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Abstract: Invoking the matrix transfer technique, we propose a novel numerical scheme to solve
the time-fractional advection–dispersion equation (ADE) with distributed-order Riesz-space frac-
tional derivatives (FDs). The method adopts the midpoint rule to reformulate the distributed-order
Riesz-space FDs by means of a second-order linear combination of Riesz-space FDs. Then, a central
difference approximation is used side by side with the matrix transform technique for approximat-
ing the Riesz-space FDs. Based on this, the distributed-order time-fractional ADE is transformed
into a time-fractional ordinary differential equation in the Caputo sense, which has an equivalent
Volterra integral form. The Simpson method is used to discretize the weakly singular kernel of the
resulting Volterra integral equation. Stability, convergence, and error analysis are presented. Finally,
simulations are performed to substantiate the theoretical findings.

Keywords: advection–dispersion equation; matrix transform method; convergence analysis; distributed-
order; Riesz fractional derivative

MSC: 26A33; 34A08; 65D15; 35R11

1. Introduction

In recent years, the theory and applications of derivatives and integrals of fractional
order have played an important role in many fields [1–7]. Anomalous relaxation is well
explained in many complex systems using multi-term fractional order models. As a
result, multi-term partial differential equations (PDEs) of fractional order have found
widespread application in describing real-world physical phenomena, as is the case of
anomalous diffusive effects, damping, magnetic resonance imaging, and the mechanical
and physical behavior of oxygen transport through capillaries [8–10]. In [11], the concept
of distributed-order fractional operators and, recently, distributed-order fractional PDEs,
have been generalized. However, the distributed order FDs constitute a topic that is not
new. Indeed, Caputo addressed such kind of operators in 1969, in the context of properties
of inelastic media. The problem was solved in 1995 and, later, in [12], a viscoelastic model
involving a multi-term FD was expanded to distributed order. FDs of distributed-order
are operators that are integrated, within a specified range, over the order of differentiation.
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Fractional PDEs of distributed-order are an extension of single- and multi-term fractional
PDEs [13–15]. Several authors have investigated various numerical approaches for solving
fractional models of distributed order. Diethelm et al. [16] suggested an algorithm for
approximating the solution of distributed-order differential equations. Ford et al. [17] used
the implicit finite difference technique to provide an efficient numerical method to address
the time distributed-order diffusion problem. For the time distributed-order Riesz-space
FD model, Ye et al. [18] investigated an efficient numerical technique over bounded do-
mains. Yang et al. [19] addressed a numerical strategy based on the WSGD-OSC technique
for simulating the distributed order time fractional reaction-diffusion two-dimensional
equation. Hu et al. [20] reported results of an implicit numerical approach for two-sided
space- and distributed-order time-fractional ADEs. Zaky and Machado [21] proposed
spectral tau approaches to solve the fractional diffusion problem with distributed-order
with time and Dirichlet boundary conditions. Shi et al. [22] addressed an approach for the
Riesz-space multi-term and distributed-order time-fractional wave equation based on the
unstructured mesh finite element technique on an irregular convex domain. Aboelenen [23]
developed a scheme based on the local discontinuous Galerkin finite element technique for
solving distributed-order time- and Riesz-space-fractional PDEs. Chen et al. [24] proposed
a finite difference/Laguerre spectral approximation for distributed-order time-fractional
reaction-diffusion equations. Morgado et al. [25] introduced a Chebyshev collocation
approach for providing approximate solutions to the distributed-order time-fractional
diffusion equation. Zaky et al. [26] introduced a spectral Legendre collocation scheme for
the initial fractional differential equation of distributed order. Fei and Huang [27] derived
a Galerkin Legendre spectral technique for approximating the solution of time-fractional
fourth-order distributed-order PDEs in two dimensions. The composite Simpson approach
was used with the distributed-order integral term, whereas the L2− 1 method was adopted
to approximate the multi-term order Caputo FDs. Zhang et al. analyzed a numerical
approach for solving the two-dimensional distributed-order Riesz-space ADE using the
Galerkin–Legendre spectral with the Crank–Nicolson alternating direction implicit method.

In this paper, the following time-fractional ADE with distributed-order Riesz-space
FDs is considered:

CDα
t z(x, t) =

∫ 2

1
κ(p)

∂pz(x, t)
∂xp dp +

∫ 2

1
κ(q)

∂qz(x, t)
∂xq dq + f (x, t, z), (1)

with initial and boundary conditions (IBCs):

z(0, t) = h1(t), z(L, t) = h2(t),

z(x, 0) = f (x), (2)

in which CDα
t z(x, t) is the order α ∈ (0, 1] Caputo derivative, and κ(p) and κ(q) are

continuous weight functions satisfying∫ 2

1
κ(p)dp = k1 > 0,

∫ 2

1
κ(q)dq = k2 > 0.

Also, ∂ζ z(x,t)
∂xζ stands for the order ζ ∈ (1, 2] Riesz fractional operator, and h1(t), h2(t)

and f (x) are assumed continuous.
To obtain an approximation to (1), we employ stable numerical techniques based on

the Simpson and finite difference methods. For this purpose, we use the finite difference
scheme based on the matrix transform approach [28] to discretize the space-fractional ADE
and the Simpson approach to discretize the time-fractional differential equations. To the
best of our knowledge, this technique has not been used so far to approximate the solution
of (1). We estimate the Riesz derivatives using the matrix transform approach, which
converts (1) into a system of time-fractional differential equations. Finally, the Simpson
scheme is employed for time-stepping, which avoids the need for solving nonlinear systems
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at each step. The theoretical convergence and the stability of the approximate solution are
assessed. The advantage of using this new approach for the introduced problem is related
to the fact that the numerical method includes simple calculations. Thus, the method is easy
to simulate, and it is a powerful mathematical tool to compute the approximate solution
of various types of models with little additional work. The proposed method can be used
reliably and effectively to obtain approximate solutions for many types of models.

The organization of this paper is as mentioned in the following. In Section 2, some
preliminary notions of fractional calculus are introduced. In Section 3, the numerical
schemes for approximating the solution of (1) are proposed. Moreover, the error bound
and stability are discussed. In Section 4, examples are given to report the accuracy and
effectiveness of the new technique. Finally, some conclusions are provided in Section 5.

2. Preliminary Notions and Used Notation

We introduce definitions of fractional differentiation and integration of order
θ ∈ (n− 1, n], with n ∈ N, which are important in subsequent sections.

Definition 1 ([2]). Let θ ∈ (0, 1]. The Riemann-Liouville integral of order θ of a function u(x, t) is:

Iθ
t u(x, t) =

1
Γ(θ)

∫ t

0
(t− σ)θ−1u(x, σ)dσ. (3)

Also, the Riemann–Liouville and Caputo FDs of order θ of u(x, t) are:

Dθ
t u(x, t) =

dn

dtn In−θ
t u(x, t), θ ∈ (n− 1, n], n ∈ N∪ {0},

CDθ
t u(x, t) = In−θ

t
dn

dtn u(x, t). (4)

Definition 2 ([29]). The Riesz fractional differential operator of order θ ∈ (n− 1, n] over the finite
interval [0, L] is:

∂θu(x, t)
∂|x|θ

= −Kθ

(
0Dθ

x + xDθ
L
)
u(x, t), (5)

where

0Dθ
xu(x, t) =

1
Γ(n− θ)

∂n

∂xn

∫ x

0
(x− σ)n−θ−1u(σ, t)dσ,

xDθ
Lu(x, t) =

1
Γ(n− θ)

∫ L

x
(σ− x)n−θ−1u(σ, t)dσ,

and Kθ = 1
2 cos( θπ

2 )
.

Definition 3 ([30]). Let {ψn} be the complete set of orthonormal eigenfunctions and λ2
n be the

corresponding eigenvalues for the Laplacian
(
− ∆

)
over a bounded domain Ω, that is,(

− ∆
)
ψn = λ2

nψn, on Ω,

B(ψ) = 0, on ∂Ω, (6)

where B(ψ) is the given homogeneous boundary condition. Suppose that

Fρ =

{
f =

∞

∑
n=1

fnψn, fn = 〈 f , ψn〉 :
∞

∑
n=1

∣∣ fn
∣∣2∣∣λ∣∣ρn < ∞, ρ = max(α, 0)

}
. (7)
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Then, for any given function f ∈ Fρ,
(
− ∆

) α
2 : Fρ → L2(Ω) is described by:

(
− ∆

) α
2 f =

∞

∑
n=1

fn
(
λ2

n
) α

2 ψn. (8)

Definition 4 ([28]). Let {ψn} be the complete set of orthonormal eigenfunctions and λ2
n be the

corresponding eigenvalues for the Laplacian
(
− ∆

)
over a bounded domain Ω subject to the

homogeneous boundary conditions. Then,

(
− ∆

) α
2 f =


(
− ∆

)m f , i f α = 2m, m = 0, 1, 2, . . .,(
− ∆

) α
2−m(− ∆

)m f , i f m− 1 < α
2 < m, m = 1, 2, . . .,

∑∞
n=1 λα

n〈 f , ψn〉ψn, i f α < 0.
(9)

Proposition 1 ([2]). For a function f (t) and α ∈ (n − 1, n], with n ∈ N, some practical and
useful properties of the Caputo FD and Riemann–Liouville fractional integral are:

1. Iα
t (

CDα
t f (t)) = f (t)−∑n−1

i=0
f (i)(0)ti

i! , t > 0,
2. CDα

t (Iα
t f (t)) = f (t),

3. CDα
t tl =

{
0, l < dαe,

Γ(l+1)
Γ(l−α+1) tl−α, l ≥ dαe,

4. Iα
t Iα′

t f (t) = Iα+α′
t f (t),

5. Iα
t tl = Γ(l+1)

Γ(l+α+1) tl+α.

Lemma 1 ([31]). For the Riesz FD of order θ ∈ (n− 1, n], with n ∈ N, and a given function
u(x, t) over the infinite domain −∞ ≤ x ≤ ∞, the next condition holds:

∂θu(x, t)
∂|x|θ

= −
(
− ∆

) θ
2 u(x, t) = −Kθ

(
−∞Dθ

x + xDθ
∞
)
u(x, t). (10)

3. Numerical Method

This section provides a numerical approach to solve (1) by applying the finite difference
method via the matrix transform.

We use the midpoint approach to estimate the supplied integrals on the right-hand
side of Equation (1), yielding

CDα
t z(x, t) = −

∫ 2

1
κ(p)

(
− ∂2

∂x2

) p
2 z(x, t)dp−

∫ 2

1
κ(q)

(
− ∂2

∂x2

) q
2 z(x, t)dq + f (x, t, z)

= − 1
T

T

∑
i=1

κ(pi)
(
− ∂2

∂x2

) pi
2 z(x, t)− 1

T′
T′

∑
j=1

κ(qj)
(
− ∂2

∂x2

) qj
2 z(x, t) + f (x, t, z)

+O
(
(∆σ)2)+O((∆σ′)2), (11)

where

1 = σ0 < σ1 < . . . < σT = 2, ∆σ =
1
T

, pi =
σi + σi−1

2
, i = 1, 2, . . . , T,

1 = σ′0 < σ′1 < . . . < σ′T′ = 2, ∆σ′ =
1
T′

, qj =
σ′j + σ′j−1

2
, j = 1, 2, . . . , T′.
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3.1. Matrix Transform Method for Approximating the Riesz-Space Fractional Derivative

We use the matrix transform scheme introduced by Ilić [28] for approximating the
Riesz-space FD, in order to spatially discretize the problem (1). First, we address the
time-fractional ADE under the IBCs given in Equation (2):

CDα
t z(x, t) = −κ(p)

(
− ∂2

∂x2

) p
2 z(x, t)− κ(q)

(
− ∂2

∂x2

) q
2 z(x, t) + f (x, t, z). (12)

Let xl = l∆x, l = 0, 1, . . . , n, ∆x = L
n and z(xl , t) = zl(t). Then, we apply the central

difference method of second-order with respect to the space variable on the right side of
Equation (12), to obtain

CDα
t zl(t) = −

[
κ(p)

(
− δ2

x

(∆x)2
(
1 + δ2

x
12
))+ κ(q)

(
− δ2

x

(∆x)2
(
1 + δ2

x
12
))]zl(t) + fl(t, z). (13)

Thus, the matrix form of relation (13) can be obtained as:

CDα
t Z(t) = −

[
κ(p) + κ(q)

]A−1B
(∆x)2Z(t) + F(t,Z(t)),

Z(0) = Z0, (14)

where

Z(t) = [z1(t), z2(t), . . . , zn−1(t)]T ,

Z(0) = [z1(0), z2(0), . . . , zn−1(0)]T ,

and A and B are diagonally dominant matrices of size (n− 1)× (n− 1) given by

A =



5
6

1
12 0 . . . 0 0

1
12

5
6

1
12 0 . . . 0

0 1
12

5
6

1
12 0 . . .

...
. . . . . . . . . . . .

...
. . . 0 1

12
5
6

1
12 0

0 . . . 0 1
12

5
6

1
12

0 0 . . . 0 1
12

5
6


(n−1)×(n−1)

,

B =



2 −1 0 . . . 0 0
−1 2 −1 0 . . . 0
0 −1 2 −1 0 . . .
...

. . . . . . . . . . . .
...

. . . 0 −1 2 −1 0
0 . . . 0 −1 2 −1
0 0 . . . 0 −1 2


(n−1)×(n−1)

.

As A and B are tridiagonal Toeplitz, then by using the definition of general tridiagonal
Toeplitz matrix in [32], we have

A = QΘQ−1,

B = Q̃Θ̃Q̃−1, (15)

and

Θ = diag
(
λ1, λ2, . . . , λn−1

)
, Q =

(
ς1, ς2, . . . , ςn−1

)
,

Θ̃ = diag
(
λ̃1, λ̃2, . . . , λ̃n−1

)
, Q̃ =

(
ς̃1, ς̃2, . . . , ς̃n−1

)
, (16)
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in which λv, λ̃v and ςv, ς̃v are the eigenvalues and eigenvectors of the matrices A and B
given by

λv = 1− 1
3

sin2 vπ

2n
, λ̃v = 4 sin2 vπ

2n
,

ςv = ς̃v =
(

sin
π

2n
, sin

2π

2n
, . . . , sin

(n− 1)π
2n

)T , v = 1, 2, . . . , n− 1. (17)

Therefore,

A−1B =
(
QΘQ−1)−1(Q̃Θ̃Q̃−1)

= QΘ−1Θ̃Q−1 = Q diag
( λ̃1

λ1
,

λ̃2

λ2
, . . . ,

λ̃n−1

λn−1

)
Q−1. (18)

Secondly, by means of Equation (9), we can write Equation (11) as

CDα
t z(x, t) = − 1

T

T

∑
i=1

κ(pi)
(
− ∂2

∂x2

) pi
2 −1(− ∂2

∂x2

)
z(x, t)−

1
T′

T′

∑
j=1

κ(qj)
(
− ∂2

∂x2

) qj
2 −1(− ∂2

∂x2

)
z(x, t) + f (x, t, z).

(19)

The matrix form of the Laplacian operator under the given boundary conditions in

Equation (2) is m
{
− ∂2

∂x2 z(x, t)
}
= A−1B

(∆x)2 . For any pi, i = 1, 2, . . . , T, and qj, j = 1, 2, . . . , T′,
we assume that the fractional Laplacian with homogeneous boundary conditions and initial
value satisfies

m
{(
− ∂2

∂x2

) pi
2 −1

}
=
(A−1B
(∆x)2

) pi
2 −1,

m
{(
− ∂2

∂x2

) qj
2 −1

}
=
(A−1B
(∆x)2

) qj
2 −1. (20)

Thus, the matrix form of the relation (19) with the initial condition can be obtained by

CDα
t Z(t) = −

1
T

T

∑
i=1

κ(pi)
(A−1B
(∆x)2

) pi
2 −1(A−1B

(∆x)2

)
Z(t)−

1
T′

T′

∑
j=1

κ(qj)
(A−1B
(∆x)2

) qj
2 −1(A−1B

(∆x)2

)
Z(t) + F(t,Z(t))

= −
[ 1

T

T

∑
i=1

κ(pi)

(∆x)pi

(
Q diag

( λ̃1

λ1
,

λ̃2

λ2
, . . . ,

λ̃n−1

λn−1

)
Q−1

) pi
2
+

1
T′

T′

∑
j=1

κ(qj)

(∆x)qj

(
Q diag

( λ̃1

λ1
,

λ̃2

λ2
, . . . ,

λ̃n−1

λn−1

)
Q−1

) qj
2
]
Z(t) + F(t,Z(t)),

Z(0) = Z0.

(21)

Considering

Ψp =
1
T

T

∑
i=1

κ(pi)

(∆x)pi

(
Q diag

( λ̃1

λ1
,

λ̃2

λ2
, . . . ,

λ̃n−1

λn−1

)
Q−1

) pi
2

,

Φq =
1
T′

T′

∑
j=1

κ(qj)

(∆x)qj

(
Q diag

( λ̃1

λ1
,

λ̃2

λ2
, . . . ,

λ̃n−1

λn−1

)
Q−1

) qj
2

,
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we can rewrite the system (21) as:

CDα
t Z(t) = −

(
Ψp + Φq

)
Z(t) + F(t,Z(t)),

Z(0) = Z0. (22)

3.2. Numerical Scheme Based on the Simpson Formula for Equation (22)

This subsection studies a scheme for obtaining the approximate solution of the follow-
ing system:

CDα
t w(t) = f (t, w(t)), w(n)(0) = w(n)

0 , n = 0, . . . , [α]. (23)

To solve (23), we apply Iα
t to both sides of (23), to obtain

w(t) =
[α]

∑
r=0

w(r)
0

tr

r!
+

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ, w(τ))dτ. (24)

To calculate the given integral on the right-hand side of Equation (24), we utilize the
estimation∫ tn+1

0
(tn+1 − τ)α−1 f (τ, w(τ))dτ =

∫ tn+1

0
(tn+1 − τ)α−1 f̃n+1(τ, w(τ))dτ, (25)

in which f̃n+1 is the piecewise quadratic interpolation of f at tj, tj+ 1
2
, j = 0, 1, 2, . . . , n + 1.

Applying the standard methods of Simpson theory, we obtain the integral term on the
right-hand side of Equation (25) as:

∫ tn+1

0
(tn+1 − τ)α−1 f̃n+1(τ, w(τ))dτ =

n+1

∑
j=0

ϑj,n+1 f (tj, w(tj)) +
n

∑
j=0

ϑ′j,n+1 f (tj+ 1
2
, w(tj+ 1

2
)), (26)

in which

ϑj,n+1 =



4(∆t)α

((
n+2
)α+2

−
(

n+1
)α+2

)
α(α+1)(α+2)

−
(∆t)α

((
n+1
)α+1

−3
(

n+2
)α+1

)
α(α+1) +

(∆t)α
(

n+2
)α

α , j = 0,

4(∆t)α

((
n+2−j

)α+2
−
(

n−j
)α+2

)
α(α+1)(α+2)

−
(∆t)α

((
n+2−j

)α+1
+6
(

n+1−j
)α+1

+
(

n−j
)α+1

)
α(α+1) , 1 ≤ j ≤ n,

2(∆t)α

α(α+1)(α+2)

( 2−α
2
)
, j = n + 1,

(27)

and

ϑ′j,n+1 =
8(∆t)α

((
n + 2− j

)α+2 −
(
n + 1− j

)α+2
)

α(α + 1)(α + 2)
−

4(∆t)α
((

n + 2− j
)α+1

+
(
n + 1− j

)α+1
)

α(α + 1)
, 0 ≤ j ≤ n.

(28)

To make the explicit method for Equation (23) to avoid iterations, we substitute the
given integral on the right-hand side of (24) by the product rectangle formula, to compute
the predictor of wn+1. Thus, we have
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wn+1 =
[α]

∑
r=0

w(r)
0

tr
n+1
r!

+
1

Γ(α)

( n

∑
j=0

ϑj,n+1 f (tj, wj) + ϑn+1,n+1 f (tn+1, wR
n+1)+

n

∑
j=0

ϑ′j,n+1 f (tj+ 1
2
, wj+ 1

2
)
)

,

wR
n+1 =

[α]

∑
r=0

w(r)
0

tr
n+1
r!

+
1

Γ(α)

n

∑
j=0

ϑ′′j,n+1 f (tj, wj),

(29)

where the symbols ϑj,n+1 and ϑ′j,n+1 are shown in (27) and (28), respectively, and

ϑ′′j,n+1 =
(∆t)α

((
n + 1− j

)α −
(
n− j

)α
)

α
. (30)

Now, to compute the values wj+ 1
2

in Equation (29). We apply the product rectangle
formula to obtain the values wj+ 1

2
. Then, we have

wn+ 1
2
=

[α]

∑
r=0

w(r)
0

tr
n+ 1

2

r!
+

1
Γ(α)

n

∑
j=0

ϑ′′′j,n+1 f (tj, wj), (31)

in which

ϑ′′′j,n+1 =
(∆t)α

((
n + 1

2 − j
)α −

(
n− 1

2 − j
)α
)

α
, 0 ≤ j ≤ n. (32)

Therefore, a numerical method to solve Equation (23) is shown in Equations (29) and (31),
with the weights ϑj,n+1, ϑ′j,n+1, ϑ′′j,n+1 and ϑ′′′j,n+1, respectively. Let tj = j∆t, ∆t = T

n ,
j = 0, 1, . . . , n. For obtaining the approximate solutions of (22) based on the Simpson
formula, we consider

CDα
t Z(t) = F(t,Z(t)),
Z(0) = Z0. (33)

in which

F(t,Z(t)) = −
(
Ψp + Φq

)
Z(t) + F(t,Z(t)).

Thus, using the Simpson formula in (33), we obtain:

Zn+1 =
[α]

∑
r=0

Z(r)
0

tr
n+1
r!

+
1

Γ(α)

( n

∑
j=0

ϑj,n+1F(tj,Zj) + ϑn+1,n+1F(tn+1,ZR
n+1)+

n

∑
j=0

ϑ′j,n+1F(tj+ 1
2
,Zj+ 1

2
)
)

,

ZR
n+1 =

[α]

∑
r=0

Z(r)
0

tr
n+1
r!

+
1

Γ(α)

n

∑
j=0

ϑ′′j,n+1F(tj,Zj),

Zn+ 1
2
=

[α]

∑
r=0

Z(r)
0

tr
n+ 1

2

r!
+

1
Γ(α)

n

∑
j=0

ϑ′′′j,n+1F(tj,Zj),

(34)

Therefore, the numerical method to solve Equation (33) is shown in Equation (34),
with the weights ϑj,n+1, ϑ′j,n+1, ϑ′′j,n+1 and ϑ′′′j,n+1, respectively.
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Theorem 1 (Error analysis). Let F(t,Z(t)) be Lipschitz continuous. Also, suppose that the
approximate solution Z of (33) with the initial condition satisfies∣∣∣ ∫ tn+1

0
(tn+1 − τ)α−1CDα

t Z(τ)dτ −
n

∑
j=0

ϑ′′j,n+1
CDα

t Z(tj)
∣∣∣ ≤ Ct$

n+1(∆t)δ, $ ≥ 0, δ > 0. (35)

Then, we obtain∣∣∣Z(tn+1)−ZR
n+1

∣∣∣ ≤ C1(∆t)δ +C2 max
0≤j≤n

∣∣Z(tj)−Zj
∣∣, C1 > 0, C2 > 0. (36)

Proof. According to the function structure ZR
n+1 in Equation (34), we obtain

∣∣∣Z(tn+1)−ZR
n+1

∣∣∣ = 1
Γ(α)

∣∣∣ ∫ tn+1

0
(tn+1 − τ)α−1F(τ,Z(τ))dτ −

n

∑
j=0

ϑ′′j,n+1F(tj,Zj)
∣∣∣

≤ 1
Γ(α)

∣∣∣ ∫ tn+1

0
(tn+1 − τ)α−1CDα

t Z(τ)dτ −
n

∑
j=0

ϑ′′j,n+1
CDα

t Z(tj)
∣∣∣

+
1

Γ(α)

n

∑
j=0

ϑ′′j,n+1
∣∣F(tj,Z(tj))− F(tj,Zj)

∣∣
≤

Ct$
n+1(∆t)δ

Γ(α)
+

1
Γ(α)

n

∑
j=0

ϑ′′j,n+1
∣∣Z(tj)−Zj

∣∣
≤ C1(∆t)δ +C2 max

0≤j≤n

∣∣Z(tj)−Zj
∣∣ n

∑
j=0

ϑ′′j,n+1

≤ C1(∆t)δ +C2 max
0≤j≤n

∣∣Z(tj)−Zj
∣∣. (37)

Theorem 2 (Convergence analysis). Suppose that the approximate solution Z of Equation (33)
with the initial condition satisfies

∣∣∣ ∫ tn+1

0
(tn+1 − τ)α−1CDα

t Z(τ)dτ −
n

∑
j=0

ϑ′′j,n+1
CDα

t Z(tj)
∣∣∣ ≤ C1t$1

n+1(∆t)δ1 , $1 ≥ 0, δ1 > 0

∣∣∣ ∫ t
n+ 1

2

0
(tn+1 − τ)α−1CDα

t Z(τ)dτ −
n

∑
j=0

ϑ′′′j,n+1
CDα

t Z(tj)
∣∣∣ ≤ C2t$2

n+1(∆t)δ2 , $2 ≥ 0, δ2 > 0

∣∣∣ ∫ t
n+ 1

2

0
(tn+1 − τ)α−1CDα

t Z(τ)dτ −
n

∑
j=0

ϑj,n+1
CDα

t Z(tj)− ϑn+1,n+1
CDα

t Z(tj)

−
n

∑
j=0

ϑ′j,n+1
CDα

t Z(tj+ 1
2
)
∣∣∣ ≤ C3t$3

n+1(∆t)δ3 , $3 ≥ 0, δ3 > 0. (38)

Then, we obtain

max
0≤j≤M

∣∣Z(tj)−Zj
∣∣ = O((∆t)ϑ1), (39)

in which ϑ1 = min{δ1 + α, δ2, δ3} and M = [ T
∆t ].

Proof. By means of Theorem 1, we have∣∣∣Z(tn+1)−ZR
n+1

∣∣∣ ≤ C1(∆t)δ +C2 max
0≤j≤n

∣∣Z(tj)−Zj
∣∣. (40)
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Also, by the construction of Zn+ 1
2

in Equation (34) and Theorem 1, we obtain∣∣∣Z(tn+ 1
2
)−Zn+ 1

2

∣∣∣ ≤ C3(∆t)δ2+

C4

n

∑
j=0

ϑ′′′j,n+1
∣∣Z(tj)−Zj

∣∣ ≤ C3(∆t)δ2 +C4 max
0≤j≤n

∣∣Z(tj)−Zj
∣∣. (41)

Then,∣∣∣Z(tj+1)−Zj+1

∣∣∣ = 1
Γ(α)

∣∣∣ ∫ tn+1

0
(tn+1 − τ)α−1F(τ,Z(τ))dτ −

n

∑
j=0

ϑj,n+1F(tj,Zj)−

ϑn+1,n+1F(tn+1,ZR
n+1)−

n

∑
j=0

ϑ′j,n+1F(tj+ 1
2
,Zj+ 1

2
)
∣∣∣

=
1

Γ(α)

∣∣∣ ∫ tn+1

0
(tn+1 − τ)α−1CDα

t Z(τ)dτ−

n+1

∑
j=0

ϑj,n+1
CDα

t Z(tj)−
n+1

∑
j=0

ϑ′j,n+1
CDα

t Z(tj+ 1
2
)
∣∣∣+

1
Γ(α)

n

∑
j=0

ϑj,n+1
(
F(tj,Z(tj))− F(tj,Zj)

)
+

1
Γ(α)

ϑn+1,n+1
(
F(tn+1,Z(tn+1))− F(tn+1,ZR

n+1)
)
+

1
Γ(α)

n

∑
j=0

ϑ′j,n+1

∣∣∣F(tj+ 1
2
,Z(tj+ 1

2
))− F(tj+ 1

2
,Zj+ 1

2
)
∣∣∣

≤ C5(∆t)δ3 +C6

n

∑
j=0

ϑj,n+1
∣∣Z(tj)−Zj

∣∣+
C7ϑn+1,n+1

(
C1(∆t)δ +C2 max

0≤j≤n

∣∣Z(tj)−Zj
∣∣)+

C8

n

∑
j=0

ϑ′j,n+1

(
C3(∆t)δ2 +C4 max

0≤j≤n

∣∣Z(tj)−Zj
∣∣)

≤ C5(∆t)δ3 +C7(∆t)δ1+α +C8(∆t)δ2 +C9 max
0≤j≤n

,∣∣Z(tj)−Zj
∣∣ ≤ C(∆t)δ1+α,δ2,δ3 .

(42)

Thus, the theorem is proven.

Theorem 3 (Stability analysis). Suppose that Zn+1 and Z′n+1 are the approximate solutions of

Equation (33) with given initial condition Z(r)
0 and Z′0(r), respectively. Then,∣∣∣Zn+1 −Z′n+1

∣∣∣ ≤ K ‖ Z0 −Z′0 ‖∞, (43)

for any K > 0, and the numerical method described by Equation (34) is numerically stable.

Proof. Due to Equation (33), we obtain
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∣∣∣Zn+1 −Z′n+1

∣∣∣ = ∣∣∣ [α]

∑
r=0

Z(r)
0

tr
n+1
r!

+
1

Γ(α)

( n

∑
j=0

ϑj,n+1F(tj,Zj) + ϑn+1,n+1F(tn+1,ZR
n+1)+

n

∑
j=0

ϑ′j,n+1F(tj+ 1
2
,Zj+ 1

2
)
)
−

[ [α]

∑
r=0

Z′0(r)
tr
n+1
r!

+
1

Γ(α)

( n

∑
j=0

ϑj,n+1F(tj,Z′j) + ϑn+1,n+1F(tn+1,Z′Rn+1)+

n

∑
j=0

ϑ′j,n+1F(tj+ 1
2
,Z′j+ 1

2
)
)]∣∣∣

≤
[α]

∑
r=0
‖ Z0 −Z′0 ‖∞

tr
n+1
r!

+
1

Γ(α)

( n

∑
j=0

ϑj,n+1
(
F(tj,Zj)− F(tj,Z′j)

)
+

ϑn+1,n+1
(
F(tj,ZR

n+1)− F(tj,Z
′R
n+1)

)
+

n

∑
j=0

ϑ′j,n+1

∣∣∣F(tj+ 1
2
,Zj+ 1

2
)−

F(tj+ 1
2
,Z′j+ 1

2
)
∣∣∣)

≤ K ‖ Z0 −Z′0 ‖∞ +C1 max
0≤j≤n

∣∣Zj −Z′j
∣∣+ C2 max

0≤j≤n

∣∣ZR
n+1 −Z′Rn+1

∣∣+
C3 max

0≤j≤n

∣∣Zn+ 1
2
−Z′n+ 1

2

∣∣
≤ K1 ‖ Z0 −Z′0 ‖∞ +K2 max

0≤j≤n

∣∣Zj −Z′j
∣∣

≤ K ‖ Z0 −Z′0 ‖∞ .

(44)

Thus, the theorem is proven.

4. Illustrative Examples

This section presents numerical results computed for some examples, by applying the
proposed method for a two-dimensional time-fractional ADE with distributed-order Riesz-
space FDs. All calculations were carried out with the software package MATLAB 2016b on
a PC with 8 GB of RAM. We illustrate the accuracy of the new method by computing the
maximum absolute error E(x, t):

E(x, t) = max |z(xl , tj)− zn|, (45)

where z(x, t) and zn denote the exact and approximate solutions, respectively.

Example 1. We address the time-fractional and distributed-order Riesz-space fractional ADE:

CDα
t z(x, t) =

∫ 2

1
κ(p)

∂pz(x, t)
∂xp dp +

∫ 2

1
κ(q)

∂qz(x, t)
∂xq dq ++z(x, t) + f (x, t), (46)

under the IBCs

z(0, t) = 0, z(1, t) = t2(1− t)2,

z(x, 0) = 0, (47)
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in which κ(p) = 8Γ( 7
2−p) cos( pπ

2 )

15
√

π
, κ(q) = 8Γ( 7

2−q) cos( qπ
2 )

15
√

π
and

f (x, t) =
( 2

Γ(3− α)
t2−α +

24
Γ(5− α)

t4−α − 12
Γ(4− α)

t3−α
)

x
5
2 +

2t2(1− t)2
[
−
√

1− x
ln(1− x)

+

√
xx− 1
ln(x)

]
− x

5
2 t2(1− t)2.

The exact solution for this Example 1 is z(x, t) = x
5
2 t2(1− t)2. Figure 1 depicts the solution

for Example 1 using the proposed method on the interval [0, 1]× [0, 1] with various choices of n
for α = 0.75 and T = T′ = 10. Figure 2 compares the exact and numerical solutions at t = 0.5.
Figure 3 illustrates the absolute error for different choices of n for α = 0.75 with T = T′ = 10.
Figure 4 depicts the absolute error at t = 0.5. In Table 1, we compare the exact and numerical
solutions at t = 0.5 for different values of n for α = 0.75 with T = T′ = 10.

Figure 1. Cont.
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Figure 1. Solution for Example 1 with different values of n for α = 0.75 with T = T′ = 10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5
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1.5

2

2.5

3

3.5

z
(x

,0
.5

)

10-3

n=20

n=40

n=60

Exact solution

Figure 2. Numerical and exact solutions for Example 1 with different values of n for α = 0.75 with
T = T′ = 10, at t = 0.5.

Table 1. The absolute errors with various values of n for α = 0.75 with T = T′ = 10 for Example 1.

E(x, t)

(x, t) n = 20 n = 40 n = 60

(0.1, 0.1) 7.7495× 10−10 7.9413× 10−18 8.2919× 10−30

(0.2, 0.2) 3.3200× 10−10 3.3419× 10−18 3.3898× 10−30

(0.3, 0.3) 5.4883× 10−10 5.3308× 10−18 5.4776× 10−30

(0.4, 0.4) 8.2341× 10−10 8.3890× 10−18 8.4384× 10−30

(0.5, 0.5) 6.6285× 10−10 5.7829× 10−18 5.7829× 10−30

(0.6, 0.6) 5.2021× 10−10 4.9610× 10−18 5.1242× 10−30

(0.7, 0.7) 9.4310× 10−10 8.9003× 10−18 7.2027× 10−30

(0.8, 0.8) 4.4560× 10−10 2.2477× 10−18 6.6203× 10−31

(0.9, 0.9) 9.3799× 10−10 9.0139× 10−18 7.0545× 10−30

CO 1.61 1.65 1.11

CPU − time (s) 57.56 252.75 5458.33
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Figure 3. Absolute errors with various values of n for α = 0.75 with T = T′ = 10 for Example 1.
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Figure 4. Absolute errors with various values of n for α = 0.75 with T = T′ = 10, at t = 0.5 for
Example 1.

Example 2. We solve the time-fractional ADE with distributed-order Riesz-space FDs:

CDα
t z(x, t) =

∫ 2

1
κ(p)

∂pz(x, t)
∂xp dp +

∫ 2

1
κ(q)

∂qz(x, t)
∂xq dq ++z2(x, t) + f (x, t), (48)

under the IBCs

z(0, t) = 0, z(2, t) = 4t(t− 2),

z(x, 0) = 0, (49)
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in which κ(p) = Γ(3− p) cos( pπ
2 ), κ(q) = Γ(3− q) cos( qπ

2 ) and

f (x, t) =
( 2

Γ(3− α)
t2−α − 2

Γ(2− α)
t1−α

)
x2 + 2t(t− 2)

[ 1− x
ln(2− x)

+
x− 1
ln(x)

]
− x4t(t− 2)2.

The exact solution for this Example 2 is z(x, t) = x2t(t− 2). Figure 5 shows the approximate
solution for different values of n for α = 0.75 with T = T′ = 10. Figure 6 compares the exact
and numerical solutions at t = 0.5. Figure 7 illustrates the absolute error for different values of
n for α = 0.75 with T = T′ = 10. Figure 8 depicts the absolute error at t = 0.5. In Table 2, we
compare the exact and numerical solutions at t = 0.5 for different values of n for α = 0.75 with
T = T′ = 10.

Figure 5. Approximations for Example 2 with different values of n for α = 0.75 with T = T′ = 10.



Fractal Fract. 2023, 7, 649 17 of 21

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

z
(x

,0
.5

)

n=20

n=40

n=60

Exact solution

Figure 6. Approximate and exact solutions for Example 2 with different values of n for α = 0.75 with
T = T′ = 10, at t = 0.5.

Figure 7. Cont.
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Figure 7. Absolute errors for Example 2 with different values of n for α = 0.75 with T = T′ = 10.
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Figure 8. Cont.
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Figure 8. Absolute errors for Example 2 with different values of n for α = 0.75 with T = T′ = 10, at
t = 0.5.

Table 2. The absolute errors for various values of n for α = 0.75 with T = T′ = 10 for Example 2.

E(x, t)

(x, t) n = 20 n = 40 n = 60

(0.1, 0.2) 1.1668× 10−11 5.8340× 10−14 3.8893× 10−16

(0.2, 0.4) 2.0264× 10−11 1.0132× 10−13 6.7547× 10−16

(0.3, 0.6) 2.4493× 10−10 1.2247× 10−12 8.1645× 10−15

(0.4, 0.8) 8.7688× 10−11 4.3844× 10−13 2.9229× 10−15

(0.5, 1) 1.0531× 10−09 5.2657× 10−12 3.5105× 10−14

(0.6, 1.2) 9.8788× 10−10 4.9394× 10−12 3.2929× 10−14

(0.7, 1.4) 6.0759× 10−10 3.0380× 10−12 2.0253× 10−14

(0.8, 1.6) 3.9332× 10−09 1.9666× 10−11 1.3111× 10−13

(0.9, 1.8) 6.7664× 10−10 3.3832× 10−12 2.2555× 10−14

CO 1.044 0.997 0.989

CPU − time (s) 38 78 159

5. Conclusions

We investigated and validated the numerical solution of the nonlinear time-fractional
ADE with distributed-order Riesz-space FDs under IBCs. We employed two numerical
approaches to estimate the proposed equation. For approximating the Riesz FD in space,
we employed the finite difference approach based on the matrix transform algorithm, and
for estimating the time-fractional ADE, we used the compound Simpson method. The
stability and convergence of the proposed method were theoretically proven. Finally, some
numerical experiments were performed to demonstrate and validate the accuracy of the
new technique. In future work, numerical schemes based on alternating direction implicit
methods for the two-dimensional nonlinear time-fractional ADE with distributed-order
Riesz-space FDs under the IBCs will be investigated, and a high-order method for the
two-dimensional nonlinear time-fractional ADE will be presented.
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