and η → 0. Using the similar procedure, we obtain
that I4, I5 and I6 are tend to zero.

Step 4: We show that
{

Ξϖy(·) : y ∈ Bρ0

}
is relatively compact in Y.

Take 0 ≤ s ≤ d then for any η > 0 and δ > 0 define an operator Ξϖ,η,δ on Bρ0 as follows

Ξϖ,η,δ(s)

=
∫ ∞

δ
ηα(θ)S((ν(s, 0))αθ)dθv0

+ α
∫ s−η

0

∫ ∞

δ
θ(ν(s, r))α−1ηα(θ)S((ν(s, r))αθ)F(r, v(r))ν′(r)dθdr
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+ α
∫ s−η

0

∫ ∞

δ
θ(ν(s, r))α−1ηα(θ)S((ν(s, r))αθ)Bu(r, v)ν′(r)dθdr

= S(ηαδ)
∫ ∞

δ
ηα(θ)S((ν(s, 0))αθ − ηαδ)dθy0

+ αS(ηαδ)
∫ s−η

0

∫ ∞

δ
θ(ν(s, r))α−1ηα(θ)S((ν(s, r))αθ − ηαδ)F(r, v(r))ν′(r)dθdr

+ αS(ηαδ)
∫ s−η

0

∫ ∞

δ
θ(ν(s, r))α−1ηα(θ)S((ν(s, r))αθ − ηαδ)Bu(r, v)ν′(r)dθdr.

Now by compactness of S(ηαδ), ηαδ > 0, we have relatively compactness of{
Ξv(s) : v ∈ Bρ0

}
in Y. Moreover, for any y ∈ Bρ0 we obtain∥∥Ξϖv(s)− Ξϖ,η,δv(s)

∥∥
≤
∫ δ

0
ηα(θ)S((ν(s, 0))αθ)dθv0

+ α

∥∥∥∥∫ s

0

∫ δ

0
θ(ν(s, r))α−1ηα(θ)S((ν(s, r))αθ)[F(r, v(r)) + Bu(r, v)]ν′(r)dθdr

∥∥∥∥
+ α

∥∥∥∥∫ s

s−η

∫ ∞

δ
θ(ν(s, r))α−1ηα(θ)S((ν(s, r))αθ)[F(r, v(r)) + Bu(r, v)]ν′(r)dθdr

∥∥∥∥
≤ MS

∫ δ

0
ηα(θ)dθ

+ MS[∥LF∥∞ + MB∥u∥](ν(s, 0))α
∫ δ

0
θηα(θ)dθ

+ MS[∥LF∥∞ + MB∥u∥](ν(s, s − η))α
∫ ∞

0
θηα(θ)dθ.

From
∫ ∞

0 θηα(θ)dθ = 1
W(α)

and the absolute continuity of the integral, we obtain∥∥Ξϖv(s)− Ξϖ,η,δv(s)
∥∥→ 0 as η, δ → 0.

A relatively compact set Ξϖ,η,δ(s) is arbitrarily close to the set Ξϖ(s) for s > 0, implying,
by the Arzelà–Ascoli theorem, that Ξϖ is itself relatively compact in C([0, d],Y). Hence, for
all ϖ > 0, Ξϖ is completely continuous operator on C([0, d],Y). Consequently, according
to the Schauder fixed point theorem, Ξϖ possesses a fixed point within Bρ0 , representing
the mild solution to the system referenced as (1).

Now, we focus on the approximate controllability of the Equation (1).

Theorem 3. Assuming that conditions (H1) to (H3) are satisfied and the function F is uniformly
bounded, with the additional condition that the associated linear Equation (1) exhibits approximate
controllability over the interval [0, d], it follows that (1) is finite-approximately controllable within
the same interval [0, d].

Proof. By Theorem 2 a fixed point yϖ of Ξϖ exists in Bρ and yϖ is a mild solution of (1) with

uϖ

(
t, yϖ

)
= B∗V∗

α(ν(d, t))
(

ϖ(I − ΠM) + Wd
0

)−1

×
(

h − Tα(ν(d, 0))−
∫ d

0
(ν(d, s))α−1Vα(ν(d, s))F

(
s, vϖ(s)

)
ν′(s)ds

)
.

Thus

vϖ(t) = Tα(ν(t, 0))v0
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+
∫ t

0
(ν(t, s))α−1Vα(ν(t, s))F

(
s, vϖ(s)

)
ν′(s)ds

+
∫ t

0
(ν(t, s))α−1Vα(ν(t, s))B∗V∗

α(ν(d, s))ν′(s)ds
(

ϖ(I − ΠM) + Wd
0

)−1
p
(
vϖ
)

where

p
(
vϖ
)
= h − Tα(ν(d, 0))v0 −

∫ d

0
(ν(d, s))α−1Vα(ν(d, s))F

(
s, vϖ(s)

)
ν′(s)ds.

Using the identity Wd
0

(
ϖ(I − ΠM) +Wd

0

)−1
= I − ϖ(I − ΠM)

(
ϖ(I − ΠM) +Wd

0

)−1
,

we have

vϖ(d) = Tα(ν(d, 0))v0

+
∫ d

0
(ν(d, s))α−1Vα(ν(d, s))F

(
s, vϖ(s)

)
ν′(s)ds

+
∫ d

0
(ν(d, s))α−1Vα(ν(d, s))B∗V∗

α(ν(d, s))ν′(s)ds
(

ϖ(I − ΠM) + Wd
0

)−1
p
(
vϖ
)

= Tα(ν(d, 0))v0 +
∫ d

0
(ν(d, s))α−1Vα(ν(d, s))F

(
s, vϖ(s)

)
ν′(s)ds

+ Wd
0

(
ϖ(I − ΠM) + Wd

0

)−1
p
(
vϖ
)

= Tα(ν(d, 0))y0 +
∫ d

0
(ν(d)− ν(s))α−1Vα(ν(d)− ν(s))F

(
s, vϖ(s)

)
ν′(s)ds

+ p
(
yϖ
)
− ϖ(I − ΠM)

(
ϖ(I − ΠM) + Wd

0

)−1
p
(
vϖ
)

= h − ϖ(I − ΠM)
(

ϖ(I − πM) + Wd
0

)−1
p
(
vϖ
)
. (9)

By the Dunford–Pettis theorem, ∃ a subsequence {F(s, vϖ(s))} that convergent weakly
to {F(s, v(s))} in L1([0, d],Y). Consider

p(y) = h − Tα(ν(d, 0))v0 −
∫ d

0
(ν(d, s))α−1Vα(ν(d, s))F(s, v(s))ν′(s)ds.

We have∥∥p
(
vϖ
)
− p(v)

∥∥
≤ MS

W(α)

∫ d

0
(ν(d, s))α−1Vα(ν(d, s))

∥∥F
(
s, vϖ(s)

)
− F(s, v(s))

∥∥ν′(s)ds

Furthermore, approximate controllability of the system (2) implies∥∥vϖ(d)− h
∥∥ ≤ ϖ

∥∥∥∥(ϖ(I − ΠM) + Wd
0

)−1
p(v)

∥∥∥∥
+ ϖ

∥∥∥∥(ϖ(I − ΠM) + Wd
0

)−1[
p
(
vϖ
)
− p(v)

]∥∥∥∥
≤ ϖ

∥∥∥∥(ϖ(I − ΠM) + Wd
0

)−1
p(v)

∥∥∥∥+ ∥∥[p(vϖ
)
− p(v)

]∥∥
→ 0 as ϖ → 0+.

Hence, the system (1) is approximately controllable. On the other hand, applying ΠM
to the both sides of (9) we obtain finite dimensional exact controllability:

ΠMvϖ(d) = ΠMh.
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5. Applications

Example 1. We consider the ν-Caputo heat equation
CDα,ν

0+ v(t, η) =
∂2v(t, η)

∂η2 + χ(α1,α2)(η)u(t) + F(v(t, η)),

v(t, 0) = v(t, π) = 0, 0 < t < d,
I1−α
0+ v(0, η) = v0(η), 0 ≤ η ≤ π,

(10)

where χ(α1,α2)(η) is the characteristic function of (α1, α2) ⊂ (0, π). Let Y = L2[0, π], U = R,
and A = d2/dη2 with D(A) = H1

0 [0, π] ∩ H2[0, π]. We define the bounded linear operator
B : R → L2[0, π] by (Bu)(t) = χ(α1,α2)(η)u(t), and the operator F is bounded.

Set M = L2
K[0, π] :=

{
φ : φ(η) = ∑K

i=1 αiei(η), αi ∈ R
}

and denote by ΠM the operator

of the orthogonal projection L2[0, π] onto L2
K[0, π]. Define

Vα(t)h =
∞

∑
n=1

Eα,α

(
−n2π2(ν(t))αn

)
⟨h, en⟩en, Eα,α(t) =

∞

∑
n=0

tn

W(nα + α)
(Mittag–Leffler series),

Ld
0u =

∫ d

0
(ν(d)− ν(t))α−1Vα(ν(d)− ν(t))(Bu)(t)ν′(t)dt

=
∞

∑
n=1

∫ d

0
(ν(d)− ν(t))α−1Eα,α

(
−λn(ν(d)− ν(t))α)〈χ(α1,α2)(η), en

〉
u(t)ν′(t)dten,

(
Ld

0

)∗
h =

∞

∑
n=1

∫ d

0
(ν(d)− ν(t))α−1Eα,α

(
−λn(ν(d)− ν(t))α)〈χ(α1,α2)(η), en

〉
⟨h, en⟩ν′(t)dt,

Wd
0 h = Ld

0

(
Ld

0

)∗
h

=
∞

∑
n=1

∫ d

0
(ν(d)− ν(t))2α−2E2

α,α(−λα
n(ν(d)− ν(t)))ν′(t)dt

〈
χ(α1,α2)(η), en

〉2
⟨h, en⟩en.

Subsequently, we attain

(
ϖ(I − ΠM) + Wd

0

)−1
g

=
∞

∑
n=1

1(
ϖ(I − ΠM) +

∫ d
0 (ν(d)− ν(t))2α−2E2

α,α(−λα
n(ν(d)− ν(t)))ν′(t)dt

〈
χ(α1,α2)(η), en

〉2
) ⟨g, en⟩en

=
K

∑
n=1

1∫ d
0 (ν(d)− ν(t))2α−2E2

α,α(−λα
n(ν(d)− ν(t)))ν′(t)dt

〈
χ(α1,α2)(η), en

〉2 ⟨g, en⟩en

+
∞

∑
n=K+1

1(
ϖ +

∫ d
0 (ν(d)− ν(t))2α−2E2

α,α(−λα
n(ν(d)− ν(t)))ν′(t)dt

〈
χ(α1,α2)(η), en

〉2
) ⟨g, en⟩en

It is clear that ϖ
(

ϖ(I − ΠM) + Wd
0

)−1
g → 0 as ϖ → 0+ if

〈
χ(α1,α2)(η), en

〉
=
∫ α2

α1

√
2 sin(nπη)dη = −

√
2

nπ
cos(nπη) |α2

α1 ̸= 0,

which holds whenever α1 ± α2 is an irrational number.
If the sum or difference of α1 and α2 is an irrational, then the linear ν-Caputo system associated

with (10) exhibits finite-approximate controllability. According to Theorem 2, this implies that the
system (10) itself is finite-approximately controllable over the interval [0, d].
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Example 2. Define the differential operator L by

Lv(η) = −
d

∑
i,j=1

∂

∂ηi

(
ai(η)

∂v
∂ηj

(η)

)
+ c(η)v(η), η ∈ Ω,

where aij = aji ∈ C1(Ω), 1 ≤ i, j ≤ d, c ∈ C
(
Ω
)
, c(η) ≥ 0, η ∈ Ω, and

d

∑
i,j=1

aij(η)ηiηj ≥ l|η|2, l > 0, η ∈ Ω, η ∈ Rd.

Hence L : D(L) = H2(Ω) ∩ H1
0(Ω) ⊂ L2(Ω) → L2(Ω).

Consider the following initial value/boundary value problem for a ν-Caputo fractional system
in a bounded domain Ω ⊂ Rd with a smooth boundary ∂Ω.

CDα,ν
0+ v(t, η) + Lv(t, η) = χωv(t, η) + F(v(t, η)) (η, t) ∈ Ω × (0, d),

v(t, η) = 0, (η, t) ∈ ∂Ω × (0, d), (11)

Dα−1
0+ v(0, η) = v0, v ∈ C∞

0 (ω × (0, d)), ω ⊂ Ω.

For any v0 ∈ L2(Ω) the Equation (11) has a unique solution v given by

v(t, η) =
∞

∑
n=1

(v0, en)Eα,α
(
−λn(ν(t)− ν(0))α)en(η)

+
∞

∑
n=1

∫ t

0
(F(·, t − r), en)rα−1Eα,α

(
−λn(ν(t)− ν(r))α)dren(η),

Ld
0F =

∞

∑
n=1

∫ d

0
(F(·, d − r), en)rα−1Eα,α

(
−λn(ν(·)− ν(r))α)dren(η),(

Ld
0

)∗
g = χω(ν(d)− ν(t))α−1

∞

∑
n=1

Eα,α
(
−λn(ν(d)− ν(t))α)(g, en)en(η).

Assuming L∗g = 0, we derive the equation

(d − t)α−1
∞

∑
n=1

Eα,α
(
−λn(ν(d)− ν(t))α)(g, en)en(η) = 0

on ω × (0, d). According to Proposition 4.2 in [38], this implies that g = 0 on Ω × (0, d), which is
equivalent to the approximate controllability of the linear system associated with (11). Therefore, with
the additional assumption of the uniform boundedness of F, the system (11) is finite-approximately
controllable over the interval [0, d].

Example 3. Let Y = U = L2[0, π]. Consider the following Sobolev type ν-Caputo fractional PDE:

CD
3
4 ,ν
ξ (y(ξ, θ)− yθθ(ξ, θ)) = yθθ(ξ, θ) + g(ξ, y(ξ, θ)) + v(ξ, θ),

y(ξ, 0) = y(ξ, π) = 0, (12)

y(0, θ) = ϕ(θ), : 0 ≤ ξ ≤ T, : 0 ≤ θ ≤ π.

Define A : D(A) ⊂ Y → Y by A := yθθ and G : D(G) ⊂ Y → Y by Gy :=
y − yθθ , where

D(A) = D(G) = {y ∈ Y : y, yθ are absolutely continuous, yθθ ∈ Y, y(ξ, 0) = y(ξ, π) = 0}.

A and G are defined as follows
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Ay =
∞

∑
n=1

n2⟨y, en⟩en, y ∈ D(A), Gy =
∞

∑
n=1

(
1 + n2

)
⟨y, en⟩en, y ∈ D(G),

respectively, where en(θ) :=
√

2
π sin nθ, n = 1, 2, ... is the set of eigenvalues. Moreover, for any

y ∈ U we have

S(ξ)y =
3
4

∫ ∞

0
θξ 3

4
(θ)

∞

∑
n=1

exp
(

−n2

1 + n2 (ν(ξ))
3
4 θ

)
⟨y, en⟩endθ

=
∞

∑
n=1

E 3
4 , 3

4

(
−n2

1 + n2 (ν(ξ))
3
4

)
⟨y, en⟩en,

where E 3
4

and E 3
4 , 3

4
the Mittag–Leffler functions. Thus,

∥Tα(ξ)∥ ≤ 1, ∥Bα(ξ)∥ ≤ 1/Γ
(

3
4

)
, ξ ≥ 0.

Next, define

D∗(ν(1), ν(η))y =
m

∑
k=1

akχk(η)(ν(1)− ν(η))−
1
4 B∗

α(ν(ξk)− ν(η))D∗Tα(ν(1))
(

G−1
)∗

y

+χ1(η)(1 − η)−
1
4 B∗

α(ν(1)− ν(η))
(

G−1
)∗

y = 0, 0 ≤ η < 1.

=⇒ 1
1 + n2 ⟨y, en⟩(ν(1)− ν(η))−

1
4 E 3

4 , 3
4

(
−n2

1 + n2 (ν(1)− ν(η))
3
4

)
= 0

for any n ∈ N and ξm < η < 1. If y ≠ 0 then there is n ∈ N s. t. E3
4 , 3

4

(
−n2

1+ n2 (ν(1)− ν(η))
3
4

)
= 0

for any ξm < η < 1. This is not possible, since

lim
η→1−

E 3
4 , 3

4

(
−n2

1 + n2 (ν(1)− ν(η))
3
4

)
= E 3

4 , 3
4
(0) = 1/Γ

(
3
4

)
.

So, D∗(ν(1), ν(η))y = 0, 0 ≤ η < 1 implies that y = 0, which means approximate
controllability of associated linear system of the problem (12) on [0, 1].

Define f : [0, 1]×Y → Y by f (ξ, y)(θ) = g(ξ, y(ξ, θ)) which is assumed to be continuous.
Thus, under uniform boundedness of f , the system (12) is finite-approximately controllable on [0, d].

6. Discussion and Conclusions

Finite-approximate controllability builds upon recent advancements in the study of
fractional evolution equations by offering a more comprehensive understanding of the
controllability aspects of systems described by Caputo fractional equations. Recent research
may have explored various aspects of fractional calculus, but finite-approximate controlla-
bility specifically addresses the feasibility and methods for controlling these systems within
finite-dimensional spaces. This contributes to the ongoing discourse by bridging the gap
between theoretical developments in fractional calculus and practical control strategies for
systems with fractional dynamics.

Possible directions for exploring finite-approximate controllability include: control
strategies, optimal control approaches, sensitivity analysis, numerical simulations, stability
analysis, and application in real-world problems. By exploring these avenues, researchers
can deepen their understanding of finite approximate controllability in the context of
fractional equations and contribute to the development of effective control strategies for
systems exhibiting fractional dynamics.

The implications of finite-approximate controllability for numerical implementations
are crucial to ensuring the practical feasibility and reliability of the proposed control strate-
gies for systems governed by Caputo fractional evolution equations. The implication
revolves around ensuring numerical stability, the accuracy of approximations, appropri-
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ate choice of numerical methods, consideration of discretization effects, efficient use of
computational resources, and rigorous validation of the proposed methodology.

The methodology’s computational complexity and efficiency are significant consid-
erations, especially for larger or more complex systems of fractional evolution equations.
Discuss how the proposed controllability approach scales with the size and complexity of
the system. Consider whether there are optimizations or computational techniques that
can enhance efficiency. Addressing these concerns is crucial for the practical applicability
of the methodology, especially in real-world scenarios where computational resources may
be limited.

In our study, we investigated the finite-approximate controllability of ν-Caputo frac-
tional differential equations using the fixed point method. The main results were obtained
by applying semigroup theory, ν-Caputo fractional derivatives, and fixed point theorems.
The practical relevance of these findings is illustrated through a specific application. In our
upcoming research, we will focus on investigating the finite-approximate controllability
of ν–Hilfer fractional differential systems. Additionally, we aim to explore the existence
of ν–Hilfer fractional differential systems, considering both cases with and without delay.
Our approach will involve the application of a fixed point method to address these aspects.
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