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Abstract: In this article, by using the differential Caputo–Fabrizio operator, we suggest a novel family
of piecewise differential equations (DEs). The issue under study contains a mixed delay period under
the criteria of anti-periodic boundaries. It is possible to utilize the piecewise derivative to describe a
variety of complex, multi-step, real-world situations that arise from nature. Using fixed point (FP)
techniques, like Banach’s FP theorem, Schauder’s FP theorem, and Arzelá Ascoli’s FP theorem, the
Hyer–Ulam (HU) stability and the existence theorem conclusions are investigated for the considered
problem. Eventually, a supportive example is given to demonstrate the applicability and efficacy of
the applied concept.
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1. Introduction

Many mathematicians and writers have begun to take fractional differential and
integral equations into consideration, where simulation and planning for the future can
utilize these equations. Also, the fractional derivatives and integrals are handled by several
types of fractional operators, which were presented in [1–3] and have been clearly applied
as powerful mathematical tools for predicting many natural phenomena. The authors of [4]
listed numerous practical and scientific uses for fractional calculus.

The classical theory of fractional calculus has long been a necessary part of the main
curricula in most branches of science. Numerous investigations have been carried out
in the literature on the existence of problems involving fractional differential equations
(FDEs) and their numerical solutions; see, for instance, [5–7]. Both FDEs with the power
law kernel and classical DEs have been studied and investigated. The requirements for
these equations with power-law and classical fractional differentiation have been secured
in a number of ways. The prerequisites for the existence of solutions to such DE issues
are helpful within the context of pure mathematics. However, these criteria are ineffective
when dealing with issues in the real world.

Caputo and Fabrizio recently presented new non-singular kernels for FDEs [8]. We
direct readers to [9,10] for information on the characteristics of these differential opera-
tors with non-singular kernels. Researchers have been interested in this idea, which is
applied in a variety of science, engineering, and technological sectors. A non-integer order
derivative with a non-singular kernel is a mathematical notion that was introduced by
Caputo et al. [11], and its applications to the hysteresis phenomenon were shown. By
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incorporating the latest developments in the fractional differential operator, numerous
additional theoretical conclusions and numerical techniques have been produced.

The proportional delay differential equations (DDEs) give rise to a class of DEs that
are frequently used in the modeling of real-world problems where the status at time s is
a time function that depends on previous or past times. In situations involving decision-
making, these equations are essential. The applications of DDEs can be seen in fields such
as population studies, medicine, physiology, number theory, physics, electrodynamics, and
other related fields. These applications have received the attention of many writers; for
more misconceptions about the importance of these applications, see [12–18].

Stability theory is frequently required for dynamical problems. Lyapunov and Mittag–
Leffler stabilities have been created extremely effectively for common traditional fractional
calculus issues as well as exponential types of stabilities. HU stability [19] has recently
received the necessary attention. In [20], some stability and existence results from the FP
technique were investigated. Also, the existence and stability analysis of FDEs have been
studied [21–23].

It is important to note that bodily problems frequently exhibit a multi-step tendency
in their nature and are prone to rapid alterations. To put it another way, these issues lack
unique behaviors and maintain multiplicity in their dynamical behaviors. The aforemen-
tioned differential operators cannot accurately represent such problems. So, Atangana
and Araz [24] have presented piecewise differential and integral operators to overcome
such a situation. The ability of these operators to handle issues involving crossover and
impulsive conduct is well known. Common examples of impulsive situations that can
benefit from the application of piecewise differential operators include earthquakes, eco-
nomic fluctuations, and gaseous dynamics with related tendencies. Shah et al. [25] have
investigated a dynamical problem of the Cauchy type with piecewise derivative (PD) using
an FP technique. A non-singular type of derivative is included in [26] as a generalization of
the PD.

Inspired by the above applications, in this study, we propose the following piecewise
Caputo–Fabrizio DE (PCFDE, for short) problem with mixed time delay:

PCFDρζ(s) =
{

Z(s, ζ(s), ζ(σs), ζ(s− η(s))), σ ∈ (0, 1), ρ ∈ (0, 1], η(s) ≥ 0, s ∈ [0, ξ],
ζ(0) = −ζ(ξ),

(1)

where Z : [0, ξ]×R3 → R denotes a piecewise continuous function and PCFDρ represents a
PCF derivative of order ρ. Our investigation of the considered problem involves the study
of the HU stability and existence theory. The left-hand side of the issue (1) can be written as:

PCFDρζ(s) =

{
dζ
ds , if s ∈ [0, s1],

CFDρζ(s), if s ∈ [s1, ξ].
(2)

The outline and moral of the manuscript are arranged as follows: Section 2 defines PCF
operators and provides the FP theorem’s assertions. The requirements for the unique
solution (US) to the considered problem are developed in Section 3. Section 4 presents
the HU stability analysis for the relevant problem. An illustrative example is provided in
Section 5 to test the validity of our results. Ultimately, Section 6 provides the conclusion
and suggests open problems.

2. Preliminaries

The newly established definitions of piecewise integrals and derivatives are provided
in this section of the study. Here, we also provide certain lemmas that are essential for
reaching our main results.

Definition 1 ([24]). For a continuous function ζ with a fractional order ρ ∈ (0, 1],
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(i) the PCF integral is described as

PCF Iρζ(s) =


s1∫
0

ζ(s)ds, s ∈ [0, s1],

1−ρ
Λ(ρ)

ζ(s) + ρ
Λ(ρ)

s∫
s1

ζ(s)ds, if s ∈ [s1, ξ],

where Λ(ρ) is a normalization function satisfying Λ(0) = Λ(1) = 1.
(ii) The PCF derivative is defined by

PCFDρζ(s) =

{
dζ
ds , if s ∈ [0, s1],

CFDρζ(s), if s ∈ [s1, ξ],

where CFDρ is the Caputo–Fabrizio derivative operator [24].

Lemma 1 ([10]). For chosen constants λj ∈ R, j = 0, 1, 2, ..., u− 1, where u = [ρ] + 1 and [α]
refer to the integer part of α, the relation below holds:

Iρ
[

CFDρζ(s)
]
= ζ(s) + λ0 + λ1s + .... + λu−1su−1.

Theorem 1 ([26]). (Banach FP theorem) Assume that Π 6= ∅ is a closed subset of a Banach space
f, and = is a contraction self-mapping on Π; then it owns a unique FP.

Theorem 2 ([26]). (Schauder’s FP theorem) Suppose that Π is a non-empty subset of of a Banach
space f and = : Π→ Π is a continuous and compact mapping; then there is at least one FP of =.

3. Main Consequences

Describe a Banach space as

f = {ζ : [0, ξ]→ R, ζ ∈ C([0, ξ])}

equipped with the norm ‖ζ‖ = sups∈[0,1]{|ζ(s)|}, where C([0, ξ]) is the space of all contin-
uous functions on [0, ξ].

Lemma 2. The problem { PCFDρζ(s) = χ(s), ρ ∈ (0, 1],
ζ(0) = −ζ(ξ),

has the solution below

ζ(s) =


−ζ(ξ) +

s1∫
0

χ(µ)dµ, if s ∈ [0, s1],

ζ(s1) +
1−ρ
Λ(ρ)

χ(s) + ρ
Λ(ρ)

s∫
s1

χ(µ)dµ, if s ∈ [s1, ξ].
(3)

Proof. We skip the proof because it is simple to understand.

Corollary 1. In light of Lemma 2, the solution of the problem (1) is provided by

ζ(s) =


−ζ(ξ) +

s1∫
0

Z(µ, ζ(µ), ζ(σµ), ζ(µ− η(µ)))dµ, if s ∈ [0, s1],

ζ(s1) +
1−ρ
Λ(ρ)

Z(µ, ζ(µ), ζ(σµ), ζ(µ− η(µ)))

+ ρ
Λ(ρ)

s∫
s1

Z(µ, ζ(µ), ζ(σµ), ζ(µ− η(µ)))dµ, if s ∈ [s1, ξ].

(4)
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To reach our desired goal here, we need the following hypotheses:

(Hi) For Z : [0, ξ]×R3 → R, ζ, ζ̂ ∈ f, there exists a constant ΥZ so that∣∣∣Z(s, ζ(s), ζ(σs), ζ(s− η(s)))− Z
(

s, ζ̃(s), ζ̃(σs), ζ̃(s− η(s))
)∣∣∣

≤ ΥZ

{∣∣∣ζ(s)− ζ̃(s)
∣∣∣+ ∣∣∣ζ(σs)− ζ̃(σs)

∣∣∣+ ∣∣∣ζ(s− η(s))− ζ̃(s− η(s))
∣∣∣}.

(Hii)There are functions `1, `2 ∈ f such that

|Z(s, ζ(s), ζ(σs), ζ(s− η(s)))| ≤ `1(s) + `2(s)(|ζ(s)|+ |ζ(σs)|+ |ζ(s− η(s))|),

with `∗1 = sups∈[0,ξ]{`1(s)} and `∗2 = sups∈[0,ξ]{`2(s)}.
Further, define an operator = : f→ f by

=(ζ) =


−ζ(ξ) +

s1∫
0

Z(s, ζ(s), ζ(σs), ζ(s− η(s)))ds, if s ∈ [0, s1],

ζ(s1) +
1−ρ
Λ(ρ)

Z(µ, ζ(s), ζ(σs), ζ(s− η(s)))

+ ρ
Λ(ρ)

s∫
s1

Z(s, ζ(s), ζ(σs), ζ(s− η(s)))dµ, if s ∈ [s1, ξ].

Now, we present the theorem related to the existence of the solution to the proposed
problem (1).

Theorem 3. The considered problem (1) has a US provided that max{W1, W2} < 1, where
W1 = 3ΥZs1 and W2 = 3

(
1−ρ+ξρ

Λ(ρ)

)
ΥZ.

Proof. Let ζ, ζ̂ ∈ f; to organize the proof, we have the following two cases:
(I) If s ∈ [0, s1], one has∣∣∣=(ζ)−=(ζ̃

)∣∣∣
≤

s1∫
0

∣∣∣Z(s, ζ(s), ζ(σs), ζ(s− η(s)))− Z
(

s, ζ̃(s), ζ̃(σs), ζ̃(s− η(s))
)∣∣∣ds

≤ ΥZ

s1∫
0

{∣∣∣ζ(s)− ζ̃(s)
∣∣∣+ ∣∣∣ζ(σs)− ζ̃(σs)

∣∣∣+ ∣∣∣ζ(s− η(s))− ζ̃(s− η(s))
∣∣∣}ds

≤ 3ΥZs1

∣∣∣ζ(s)− ζ̃(s)
∣∣∣.

Set 3ΥZs1 = W1, and taking the suprimum, we get∥∥∥=(ζ)−=(ζ̃
)∥∥∥ ≤W1

∥∥∥ζ − ζ̃
∥∥∥. (5)

(II) If s ∈ [s1, ξ], one can write∣∣∣=(ζ)−=(ζ̃
)∣∣∣

≤ 1− ρ

Λ(ρ)

∣∣∣Z(µ, ζ(s), ζ(σs), ζ(s− η(s)))− Z
(

s, ζ̃(s), ζ̃(σs), ζ̃(s− η(s))
)∣∣∣

+
ρ

Λ(ρ)

ξ∫
s1

∣∣∣Z(s, ζ(s), ζ(σs), ζ(s− η(s)))− Z
(

s, ζ̃(s), ζ̃(σs), ζ̃(s− η(s))
)∣∣∣ds.



Fractal Fract. 2023, 7, 644 5 of 10

Using Hypothesis (Hi) and the norm on both sides, we can write∥∥∥=(ζ)−=(ζ̃
)∥∥∥ ≤ 3(1− ρ)ΥZ

Λ(ρ)

∥∥∥ζ − ζ̃
∥∥∥+ 3ρΥZ

Λ(ρ)
(ξ − s1)

∥∥∥ζ − ζ̃
∥∥∥

≤ 3
(

1− ρ + ξρ

Λ(ρ)

)
ΥZ

∥∥∥ζ − ζ̃
∥∥∥.

Put 3
(

1−ρ+ξρ
Λ(ρ)

)
ΥZ = W2, we have∥∥∥=(ζ)−=(ζ̃

)∥∥∥ ≤W2

∥∥∥ζ − ζ̃
∥∥∥. (6)

It follows from (5) and (6) that

∥∥∥=(ζ)−=(ζ̃
)∥∥∥ ≤

 W1

∥∥∥ζ − ζ̃
∥∥∥, if s ∈ [0, s1],

W2

∥∥∥ζ − ζ̃
∥∥∥, if s ∈ [s1, ξ].

Ultimately, for s ∈ [0, ξ], we obtain∥∥∥=(ζ)−=(ζ̃
)∥∥∥ ≤ max{W1, W2}

∥∥∥ζ − ζ̃
∥∥∥.

Consequently, = is a contraction; hence, the problem (1) has a US according to Banach
FP theorem.

Theorem 4. If the hypotheses (Hi) and (Hii) hold, then there exists at least one solution to the
supposed problem (1).

Proof. Define a closed convex subset Ξ of f by Ξ = {ζ ∈ f : ‖ζ‖ ≤ M} with
max{ α+`∗1 s1

1−`∗2 Qs1
, P+θ`∗1

1−Q`∗2
} ≤ M, where α = |ζ(ξ)| and P = |ζ(s1)|. Also, describe the map-

ping k : Ξ→ Ξ as

k(ζ) =


−ζ(ξ) +

s1∫
0

Z(s, ζ(s), ζ(σs), ζ(s− η(s)))ds, if s ∈ [0, s1],

ζ(s1) +
1−ρ
Λ(ρ)

Z(µ, ζ(s), ζ(σs), ζ(s− η(s)))

+ ρ
Λ(ρ)

s∫
s1

Z(s, ζ(s), ζ(σs), ζ(s− η(s)))dµ, if s ∈ [s1, ξ].

We split the proof into the following main steps:
Step (A): Prove that k is continuous.
Case1. Let {ζu} ∈ Ξ, which converges to ζ ∈ Ξ; then, by the condition (Hi), for

s ∈ [0, s1], one has

|kζu(s)−kζ(s)| ≤

∣∣∣∣∣∣
s1∫

0

Z(s, ζu(s), ζu(σs), ζu(s− η(s)))− Z(s, ζ(s), ζ(σs), ζ(s− η(s)))

∣∣∣∣∣∣ds

≤ 3s1ΥZ|ζu(s)− ζ(s)|.

Since ζu → ζ as u→ ∞, then |kζu(s)−kζ(s)| → 0 as n→ ∞. Consequently, ‖kζn −kζ‖ →
0 as n→ ∞, which implies that k is continuous.
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Case2. Based on the same assumptions of Case1, for s ∈ [s1, ξ], one can write

|kζu(s)−kζ(s)| ≤ 1− ρ

Λ(ρ)
(Z(s, ζu(s), ζu(σs), ζu(s− η(s)))− Z(s, ζ(s), ζ(σs), ζ(s− η(s))))

ρ

Λ(ρ)

∣∣∣∣∣∣
s∫

s1

Z(s, ζu(s), ζu(σs), ζu(s− η(s)))− Z(s, ζ(s), ζ(σs), ζ(s− η(s)))

∣∣∣∣∣∣
≤ 3

(
1− ρ + ξρ

Λ(ρ)

)
ΥZ|ζu(s)− ζ(s)|.

Because ζu → ζ as u→ ∞, we conclude that ‖kζn −kζ‖ → 0 as n→ ∞, which leads to k
being continuous.

Step (B): Show that k is bounded and k(Ξ) ⊂ Ξ.
Case3. Let ζ ∈ Ξ; then, for s ∈ [0, s1], one has

|k(ζ)| ≤ |ζ(ξ)|+
s1∫

0

|Z(s, ζ(s), ζ(σs), ζ(s− η(s)))|ds

≤ |ζ(ξ)|+ s1[`1(s) + `2(s)(|ζ(s)|+ |ζ(σs)|+ |ζ(s− η(s))|)].

Put |ζ(s)| + |ζ(σs)| + |ζ(s− η(s))| = Q|ζ(s)|, |ζ(ξ)| = α, where Q > 0, and taking the
suprimum , we have

‖k‖ ≤ α + (`∗1 + `∗2Q‖ζ‖)s1 ≤ M,

where

M ≥
α + `∗1s1

1− `∗2Qs1
.

Therefore, ‖k‖ ≤ M, that is, k is bounded and k(ζ) ∈ Ξ, as a result, k(Ξ) ⊂ Ξ.
Case4. According to the same conditions of Case2, for s ∈ [s1, ξ], we get

‖k(ζ)‖ ≤ sup
s[s1,ξ]

{
|ζ(s1)|+

1− ρ

Λ(ρ)
|Z(µ, ζ(s), ζ(σs), ζ(s− η(s)))|

+
ρ

Λ(ρ)

s∫
s1

|Z(s, ζ(s), ζ(σs), ζ(s− η(s)))|dµ


≤ sup

s[s1,ξ]

{
|ζ(s1)|+

1− ρ

Λ(ρ)
[`1(s) + Q`2(s)|ζ(s)|]

+
ρ

Λ(ρ)
(s− s1)[`1(s) + Q`2(s)|ζ(s)|]

}
≤ |ζ(s1)|+

1− ρ

Λ(ρ)
(Q`∗2‖ζ‖+ `∗1) +

ρ

Λ(ρ)
(Q`∗2‖ζ‖+ `∗1)(s− s1)

≤ |ζ(s1)|+ Q`∗2

(
1− ρ + sρ

Λ(ρ)

)
M +

(
1− ρ + sρ

Λ(ρ)

)
`∗1 ≤ M.

For simplicity, set |ζ(s1)| = P and
(

1−ρ+sρ
Λ(ρ)

)
= θ; then, we have

‖k(ζ)‖ ≤ P + Q`∗2θ + θ`∗1 ≤ M,

where M ≥ P+θ`∗1
1−Q`∗2

. If max{ α+`∗1 s1
1−`∗2 Qs1

, P+θ`∗1
1−Q`∗2

} ≤ M, we conclude that ‖k(ζ)‖ ≤ M. Hence, k
is bounded in both cases and k(Ξ) ⊂ Ξ.

Step. (C): Claim that k is equi-continuous.
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Case5 . Assume that sv < sw ∈ [0, s1] and, similar to Step (C), suppose Ξ is a bounded
set of f, one has

|kζ(sw)−kζ(sv)| ≤

∣∣∣∣∣∣
sw∫

sv

Z(sw, ζ(sw), ζ(σsw), ζ(sw − η(sw)))− Z(sv, ζ(sv), ζ(σsv), ζ(sv − η(sv)))

∣∣∣∣∣∣ds

≤ 3(sw − sv)ΥZ|ζ(sw)− ζ(sv)| → 0 as sv → sw.

As k is bounded, then k is uniformly continuous.
Case6. Assume that sv < sw ∈ [s1, ξ], one can write

|kζ(sw)−kζ(sv)|

≤ 1− ρ

Λ(ρ)
|Z(sw, ζ(sw), ζ(σsw), ζ(sw − η(sw)))− Z(sv, ζ(sv), ζ(σsv), ζ(sv − η(sv)))|

+
ρ

Λ(ρ)

sw∫
sv

|Z(sw, ζ(sw), ζ(σsw), ζ(sw − η(sw)))− Z(sv, ζ(sv), ζ(σsv), ζ(sv − η(sv)))|

3(1− ρ)ΥZ
Λ(ρ)

|ζ(sw)− ζ(sv)|+
ρ(sw − sv)

Λ(ρ)
|ζ(sw)− ζ(sv)|.

Because k is bounded and continuous on [0, ξ], then it is uniformly continuous. Taking sv →
sw, then |kζ(sw)−kζ(sv)| → 0. From Ca5 and Ca6, we conclude that ‖kζ(sw)−kζ(sv)‖ →
0 as sv → sw. Hence, k is equi-continuous. Clearly, all requirements of relative compactness
are satisfied. Since k has at least one FP, the Schauder FP theorem can be applied. This
supports at least one solution to Problem (1).

4. Stability Results

This part is devoted to studying HU and generalizing HU (GHU) stability for the US
of the problem (1). In this regard, let ζ ∈ C([0, ξ],R+) and assume the inequality below is
true for s ∈ [0, ξ] and ν > 0 :∣∣∣PCFDρ ζ̂(s)− Z

(
s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))

)∣∣∣ ≤ ν, σ ∈ (0, 1), ρ ∈ (0, 1], η(s) ≥ 0. (7)

We point out that the definition of HU stability below was taken directly from [19].

Definition 2. The solution to the considered problem (1) is called HU stable if there is a constant
℘ > 0 such that, for each solution ζ̂ ∈ f of the problem (7), there is a US ζ ∈ f of (1) such that the
inequality below is true: ∣∣∣ζ(s)− ζ̂(s)

∣∣∣ ≤ ℘ν.

Moreover, if there exists a non-decreasing function ϑ ∈ C(R+,R+) with ϑ(0) = 0 such that∣∣∣ζ(s)− ζ̂(s)
∣∣∣ ≤ ϑ(ν),

then the solution of (1) is called a GHU stable.

Remark 1. Assume that V is an independent function of ζ̂ such that V(0) = 0, then
(a) |V(s)| ≤ ν, s ∈ [0, ξ];
(b) for each s ∈ [0, ξ],{

PCFDρ ζ̂(s) = Z
(

s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))
)
+ V(s),

ζ̂(0) = −ζ̂(ξ), s ∈ [0, ξ].
(8)
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Lemma 3. The solution of (8) fulfills the relation below.

∣∣∣∣∣ζ(s)−
(
−ζ̂(s) +

s1∫
0

Z
(

s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))
))

ds

∣∣∣∣∣ ≤ s1ν, s ∈ [0, s1],∣∣∣ζ(s1)−
(
−ζ̂(s1) +

1−ρ
Λ(ρ)

Z
(

s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))
)

+ ρ
Λ(ρ)

s∫
s1

Z
(

s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))
))

ds

∣∣∣∣∣ ≤ ( 1−ρ+sρ
Λ(ρ)

)
ν, s ∈ [s1, ξ].

(9)

Proof. Problem (8) has the following solution in light of Corollary 1:

ζ̂(s) =



−ζ̂(s) +
s1∫
0

Z
(

s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))
)

ds +
s1∫
0

V(s)ds, s ∈ [0, s1],

−ζ̂(s1) +
1−ρ
Λ(ρ)

Z
(

s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))
)

+ ρ
Λ(ρ)

s∫
s1

Z
(

s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))
))

ds

+ 1−ρ
Λ(ρ)

V(s) + ρ
Λ(ρ)

s∫
s1

V(s)ds, s ∈ [s1, ξ].

(10)

Using (10), we get

∣∣∣∣∣ζ(s)−
(
−ζ̂(s) +

s1∫
0

Z
(

s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))
))

ds

∣∣∣∣∣ ≤ s1ν, s ∈ [0, s1],∣∣∣ζ(s1)−
(
−ζ̂(s1) +

1−ρ
Λ(ρ)

Z
(

s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))
)

+ ρ
Λ(ρ)

s∫
s1

Z
(

s, ζ̂(s), ζ̂(σs), ζ̂(s− η(s))
))

ds

∣∣∣∣∣ ≤ ( 1−ρ+sρ
Λ(ρ)

)
ν, s ∈ [s1, ξ],

which fulfills (9).

Theorem 5. In light of Hypothesis Hi and Lemma 3, the solution of the system (1) is HU stable,
provided that W1, W2 < 1, where W1 = 3ΥZs1 and W2 = 3

(
1−ρ+ξρ

Λ(ρ)

)
ΥZ.

Proof. Assume that ζ ∈ f is a US of (1) and ζ̂ ∈ f is any solution to (7). Then, for s ∈ [0, s1],
one has ∥∥∥ζ − ζ̂

∥∥∥ ≤ s1ν + 3s1ΥZ

∥∥∥ζ − ζ̂
∥∥∥. (11)

Similar to Theorem 3, put W1 = 3ΥZs1, then (11) can be written as∥∥∥ζ − ζ̂
∥∥∥ ≤ s1

1−W1
ν. (12)

Analogously, for s ∈ s ∈ [s1, ξ], one gets∥∥∥ζ − ζ̂
∥∥∥ ≤ s1ν +

3(1− ρ)

Λ(ρ)
ΥZ

∥∥∥ζ − ζ̂
∥∥∥+ ρξ

Λ(ρ)
ΥZ

∥∥∥ζ − ζ̂
∥∥∥. (13)

Similar to Theorem 3, set W2 = 3
(

1−ρ+ξρ
Λ(ρ)

)
ΥZ, then (13) takes the form∥∥∥ζ − ζ̂
∥∥∥ ≤ s1

1−W2
ν. (14)

If max{ s1
1−W1

, s1
1−W2

} = ℘, it follows from (12) and (14) that∥∥∥ζ − ζ̂
∥∥∥ ≤ ℘ν.
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Hence, the US of (1) is HU stable. Further, define the non-decreasing function ϑ by ϑ(s) = s
3 .

Clearly, ϑ(0) = 0 and ∥∥∥ζ − ζ̂
∥∥∥ ≤ ℘ϑ(ν).

Therefore, the system (1) is GHU-stable.

5. Supportive Example

Example 1. Consider the following problem: PCFD
1
3 ζ(s) = e−s

(
ζ(s)

50+|ζ(s)| +
ζ( 1

3 s)
50+|ζ( 1

3 s)| +
ζ(s−0.35)

50+|ζ(s−0.35)|

)
, s ∈ [0, 1],

ζ(0) = −ζ(1).

Clearly, ξ = 1, ρ = σ = 1
3 , s1 = 0, η(s) = 0.35 > 0 and

Z(s, ζ(s), ζ(σs), ζ(s− η(s))) = e−s

 ζ(s)
50 + |ζ(s)| +

ζ
(

1
3 s
)

50 +
∣∣∣ζ( 1

3 s
)∣∣∣ + ζ(s− 0.35)

50 + |ζ(s− 0.35)|

.

Assume the normalization function Λ(ρ) = ρ2 − ρ + 1, then Λ( 1
3 ) =

7
9 .

Now, for s ∈ [0, 1], and ζ, ζ̃ ∈ R, we have∣∣∣Z(s, ζ(s), ζ(σs), ζ(s− η(s)))− Z
(

s, ζ̃(s), ζ̃(σs), ζ̃(s− η(s))
)∣∣∣

≤ 3
50

∣∣∣ζ(s)− ζ̃(s)
∣∣∣+ ∣∣∣ζ(σs)− ζ̃(σs)

∣∣∣+ ∣∣∣ζ(s− η(s))− ζ̃(s− η(s))
∣∣∣,

which implies that, Υz = 1
50 . If s1 = 0.5, then W1 = 3ΥZs1 = 3

100 = 0.03 < 1 and

W2 = 3
(

1−ρ+ξρ
Λ(ρ)

)
ΥZ = 3

50
( 9

7
)
= 27

350 ≈ 0.08 < 1. Hence, max{W1, W2} = 0.08 < 1.
Therefore, all requirements of Theorem 3 are fulfilled; then, there is a US to Problem (1). More-
over, max

{
s1

1−W1
, s1

1−W2

}
≈ max{0.515, 0.543} = 0.543 = ℘ < 1. Hence, all assumptions of

Theorem 5 hold; then, the US of (1) is HU-stable.

6. Conclusions and Future Work

To a class of Caputo–Fabrizio derivative-enhanced DDES with non-integer order pro-
portionality, we have extended the idea of the PD in this publication. There are numerous
physical conditions that naturally display crossover and multi-step behavior, which the
normal and other fractional differential operators fail to adequately characterize. These
conditions can be effectively modeled using this sort of derivative. In the primary findings,
we used FP techniques to extract the requirements for the existence and stability of the
presented problem. In order to verify and demonstrate the application of the results, an
illustrative example was used. Future work could include applying the idea of piecewise
derivatives to additional fractional variable orders as function classes of DEs. It will be fas-
cinating to investigate these further differential operators with variable kernels in piecewise
form. This idea can also be used to solve issues that have been studied in abstract spaces.
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