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Abstract: In this paper, we consider a system of random impulsive differential equations with infinite
delay. When utilizing the nonlinear variation of Leray–Schauder’s fixed-point principles together
with a technique based on separable vector-valued metrics to establish sufficient conditions for the
existence of solutions, under suitable assumptions on Y1 , Y2 and ϖ1, ϖ2, which greatly enriched the
existence literature on this system, there is, however, no hope to discuss the uniqueness result in a
convex case. In the present study, we analyzed the influence of the impulsive and infinite delay on
the solutions to our system. In addition, to the best of our acknowledge, there is no result concerning
coupled random system in the presence of impulsive and infinite delay.
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1. Introduction and Position of Problem
1.1. Results and Discussion

Nowadays, mathematics contains many references related to impulsive differential
equations. We mention here the development of some of them in this area. Impulsive differ-
ential equations is considered in [1], where the authors obtained results related to oscillation
and the behaviour of solutions of the system

v′(s) + r(s)v(s − τ) = 0, s ̸= ϕk, s ≥ s0,
v(ϕ+

k )− v(ϕ−
k ) = Ik(v(ϕ+

k )), k ∈ N.
(1)

Impulsive infinite delay differential equations is considered in [2] as a system
x′(r) = f (r, x(r), x(r − s(r))), r ≥ r0, r ̸= sk,
x(r)− x(r−) = Ik(x(r−)), r = sk, k = 1, 2...

(2)

By using the Lyapunov functions together with the Razumikhin technique, new results
related to the existence and behavior of solution were obtained.

In [3], the authors proposed a random impulsive differential equations for k = 1, ..., m
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y′(r, t) = f (t, y(t, r), r), t ̸= tk,
y′(r, t+k )− y′(r, t−k ) = Ik(y(r, tk), r),
y(r, a) = ν(r),

(3)

here, the function ν ∈ C0(Ω → Rn) is a random variable. Under appropriate conditions in
the parameters f , k, I, the existence and uniqueness is established owing to the generalized
Schaefer’s type random fixed-point theorem. Numerous processes in physics, biology,
medicine, population dynamics, and other fields may experience rapid changes like shocks
or perturbations (for examples, see [4,5] and the references therein). While this is going
on, several models of genuine processes and phenomena explored in physics, chemical
technology, population dynamics, biotechnology, and economics are described by delayed
impulsive differential systems and evolution differential systems. That is why, in recent
years, they have been the object of investigations by many mathematicians [6,7]. We cite the
work of Samoilenko and Perestyuk [8], Lakshmikantham et al. [9], and Bainov and Sime-
onov [10] as sources, where a thorough bibliography is provided and several features of
their solutions are investigated. Many studies have been carried out on functional differen-
tial equations and inclusions with or without impulses. See the books by Dejabli et al. [11]
and Graef et al. [12] for more information on how existence and uniqueness are derived.
The boundary value problem on infinite intervals can be found in a variety of real-world
models, such as foundation engineering, nonlinear fluid flow problem, and difficulties
involving linear elasticity (see [13–19]) and the references therein. Recent years have seen a
significant increase in research into impulsive ordinary differential equations and functional
differential equations under various conditions; for examples, see the works by Aubin [20]
and Benchohra et al. [6] and the references therein. The presence of a delay in the system
being studied often turns out to be the cause of phenomena that significantly influence the
course of the process. Differential equations with delay argument are differential equations
in which an unknown function and its derivatives appear at different values where the
time derivatives at the current time depend on the solution and possibly its derivatives at
previous times. The most natural methods for solving this type of problem are so-called
iterative methods; for more details, please see [21–24]. Motivated by the previous works,
in the present paper it is interesting to analyze the influence of the impulsive and infinite
delay on the solutions to system (4) under suitable assumptions on Y1 , Y2 and ϖ1, ϖ2 with
the presence of new random properties.

1.2. Position of Problem

To begin with, let Γ be an open domain of Rn, n > 1, J = [0, ∞), J0 =
(−∞, 0], Jk = (tk−1, tk], k = 1, 2, . . . , ϖi = ϖi(t, x), ϖ′

i = ϖ′
i(t, x), ϖ′′

i = ϖ′′
i (t, x), i =

1, 2, t ∈ [0, ∞), x ∈ Γ. The following system of impulsive differential equations by random
effects (random parameters) with infinite delay is examined in this paper

ϖ′
1 = Y1(t, ϖ1t(x), ϖ2t(x), x), a.e t ∈ J , t ̸= tk,

ϖ′
2 = Y2(t, ϖ1t(x), ϖ2t(x), x), a.e t ∈ J , t ̸= tk,

∆ϖ1(t) = I1
k (ϖ1(tk, x), ϖ2(tk, x)), t = tk,

∆ϖ2(t) = I2
k (ϖ1(tk, x), ϖ2(tk, x)), t = tk,

A1ϖ1 − ϖ1,∞ = ϕ1(t, x), t ∈ (−∞, 0],
A2ϖ2 − ϖ2, ∞ = ϕ2(t, x), t ∈ (−∞, 0],

(4)

where Yi : J × D0 ×D0 × Γ → P(Rn), i = 1, 2 and I1
k , I2

k ∈ C0(Rn ×Rn, Rn) are given
functions satisfying some assumptions that will be specified later and

lim
t→∞

(ϖ1(t), ϖ2(t)) = (ϖ1, ∞, ϖ2, ∞), (5)

here ϕ1, ϕ2 ∈ D0, and D0 is called a phase space that will be defined later; the fixed times
tk satisfies

0 < t1 < t2 < . . . < tm < T,
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ϖ2(t−k ) and ϖ2(t+k ) denotes the left and right limits of ϖ2(t) at t = tk and ϕ1, ϕ2 are two
random maps. The impulse times tk satisfy

0 = t0 < t1 < t2 < . . . , tm < T.

If T = ∞, tk satisfies

0 = t0 < t1 < t2 < . . . , tm < · · · .

The functional ϖ1t, represent the infinite delay and as for ϖ2t, we mean the segment
solution which is defined in the usual way, that is, if ϖ2(., .) ∈ C0((−∞, ∞)× Γ, Rn), then
for any t ≥ 0, ϖ2t(., .) ∈ C0((−∞, 0]× Γ, Rn) is given by

ϖ2t(α, ω) = ϖ2(t + α, ω), for α ∈ (−∞, 0]. (6)

Before going into the characteristics of the operators Y1, Y2 and I1
k , I2

k , we first introduce
some notation and define certain spaces.

In this study, we will make use of Hale and Kato’s [25] axiomatic description of the
phase space D0.

Definition 1. By D0, we mean a linear space containing a family of measurable functions from
(−∞, 0] into Rn and endowed with a norm∥.∥D0

. The following axioms are satisfied:

(A1) If ϖ2 ∈ C0((−∞, T), Rn), T = +∞, is such that ϖ2,0 ∈ D0, then for every t ∈ J the
following conditions hold

(i) ϖ2t ∈ D0,
(ii) ∥ϖ2(t)∥ ≤ L∥ϖ2t∥D0 ,
(iii) ∥ϖ2t∥D0 ≤ K(t) sup{∥ϖ2(s)∥ : 0 ≤ s ≤ t}+ N(t)∥ϖ2,0∥D0 ,

where L > 0 is a constant; K, N ∈ C0([0, ∞), [0, t)), K is continuous, N is locally
bounded and K, n are independent of ϖ2(.).

(A2) For the function ϖ2(.) in (A1), ϖ2t is a D0-valued function on [0, t).
(A3) The space D0 is complete.

Denote
K̃ = sup

t∈J
{K(t)} and Ñ = sup

t∈J
{N(t)}. (7)

Remark 1. In retarded functional differential equations without impulses, the axioms of the abstract
phase space D0 include the continuity of the function t → ϖ2t. Due to the impulsive effect, this
property is not satisfied in impulsive delay systems, and, for this reason, it has been eliminated in
our abstract description of D0.

Let

D0 =
{

ϕi ∈ C0((−∞, 0]× Ω, Rn), for any , sup
θ≤0

(|ϕi(θ)|) < ∞
}

. (8)

If D0 is endowed with the norm

∥ϕ∥D0 = sup
θ≤0

(|ϕi(θ)|),

then (D0, ∥ · ∥D0) is a Banach space, see [26].
Now, for a given T = +∞, we define

D∞ =


ϖ2 ∈ C0((−∞, ∞)× Γ, Rn), ϖ2,k ∈ C(Jk, Rn), k = 1, . . . m, ϖ2,0 ∈ D0,
and there exist
ϖ2(t−k ) and ϖ2(t+k ) with ϖ2(tk) = ϖ2(t−k ), k ∈ 1, · · · , m and sup

t∈J
|ϖ2(t)| < ∞

,

endowed with the norm
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∥ϖ2∥D∞ = ∥ϕ2∥D0 + sup
s∈J

|ϖ2(s)|, (9)

where ϖ2,k denotes the restriction of ϖ2 to Jk.
Then we will consider our initial data ϕ1, ϕ2 ∈ D0. As for the impulse functions, we

will assume that I1
k , I2

k ∈ C0(Rn ×Rn, Rn) and

∆ϖ2(t)|t=tk = ϖ2(t+k )− ϖ2(t−k ),

ϖ2(t+k ) = lim
h→0+

ϖ2(t + h),

and
ϖ2(t−k ) = lim

h→0−
ϖ2(t − h).

We suppose that the multi-function → Yi(x, ϖ1t(x), ϖ2t(x)) is measurable over the
entire paper. Applying a novel random fixed point theorem to a system of impulsive
random differential equations is the primary objective of this research. Additionally, we
provide a random application of the separable vector-valued Banach space Leray–Schauder
fixed point theorem.

This article is structured as follows: We provide notations, definitions and introductory
information in Section 2 and state some Lemmas and Theorems in Section 3 that will be
helpful throughout the proof. Using a nonlinear variant of the Leray–Schauder type
theorem on extended Banach spaces in the convex case as in [27], we demonstrate the
existence result in Section 4. To finish the work, we give conclusive comments with a
discussion of the novelties and some perspictives.

2. Preliminaries and Tools

Here, we make some notes, review some definitions, and talk about some background
material that will be used later in the article. In fact, we will use quotes from [28,29].
Although we can only refer to this document when we need it, we prefer to include it here
to keep our work as independent as possible and to make it easier to read.

Vector Metric Space

Let

ϖ1 = (ϖ1,1, . . . , ϖ1,n) ∈ Rn, (10)

and

ϖ2 = (ϖ2,1, . . . , ϖ2,n) ∈ Rn. (11)

The interval I be in R and c ∈ R, we note that IZ = I ∩Z,

ϖ1 ≤ ϖ2 implies that ϖ1,j ≤ ϖ2,j, j = 1, ..., n,

ϖ1 ≤ c equivalent that ϖ1,j ≤ c, j = 1, ..., n,

|ϖ1| = (|ϖ1,1|, . . . , |ϖ1,n|),
max(ϖ1, ϖ2) = max

j=1,...,n
(max(ϖ1,j, ϖ2,j)).

Definition 2. Let E be a non-empty set and a map d ∈ C0(E × E, Rn), where d = (d1, ..., dn),
we say that the pair (E, d) is said to be a generalized metric space if each pair ((E, di))i∈[1,n]Z

are
metric spaces.

For
a = (a1, . . . , an) ∈ Rn

+,

we will denote by
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B(ϖ0, a) = ϖ ∈ E : d(ϖ0, ϖ) < a}
= {ϖ ∈ E : dj(ϖ0, ϖ) < aj, j = 1, ..., n}, (12)

the open ball centered in ϖ0 with radius a and

B(ϖ0, a) = {ϖ ∈ E : d(ϖ0, ϖ) ≤ a}
= {ϖ ∈ E : dj(ϖ0, ϖ) ≤ aj, j − 1, ..., n}, (13)

the closed ball with radius a, centered in ϖ0. We point out that the notation of open subset,
closed set, convergence, Cauchy sequence, and completion in generalized metric space is
comparable to that in conventional metric space.

3. Random Variable and Some Selection Theorems

In this section, symbols, definitions, and introductory information from the multival-
ued analysis and random variables used throughout this article are presented. Let X be a
subset of E, and let (E, d) be a Banach space or a generalized metric space. Let

Pcl(E) = {X ∈ P(E) : X closed },

Pb(E) = {X ∈ P(E) : X bounded },

Pc(E) = {X ∈ P(E) : X convex },

Pcp(E) = {X ∈ P(E) : X compact}.

Definition 3. Let (Γ, Σ) be a measurable space and Y ∈ C0(Γ,P(E)) be a multi-valued mapping,
Y is called measurable if

Y+(Q) = {x ∈ Γ : Y(x) ⊂ Q}, (14)

for every Q ∈ Pcl(E), equivalently, for every U open set of E, the set

Y−(Q) = {x ∈ Γ : Y(x) ∩ U ̸= ∅}, (15)

is measurable.

Let E is a metric space, we will use B(E) to denote the Borel σ-algebra on E. The Σ ×B(E)
denotes the smallest σ -algebra on Γ × E, which contains all the sets A × S, where Q ∈ Σ and
S ∈ B(E). Let Y ∈ C0(E, P(X)) be a multi-valued map. A single-valued map f ∈ C0(E, X) is
said to be a selection of G, and we write ( f ⊂ Y) whenever f (ϖ) ∈ Y(ϖ) for every ϖ ∈ E.

Definition 4. A mapping Y ∈ C0(Γ × E, E) is called a random operator if any ϖ ∈ E, f (., ϖ)
is measurable.

Definition 5. A random fixed point of f is a measurable function ϖ ∈ C0(Γ, E) such that

ϖ(x) = f (x, ϖ(x)), ∀x ∈ Γ. (16)

Equivalently, a measurable selection for the multi-valued map FixY : Γ → P(E) is defined by

FixYx(ϖ) = {ϖ ∈ E : ϖ = f (x, ϖ)}. (17)

Theorem 1 ([27]). Let (Γ, Σ), X be a separable metric space and Y ∈ C0(Γ, Pcl(X)) be measurable
multi-valued. Then Y has a measurable selection.

The following conclusions can be drawn from Kuratowski–Ryll–Nardzewski and
Aumann’s selection Theorems.

Theorem 2 ([27]). Let (Γ, Σ), X be a separable generalized metric space and Y ∈ C0(Γ, Pcl(X))
be measurable multi-valued. Then Y has a measurable selection.
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Then, in a separable vector Banach space, we propose a few random fixed-point
theorems.

Theorem 3 ([27]). Let E be a separable generalized Banach space, and let G ∈ C0(Γ×E, Pcl,cv(E))
be an upper semi-continuous and compact map. Then either of the following holds:

(i) The random equation G(x, ϖ) ∈ ϖ has a random solution, i.e., there is a measurable function
ϖ ∈ C0(Γ, E) such that

G(x, ϖ(x)) ∈ ϖ(x), ∀x ∈ Γ.

(ii) The set

M = {ϖ : Γ → E : ϖ is measurable and ϖ ∈ λ(x)G(x, ϖ)}, (18)

is unbounded for some measurable λ ∈ C0(Γ, E) with 0 < λ(x) < 1 on Γ.

Definition 6. The function f ∈ C0([0, b]×R× Γ, R) is called random Carathéodory if

(i) The map (t, x) → f (t, ϖ, x) is jointly measurable ∀x ∈ R,
(ii) The map ϖ → f (t, ϖ, x) is continuous ∀t ∈ [0, b] and x ∈ Γ.

Lemma 1 ([27]). Let E be a separable generalized metric space and G ∈ C0(Γ × E, E) be a
mapping such that G(., ϖ) is measurable ∀ϖ ∈ E and G(x, .) is continuous ∀x ∈ Γ. Then the
map (x, ϖ) → G(x, ϖ) is jointly measurable.

Lemma 2 ([12]). Let E be a Banach space. Let Y ∈ C0(J × E,Pcp,c(E)) be an L1-Carathéodory
multi-valued map with SY,z ̸= ∅ and let R be a linear continuous mapping from L1(J, ϖ) into
C(J, ϖ). Then the operator

R ◦ SY : C(J, ϖ) → Pcp,c(C(J, ϖ))

z → (R ◦ SY)(z) = R(SY,z),

is a closed graph operator in C(J, ϖ)× C(J, ϖ).

4. Main Result: Existence of Solutions

In this section, we provide adequate conditions for the first order of a random system
of functional differential Equation (4), to have solutions. We begin by assuming that
Y has values that are convex. We define the problem’s solution prior to declaring and
demonstrating our conclusion for this case.

The Convex Case

Now we first define the concept of the solution to our problem.

Lemma 3. Given (ϖ1, ϖ2) ∈ D∞ ×D∞, it is said to be solution of (23) if there exists a functions
f1(t, x), f2(t, x) such that

( f1, f2) ∈ L1([0, ∞)× Γ,Rn)× L1([0, ∞)× Γ,Rn), (19)

and
( f1, f2) ∈ (Y1(t, ϖ1t(x), ϖ2t(x), x), Y2(t, ϖ1t(x), ϖ2t(x), x)), (20)

and (ϖ′
1, ϖ′

2) = ( f1, f2), with (ϖ1, ϖ2) be a solution of the problem (23), for x ∈ Γ



Fractal Fract. 2024, 8, 10 7 of 16

ϖ1(t) =



ϕ1(0,x)
A(A−1) +

1
A−1

[∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x)

+ ϕ1
A

]
, t ∈ (−∞, 0],

ϕ1(0,x)
A−1 + 1

A−1

[∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

]
+
∫ t

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x)), t ∈ [0, ∞),

(21)

and

ϖ2(t) =



ϕ2(0,x)
A(A−1) +

1
A−1

[∫ ∞

0
f2(s, x)ds +

∞

∑
k=1

I2
k (ϖ1(tk, x), ϖ2(tk, x)

]
+ ϕ2

A , t ∈ (−∞, 0],

ϕ2(0,x)
A−1 + 1

A−1

[∫ ∞

0
f2(s, x)ds +

∞

∑
k=1

I2
k (ϖ1(tk, x), ϖ2(tk, x))

]
+
∫ t

0
f2(s, x)ds +

∞

∑
k=1

I2
k (ϖ1(tk, x), ϖ2(tk, x)), t ∈ [0, ∞),

(22)

where
lim
t→∞

(ϖ1(t), ϖ2(t)) = (ϖ1, ∞, ϖ2, ∞),

if and only if (ϖ1, ϖ2) is a solution of the impulsive boundary value problem

ϖ′
1 = f1(t, x), a.e t ∈ J, t ̸= tk,

ϖ′
2 = f2(t, x), a.e t ∈ J, t ̸= tk,

∆ϖ1 = I1
k (ϖ1(tk, x), ϖ2(tk, x)), t = tk,

∆ϖ2 = I2
k (ϖ1(tk, x), ϖ2(tk, x)),

A1ϖ1 − ϖ1, ∞ = ϕ1,
A2ϖ2 − ϖ2, ∞ = ϕ2.

(23)

Proof. Let (ϖ1, ϖ2) be a solution of the impulsive integral Equations (21) and (22), then
for t ∈ [0,+∞) and t ̸= tk, k ∈ [1, ∞)Z, we have

ϖ1 =
ϕ1(0, x)
A − 1

+
1

A − 1

[∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

]

+
∫ t

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x)),

and

ϖ2 =
ϕ2(0, x)
A − 1

+
1

A − 1

[∫ ∞

0
f2(s, x)ds +

∞

∑
k=1

I2
k (ϖ1(tk, x), ϖ2(tk, x))

]

+
∫ t

0
f2(s, x)ds +

∞

∑
k=1

I2
k (ϖ1(tk, x), ϖ2(tk, x)).

Thus
(ϖ′

1, ϖ′
2) = ( f1(s, x), f2(s, x)),t ∈ [0, ∞), t ̸= tk, k ∈ [1, ∞)Z.

From the definition of (ϖ1, ϖ2) we can prove that
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ϖ1(t+k , x)− ϖ1(t−k , x) = I1

k (ϖ1(tk, x), ϖ2(tk, x)),

ϖ2(t+k , x)− ϖ2(t−k , x) = I2
k (ϖ1(tk, x), ϖ2(tk, x)).

(24)

Finally we prove that

(A1ϖ1 − ϖ1, ∞, A2ϖ1 − x∞) = (ϕ1, ϕ2).

We have

lim
t→∞

ϖ1 =
ϕ1(0, x)
A − 1

+
A

A − 1

(∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

)
,

and

ϖ1 =
ϕ1(0, x)

A(A − 1)
+

1
A − 1

(∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

)
+

ϕ1

A
.

Hence

Aϖ1 − lim
t→∞

ϖ1 =
ϕ1(0, x)
(A − 1)

+ ϕ1 −
ϕ1(0, x)
A − 1

A
A − 1

(∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

)

−
(

A
A − 1

∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

)
= ϕ1, t ∈ [0,+∞). (25)

Let (ϖ1, ϖ2) be a solution of the problem (23). Then

ϖ′
1 = f1(s, x), a.e t ∈ [0, t1], t ̸= tk. (26)

An integration from 0 to t (here t ∈ (0, t1]) of both sides of the above equality yields

ϖ1 = ϖ1(0, x) +
∫ t

0
f1(s, x)ds.

If t ∈ (t1, t2], then we have

ϖ1 = ϖ1(0, x) +
∫ t

0
f1(s, x)ds + I1

1 (ϖ1(tk, x), ϖ2(tk, x)).

We obtain for t ∈ [0,+∞) that

ϖ1 = ϖ1(0, x) +
∫ t

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x)). (27)

Since
( lim

t→∞
(ϖ1(t), ϖ2(t)) = (ϖ1, ∞, ϖ2, ∞),

we obtain

ϖ1, ∞ = ϖ1(0) +
∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x)).
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Thus

ϖ1(0) = ϖ1, ∞ −
∫ ∞

0
f1(s, x)ds −

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x)),

and
ϖ1, ∞ = Aϖ1(0)− ϕ1(0, x),

and hence

ϖ1(t) =
ϕ1(0, x)
A − 1

+
1

A − 1

(∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

)
. (28)

We replace (28) in (27), to obtain

ϖ1 =
ϕ1(0, x)
A − 1

+
1

A − 1

(∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

)

+
∫ t

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x)).

From (28), we have

ϖ1 =
ϕ1

A
+

1
A

(
ϖ1(0, x) +

∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

)

=
ϕ1(0, x)
A − 1

+
1

A − 1

(∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

)

+
ϕ1

A
.

Theorem 4. Suppose the following hypotheses are satisfied:

(H1) The function

Y ∈ C0([0, ∞)×D∞ ×D∞, P(Rn)), (29)

is a nonempty, compact, convex, multi-valued map such that:

(a) (t, .) → Y(t, .) is measurable;
(b) ϖ1 → Y(t, ϖ1) is upper semi-continuous for a.e. t ∈ [0, ∞)

(H2) There exist bounded measurable functions

P1, P2 ∈ C0(Γ, L1((0, ∞), R+)),

and non-decreasing continuous functions

ψ1, ψ2 ∈ C0(R+, (0,+∞)), (30)

such that

|Y2(t, ϖ1, ϖ,x)| = sup
f1∈Y1(t, ϖ1, ϖ2,x)

| f1(t)| ≤ pi, ∀ϖ1, ϖ2 ∈ D0,

and
|Y2(t, ϖ1, ϖ2, x)| = sup

f2∈Y2(t, ϖ1, ϖ2,x)
| f2(t)| ≤ pi, ∀ϖ1, ϖ2 ∈ D0.

(H3) There exist positive constants ck, k = 1, . . . such that

|Ii
k(x, ϖ2(tk, x))| ≤ ci

k, ∀ϖ1, ϖ2 ∈ D0,
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and
∞

∑
k=1

ci
k < ∞,

for each i ∈ {1, 2}, then problem (4) has a unique random solution on (−∞,+∞).

Proof. Consider the operator

T ∈ C0(D∞ ×D∞ × Γ, P(D∞ ×D∞)),

defined by

T(x, ϖ1, ϖ2) = (T1(x, ϖ1, ϖ2), t2(x, ϖ1, ϖ2)), (ϖ1, ϖ2) ∈ D∞ ×D∞,

and
T(x, ϖ1, ϖ2) = {(h1, h2) ∈ D∞ ×D∞},

given by

h1 =



ϕ1(0,x)
A(A−1) +

ϕ1
A +

1
A−1

(∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk), x)

)
, t ∈ (−∞, 0],

ϕ1(0,x)
A−1 + 1

A−1

(∫ ∞

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x))

)
∫ t

0
f1(s, x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x)), t ∈ [0, ∞),

(31)

and

h2 =



ϕ2(0,x)
A(A−1) +

1
A−1

[∫ ∞

0
f2(s, x)ds

+
∞

∑
k=1

I2
k (ϖ1(tk, x), ϖ2(tk), x)

]
+

ϕ2

A
, t ∈ (−∞, 0],

ϕ2(0,x)
A−1 + 1

A−1

[∫ ∞

0
f2(s, x)ds +

∞

∑
k=1

I2
k (ϖ1(tk, x), ϖ2(tk, x), x))

]
+
∫ t

0
f2(s, x)ds +

∞

∑
k=1

I2
k (ϖ1(tk, x), ϖ2(tk, x), x)), t ∈ [0, ∞),

(32)

where

fi ∈ SYi ,u = { fi ∈ L1([0,+∞)× Γ,Rn) : fi ∈ Yi(t, ϖ1, ϖ2, x), ∀t ∈ J, ϖ1, ϖ2 ∈ D∞}.

Clearly fixed points of the operator T are random solutions of problem (4). For x ∈ Γ
fixed (ϖ1, ϖ2) ∈ D∞ ×D∞, consider

Tx ∈ C0(D∞ ×D∞, P(D∞ ×D∞)),

defined by
Tx(ϖ1, ϖ2) = (T1(x, ϖ1, ϖ2), t2(x, ϖ1, ϖ2)).

We will prove that T has a fixed point. Let α1(., .), α2(., .) ∈ D0 be a functions
defined by

α1 =

{
ϕ1(0, x), if t ∈ [0,+∞)
ϕ1(t, x), if t ∈ (−∞, 0],
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and

α2 =

{
ϕ2(0, x), if t ∈ [0,+∞)
ϕ2(t, x), if t ∈ (−∞, 0].

Then, it is not difficult to see that (α1, α2) is an element of D∞ ×D∞. Set

(ϖ1, ϖ2) = (z1(t, x) + α1(t, x), z2(t, x) + α2(t, x)), t ∈ (−∞,+∞).

It is not hard to see that z1, z2 satisfy

z1(t, w) = z2(t, w) = 0, t ∈ (−∞, 0].

If (ϖ1(., x), ϖ2(., x)) satisfies the integral equation

ϖ1(x, t) =
ϕ1(0, x)
A − 1

+
∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x), x), x)) +

∫ t

0
f1(s, ϖ1s(x), ϖ2s(x), x)ds

+
1

A − 1

(∫ ∞

0
f1(s, ϖ1s(x), ϖ2s(x), x)ds +

∞

∑
k=1

I1
k (ϖ1(tk, x), ϖ2(tk, x), x))

)
,

and

ϖ2(x, t) =
ϕ2(0, x)
A − 1

+
1

A − 1

(∫ ∞

0
f2(s, ϖ1s(x), ϖ2s(x), x)ds +

∞

∑
k=1

I2
k (ϖ1(tk, x), ϖ2(tk, x))

)

+
∫ t

0
f2(s, ϖ1s(x), ϖ2s(x), x)ds +

∞

∑
k=1

I2
k (ϖ1(tk, x), ϖ2(tk, x)),

we can decompose (ϖ1(., x), ϖ2(., x))) as

(ϖ1, ϖ2) = (z1 + α1, z2 + α2), t ∈ [0,+∞),

which implies that

(ϖ1t(x), ϖ2t(x)) = (z′1(x) + α′1(x), z′2(x) + α′2(x)), t ∈ [0,+∞),

and the function z1(., x), z2(., x) satisfies

z1(x, t) =
∫ t

0
f1(s, x)ds

+
∞

∑
k=1

I1
k (z1(tk, x) + α1(tk, x), z2(tk, x) + α2(tk, x), x)),

z2(x, t) =
∫ t

0
f2(s, x)ds

+
∞

∑
k=1

I2
k (z1(tk, x) + α1(tk, x), z2(tk, x) + α2(tk, x), x)),

(33)

where
fi ∈ Yi(t, z′1(x) + α′1(x), z′2(x) + α′2(x), x), a.e t ∈ [0,+∞).

Set
D′′

∞ = {z1, z2 ∈ D∞ : (z1(0, x), z2(0, x)) = (0, 0)}.

Let the operator
P ∈ C0(D′′

∞ ×D′′
∞ × Γ, P(D′′

∞ ×D′′
∞)),

we have, then

(z1, z2) → (P1(x, z1, z2), P2(x, z1, z2)), (z1, z2) ∈ D′′
∞ ×D′′

∞,

with
P(t, z1, z2)) = {(ρ1, ρ1) ∈ D′′

∞ ×D′′
∞},
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where

ρ1 =



0, t ∈ (−∞, 0]

∫ t

0
f1(s, x)ds+

+
∞

∑
k=1

I1
k (z1(tk, x) + α1(tk, x), z2(tk, x) + α2(tk, x)),

t ∈ [0,+∞)

and

ρ2 =



0 t ∈ (−∞, 0]

∫ t

0
f2(s, x)ds

+
∞

∑
k=1

I2
k (z1(tk, x) + α1(tk, x), z2(tk, x) + α2(tk, x)).

t ∈ [0,+∞)

Clearly fixed points of the operator P are random solutions of problem (4). For x ∈ Γ
fixed, consider

Px ∈ C0(D′′
∞ ×D′′

∞, P(D′′
∞ ×D′′

∞)),

for
(z1, z2) ∈ D′

∞ ×D′
∞,

by
Px(z1, z2) = (P1(x, z1, z2), P2(x, z1, z2)). (34)

Obviously, that the operator Tx has a fixed point is equivalent to Px has a fixed point.
We will prove that Tx verifies the claims of Theorem 3. The proof will be carried out in
several steps. First we should prove that Px is completely continuous.

Claim 1. Px(z1, z2) is convex for each (z1, z2) ∈ D′
0 ×D′

0. Indeed, if ρ1
1, ρ2

1 belong to P1(z1, z2),
then there exist

f 1
1 , f 2

1 ∈ SY1,z1+α1,z2+α2 ,

such that, for each t ∈ J, we have

ρi
1(t) =

∫ t

0
f i
1(s, x)ds +

∞

∑
k=1

I1
k (z1(tk, x) + α1(tk, x), z2(tk, x) + α2(tk, x)).

Let 0 ≤ δ ≤ 1. Then, for each ∈ (J, Γ), we have

(δρ1
1 + (1 − δ)ρ1

1) =
∫ t

0
(δ f i

1(s, x) + (1 − δ)δ)ds

+
∞

∑
k=1

I1
k (z1(tk, x) + α1(tk, x), z2(tk, x) + α2(tk, x)).

Because SY1,z1+α1,z2+α2 is convex (Y(t, z1, z2) has convex values), one has

(δρ1
1 + (1 − δ)ρ1

1) ∈ P1(x, z1, z2).

Similarly, for P2, we have

(δρ1
2 + (1 − δ)ρ1

2) ∈ P2(x, z1, z2).

Claim 2. Px maps bounded sets into bounded sets in D′′
∞ ×D′′

∞. Indeed, it is enough to show that
there exists a positive constant (l1, l2) such that for each (ρ1, ρ2) ∈ Px. Let

Bp × Bq =
{
(z1, z2) ∈ D′′

∞ ×D′′
∞ : ∥(z1, z2)∥ ≤ (p, q)

}
,
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where
∥(z1, z2)∥ =

(
∥z1∥D′∞ , ∥z2∥D′∞

)
.

Let (z1, z2) ∈ Bp × Bq, then for each t ∈ [0, ∞),

|ρ1| =

∣∣∣∣∣
∫ t

0
f1(s, x)ds +

∞

∑
k=1

I1
k (z1(tk, x) + α1(tk, x), z2(tk, x) + α2(tk, x))

∣∣∣∣∣
≤

∫ t

0
p1(s, x)ds +

∞

∑
k=1

c1
k

= l1
< ∞.

Similarly, for ρ2, we have

|ρ2| ≤
∫ t

0
p2(s, x)ds +

∞

∑
k=1

c2
k = l2 < ∞. (35)

Claim 3. Px maps bounded sets into equi-continuous sets of D′′
∞ ×D′′

∞. Let Bp × Bq be a bounded
set in D′

∞ ×D′′
∞ as in Step 1 is an equi-continuous set of D′′

∞ ×D′′
∞. Let τ1, τ2 ∈ [0, ∞) such

that τ1 < τ2 < ∞, and (z1, z2) ∈ Bp × Bq. Then

|ρi(τ2, x)− ρi(τ1, x)| ≤
∫ τ2

τ1

| fi(s, z1,s(x) + α1,s(x), z2,s(x) + α2,s(x), x)|ds

+ ∑
0<t<τ2−τ1

|Ii
k(z1(tk, x) + α1(tk, x), z2(tk, x) + α2(tk, x))|

≤
∫ τ2

τ1

pi(s, x)ds + ∑
0<t<τ2−τ1

c1
k . (36)

The RHS tends to 0 as τ2 − τ1 → 0. By a similar way we can prove the equi-continuity for
N2(Bp, Bq).

As a consequence of Claim 2 and 3, together with the Arzelà–Ascoli theorem, we conclude that

Px : D′′
∞ ×D′′

∞ → P(D′′
∞ ×D′′

∞),

is completely continuous.

Claim 4. Px has a closed graph.
Let (zn

1 , zn
2 ) be a sequence such that

(zn
1 , zn

2 ) → (z∗1 , z∗2) in D′
∞ ×D′

∞ as n → ∞,

and
ρn

i ∈ P1(x, zn
1 , zn

2 ), ρn
i → ρ∗i as n → ∞.

we shall prove that ρ∗i ∈ P1(x, z∗1 , z∗2).
Because ρn

i ∈ P1(x, zn
1 , zn

2 ), then there exists f n
i ∈ SYi ,zn

1+α1,zn
2+α2 such that

ρn
i =

∫ t

0
f n
1 (s, x)ds +

∞

∑
k=1

I2
k (z

n
1 (tk, x) + α1(tk, x), zn

2 (tk, x) + α2(tk, x)), t ∈ J.

We must prove that there exists f ∗i ∈ SYi ,z∗1+α1,z∗2+α2 such that

ρ∗i =
∫ t

0
f ∗1 (s, x)ds +

∞

∑
k=1

I2
k (z

∗
1(tk, x) + α1(tk, x), z∗2(tk, x) + α2(tk, x)), t ∈ J.

Consider the linear continuous operator

R : L1(J × Γ,Rn) → D′′
∞ ×D′′

∞,

defined by
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R( f )(t) =
(∫ t

0
f1(s)ds,

∫ t

0
f1(s)ds

)
. (37)

From Lemma 2, it follows that R ◦ SYi is a closed graph operator. Moreover, we have that

ρn
i −

∞

∑
k=1

Ii
k(z

n
1 (tk, x) + α1(tk, x), zn

2 (tk, x) + α2(tk, x)) ∈ R(SYi ,z∗1+α1,z∗2+α2).

Because (zn
1 , zn

1 ) → (z∗1 , z∗1) and ρn
i → ρ∗i there is f ∗i ∈ SYi ,z∗1+α1,z∗2+α2 such that

ρ∗i =
∫ t

0
f ∗1 (s, x)ds +

∞

∑
k=1

I2
k (z

∗
1(tk, x) + α1(tk, x), z∗2(tk, x) + α2(tk, x)), t ∈ J.

Therefore, Px is completely continuous.

Claim 5. There exist a priori bounds on solutions

M = {(z1, z2) ∈ D′′
∞ ×D′′

∞ : (z1, z2) ∈ λ(x)Px(z1, z2), λ(x) ∈ (0, 1)}, (38)

is bounded for some measurable function λ : Γ → R. Then

z1 ∈ λ(x)P1(x, z1, z2), z2 ∈ λ(x)P2(x, z1, z2).

For some 0 < λ(x) < 1, we have

|z1| ≤ |λ(x)|
∫ t

0
( f1(s, z1,s(x) + α1,s(x), z2,s(x) + α2,s(x), x))ds

+ ∑
0<tk<t

(
I1
k (z1(tk, x) + α1(tk, x), z2(tk, x) + α2(tk, x))

)
≤

∫ t

0
p1(s, x)ds +

∞

∑
k=1

c1
k .

Similarly

|z2| ≤
∫ t

0
p2(s, x)ds +

∞

∑
k=1

c2
k . (39)

By (39), we have

|z1|+ |z2| ≤
2

∑
i=1

∫ t

0
pi(s, x)ds +

2

∑
i=1

∞

∑
k=1

ci
k.

This implies that for each t ∈ [0, ∞) and there exist positive constants β > 0 such that

∥z1∥D0 + ∥z2∥D′′
∞
≤

2

∑
i=1

∫ ∞

0
pi(s, x)ds +

2

∑
i=1

∞

∑
k=1

ci
k ≤ β. (40)

Finally from (40) there exists a constant β1, β2 > 0 such that

∥z1∥D′∞ ≤ β1 and ∥z2∥D′∞ ≤ β2.

Set

U = {(z1, z2) ∈ D′
∞ ×D′

∞ : (∥z1∥D′∞ , ∥z1∥D′∞) < (β1 + 1, β2 + 1)},

Px : Ū → P(D′
∞ ×D′′

∞) is completely continuous. From the choice of U, there is no z1, z2 ∈ ∂U
such that (z1, z2) ∈ λ(x)Px(z1, z2), for some λ(x) ∈ (0, 1). Thus by Theorem 3 the operator Px
has at least one fixed (z1, z2) in U. Hence Tx has a fixed point (ϖ1, ϖ2), which is a random solution
to problem (4).
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5. Conclusions

This work falls within a series of related research carried out by the same authors, and
many results were achieved using new recent methods related to iterative theory and de-
veloping some techniques to ensure the solutions exist according to different requirements
imposed by the random action and delay.

We sought to give as complete and objective studies as possible of the main result in
coupled random first-order impulsive differential equations with infinite delay. However,
it is surely true that the works that lies in the field of scientific interests of this model can be
covered in somewhat more detail. Examples of genuine processes and phenomena explored
in physics, chemical technology, population dynamics, biotechnology, and economics are
described by delayed impulsive differential systems with the presence of new random
properties. The novelties of our contribution are follows:

1. Applying a novel random fixed-point theorem to a system of impulsive random
differential equations was our primary objective.

2. We provided a random application of the separable vector-valued Banach space
Leray–Schauder fixed-point theorem in nonlinear case.

Extending these results to consider the question of stability (qualitative studies) will make
it possible to advance the study in this direction, which will be our next project, see [30–34].
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