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Abstract: In this paper, the abundant nonlinear dynamical behaviors of a fractional-order time-
delayed Duffing system under harmonic excitation are studied. By constructing Melnikov function,
the necessary conditions of chaotic motion in horseshoe shape are detected, and the chaos threshold
curve is obtained by comparing the results obtained through the Melnikov theory and numeri-
cal iterative algorithm. The results show that the trend of change is the same, which confirms
the accuracy of the chaos threshold curve. It could be found that when the excitation frequency
ω is larger than a certain value, the Melnikov theory is not valid for these values. Furthermore, by
numerical simulation, some numerical results are obtained, including phase portraits, the largest
Lyapunov exponents, and the bifurcation diagrams, Poincare maps, time histories, and frequency
spectrograms at some typical points. These numerical simulation results show that the system exhibits
some new complex dynamical behaviors, including entry into the state of chaotic motion from single
period to period-doubling bifurcation and chaotic motion and periodic motion alternating under
the necessary condition of chaotic occurrence. In addition, the effects of time delay, fractional-order
coefficient, fractional order, linear viscous damping coefficient, and linear stiffness coefficient on the
chaotic threshold curve are discussed, respectively. Those results reveal that there exist abundant
nonlinear dynamic behaviors in this fractional-order system, and by adjusting these parameters
reasonably, the system could be transformed from chaotic motion to non-chaotic motion.

Keywords: Duffing oscillator; fractional-order derivative; time delay; Melnikov theory;
chaotic motion

1. Introduction

Many scholars have carried out in-depth research on the basic theory of the prop-
erties and characteristics of fractional calculus. Since the last century, fractional calculus
theory has been gradually applied to the scientific research of engineering problems [1–5].
The main advantage of fractional calculus is memory and genetic properties. Therefore,
fractional-order derivative has been applied in multiple fields, such as electrochemistry
signal processing, anomalous diffusion process, viscoelastic damping, and so on [6–8].
Especially in some engineering fields, many researchers have applied the fractional-order
model to study complicated dynamical problems [9,10].

Bifurcation and chaotic behaviors are complex vibration phenomena specific in nonlin-
ear dynamical systems. Chaos is generated from deterministic systems, and it has complex
dynamic characteristics; for example, its sensitivity to initial conditions and irregular and
unpredictable behaviors for a long time could be employed in the application of secure
communication and cryptography [11,12]. The Melnikov method is particularly suitable for
the analysis of chaos threshold of multi-parameter nonlinear dynamical systems. Recently,
many researchers have predicted chaotic motion by Melnikov’s theorem. Liu et al. [13]
used the Melnikov method to study the chaotic motion of VEH system under random exci-
tation based on fractional order physical properties. Battelli et al. [14] studied the chaotic
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behaviors in time-perturbed discontinuous systems based on the Melnikov method. Lian
et al. [15] studied the chaotic motion and control in a tethered-sailcraft system orbiting an
asteroid by comparing the Melnikov method with the numerical method. Tuwa et al. [16]
used the Melnikov’s theorem to analyze the chaotic motion of nonlinear viscoelastic plate
with fractional derivative model, and the numerical results demonstrate the validity of
theoretical prediction results. Liang et al. [17] studied the Poincaré bifurcation of a planar
piecewise near-Hamiltonian system. Farshidianfar et al. [18] used Melnikov’s method
to analyze the global bifurcation and the transition to chaotic behavior of nonlinear gear
systems. Tian et al. [19,20] used the extended Melnikov theory to determine the bifurcation
criterion of inverted pendulum system under the condition of impulsive excitation and
verified phase portraits, bifurcation diagrams, and Poincare maps by numerical methods.

In the field of nonlinear dynamics, Duffing system is a forced vibration system with
nonlinear restoring force, which is widely representative in various fields of engineering.
Duffing system is recognized as the prototype of systems with large deformation or similar
properties in the field of physics and engineering and is one of the research hot spots. Based
on Lei et al. [21]’s fractional deflection generalized Duffing system, the effects of color noise,
green noise, and red noise on chaos initiation were investigated theoretically and verified
numerically. Yang et al. [22] studied the Duffing equation under the action of single external
force and parametric excitation and obtained abundant dynamic behaviors of bifurcation
and chaos. Yang. et al. [23] studied the resonance of fractional order Duffing systems.

Time delay is a ubiquitous phenomenon in nature. It is more common and inevitable
in control systems. It exists in two ways; one is in the internal state of the system, and
the other is introduced as a control strategy to enhance system performance [24]. Many
scholars have studied the fractional-order delayed dynamical systems. Leung. et al. [25]
investigated a Duffing–van der Pol oscillator with fractional-order derivative and time
delay. Based on the residue harmonic method, Wen et al. [26] studied the dynamical
response of fractional-order time-delayed feedback for Mathieu–Duffing oscillator. Yang
et al. [27] analyzed the resonance phenomena of fractional Duffing systems based on linear
time-delay feedback with direct separation of slow and fast motion. Shen et al. [28,29]
investigated the bifurcation and chaotic behaviors of a Duffing oscillator with delayed
displacement and velocity feedbacks by Melnikov’s theorem. Mesbahia. et al. [30] used
harmonic balance method to investigate the dynamical behaviors of Mathieu equation
with fractional-order and damped time delay. Çelik et al. [31] used the largest Lyapunov
exponents to study the existence of chaotic motion in nonlinear autonomous systems with
fractional-order delay.

Through the analysis and summary of the above scholars’ research content, most of
the existing research studies are focused on the numerical or qualitative analysis of the
necessary condition for chaotic motion. At present, few researchers are working on the
necessary condition for chaos and analyzing the complex bifurcation and chaotic dynamical
behaviors of a fractional-order time-delayed Duffing system.

Based on the Melnikov theory, the chaos criterion of a typical fractional-order time-
delay Duffing system under harmonic excitation is studied, and it exhibits some complex
nonlinear dynamic phenomena, including bifurcation and chaotic behaviors. In this paper,
Melnikov function is established by the Melnikov theorem, and the chaos threshold curve is
obtained. Then, the necessary conditions are verified by numerical calculation. In addition,
the bifurcation diagrams and the corresponding largest Lyapunov exponents, as well as
the phase portraits, Poincare maps, time histories, and frequency spectrograms at typical
system parameters by numerical solution, are investigated, which give full support to the
theoretical analysis. The influences of the time-delay parameter, fractional-order coefficient,
fractional order, linear stiffness coefficient, and linear viscous damping coefficient on chaotic
threshold curve are analyzed. In the last section, the primary conclusions are analyzed
and summarized.
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2. Results

As we know, time delay is a common phenomenon when modeling some dynamic
systems, such as mechanical dynamics, neural networks and biological systems, process
control systems, etc. [32–35]. Fractional derivative is used to describe the dissipative
behavior of the dynamic system. In this paper, the considered fractional-order time-delayed
Duffing system is

m
..
x− k1x + k3x3 + c1

.
x + hDt

p[x(t− τ)] = F cos(ωt) (1)

where m, c1, k1, and k3 denote the system mass, linear viscous damping coefficient, linear
stiffness coefficient, and nonlinear stiffness coefficient. Moreover, F and ω denote the
excitation amplitude and excitation frequency of the system, respectively. τ is the time-
delay parameter in fractional-order term, and the expression hDt

p[x(t − τ)] is the p-order
derivative of x(t − τ) with respect to t with fractional-order coefficient h, and the fractional
order is restricted as 0 ≤ p ≤ 1. It should be mentioned that the fractional-order term
in Equation (1) plays an important role that induces different bifurcation and chaotic
motion [27]. The Duffing oscillator is considered as one of the most important nonlinear
dynamics in physics, biology, and even economics. Many research subjects can be abstracted
as Duffing systems. The Caputo’s definition is adopted in Equation (1) with the form as
follows.

Dp
t [x(t)] =

1
Γ(n− p)

∫ t

0

x(n)(τ)

(t− τ)p−n+1 dτ (2)

where n − 1 < p < n and n ∈ N, and Γ(•) is the gamma function satisfying Γ(y + 1) = y Γ(y).
In practical engineering applications, there may be large deformation or harmonic

excitation. The dynamic response of the foundation modes of simply supported Euler
beams can be expressed in Formula (1). When the coefficient k1 is positive, the compressive
axial force exceeds the first Eulerian buckling load [36]. When k1 = 1 and k3 = 1, it is known
as Holmes-type Duffing system, which was obtained by P. Holmes when he studied the
vibration of magnetoelastic beams. Many mathematical models of mechanical problems
could be summed up to Duffing equation, such as nonlinear oscillation of electronic circuit
system, perturbation problem of conservative systems, and so on.

Using the following transformations

b1 = k1/m, B = εb = c1/m, b2 = k3/m, µ1 = εµ = h/m, F0 = ε f = F/m

where ε is a small real parameter, and it satisfies 0 < ε << 1. Equation (1) becomes

..
x− b1x + b2x3 = ε

{
f cos(ωt)− µDt

p[x(t− τ)]− b
.
x
}

(3)

Equation (3) could be transformed into the following form{ .
x = y
.
y = b1x− b2x3 + ε{ f cos(ωt)− µDt

p[x(t− τ)]− by} (4)

If ε is zero, system (1) is assumed to be an unperturbed system, then it can be written as

..
x− b1x + b2x3 = 0 (5)

Here, the homoclinic orbits satisfy the formula

1
2

.
x2 − b1

2
x2 +

b2

4
x4 = 0 (6)
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Supposing
.
x = 0 at t = 0, the calculating result is

x0 = ±

√
2b1

b2
(7)

Integrating Equation (6), it could yield∫ x

x0

dx

±
√

b1x2 − b2
2 x4

= t (8)

Calculating Equation (8), one could obtain the homoclinic trajectory, and it is given as
follows.

(x, y) =

(
±

√
2b1

b2
sec h

(√
b1t
)

,∓b1

√
2
b2

sec h
(√

b1t
)

tanh(
√

b1t)

)
(9)

In the following part, the main purpose is to apply the Melnikov theory to system
(1) to obtain the necessary condition under which the system may generate chaos. In
Equation (1), the parameters F, h, and c are assumed to be small parameters. Hence, the
system of Equation (2) could be rewritten as

.
→
x = f

(→
x
)
+ εg

(→
x , t
)

(10)

where

→
x =

(
x1
x2

)
=

(
x
.
x

)
, f
(→

x
)
=

(
x2

b1x− b2x3

)
, g
(→

x , t
)
=

[
0
f cos(ωt)− µDt

p[x(t− τ)]− b
.
x

]
According to the Melnikov process [36], one could establish Melnikov function as

follows.

M(t0) =
∫ ∞
−∞ f

(
u0(s− t0)

)
∧ g
(
u0(s− t0), s

)
ds =

∫ ∞
−∞ f

(→
x
)
∧ g
(→

x , s
)

ds

= ε
∫ ∞
−∞ x2(s− t0)×

[
f cos(ωs)− µDp

s−t0
(x(s− t0 − τ))− bx2(s− t0)

]
ds

(11)

Letting t = s − t0, Equation (11) becomes

M(t0) = ε
∫ ∞
−∞ x2(t)×

[
f cos(ωt + ωt0)− µDp

t (x(t− τ))− bx2(t)
]
dt

= M1(t0) + M2(t0) + M3(t0)
(12)

where t0 is the cross-section time of the Poincare map, which satisfies t0 ∈ [0, T), and T is
the period of the system motion.

Substituting the homoclinic orbits x and y into Equation (12) and evaluating the
integral, one could obtain the Melnikov function. The detailed computational process
would be presented separately in the following text.

2.1. Calculating M1(t0) and M3(t0)

Since M1(t0) and M3(t0) in Equation (12) do not contain fractional-order differential
terms, they could be integrated directly. The calculation processes are as follows.

M1(t0) = ε f
∫ ∞

−∞
x2(t) cos(ωt + ωt0)dt (13)
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According to the odevity of function, given that x2(t) is an odd function of t,
Equation (13) becomes

M1(t0) = ε f
∫ ∞
−∞ x2(t) cos(ωt + ωt0)dt

= ε f
∫ ∞
−∞ x2(t)(cos ωt cos ωt0 − sin ωt sin ωt0)dt

= − sin(ωt0)ε f
∫ ∞
−∞ x2(t) sin(ωt)dt

= ±b1

√
2
b2

sin(ωt0)ε f
∫ ∞
−∞ sec h

(√
b1t
)
tanh(

√
b1t) sin(ωt)dt

= ±
√

2
b2

sin(ωt0)ε f πω sec h
(

πω
2
√

b1

)
(14)

M3(t0) = −εb
∫ ∞
−∞ x2

2(t)dt

= − 2εbb2
1

b2

∫ ∞
−∞ sec h2(√b1t

)
tanh2(

√
b1t)dt

= − 4εbb2
1

3
√

b1b2

(15)

2.2. Calculating M2(t0)

We can get

M2(t0) = ε
∫ +∞
−∞ x2(t)µDp

t (x(t− τ))dt

= ∓εb1µ
√

2
b2

∫ +∞
−∞ sec h

(√
b1t
)
tanh(

√
b1t)Dp

t

(
±
√

2b1
b2

sec h
(√

b1(t− τ)
))

dt

= − 4µεb1
√

b1
b2

∫ +∞
0 sec h

(√
b1t
)
tanh(

√
b1t)Dp

t
(
sec h

(√
b1(t− τ)

))
dt

= − 4µεb1
√

b1
b2

A

(16)

where A =
∫ +∞

0 sec h
(√

b1t
)
tanh(

√
b1t)Dp

t
(
sec h

(√
b1(t− τ)

))
dt.

Since there is a fractional-order differential term in Equation (16), it could not be
integrated directly. Firstly, the fractional-order differential is calculated, and then the
generalized integral is calculated. The detailed computational process of Equation (16) can
be found in [37].

2.3. The Threshold Curve of the Chaotic Motion

According to the Melnikov theory [38], if there exists t0 when M(t0) = 0 and
dM(t0)/dt0 6= 0, then lateral intersection for the stable manifold (Ws

±) and the unsta-
ble manifold (Wu

±) occurs, which means the system generates chaos in the sense of
Smale horseshoes. Combining Equation (14) with Equation (16), one could obtain the
Melnikov function

M(t0) = ±

√
2
b2

sin(ωt0)ε f πω sec h
(

πω

2
√

b1

)
− 4µεb1

√
b1

b2
A−

4εbb2
1

3
√

b1b2
= 0 (17)

dM(t0)

dt0
= ±

√
2
b2

cos(ωt0)ε f πω2 sec h
(

πω

2
√

b1

)
6= 0 (18)

Since |sin(ωt0)| < 1, from Equations (17) and (18), one could obtain the necessary
condition for the chaos∣∣∣∣∣±

√
2
b2

ε f πω sec h
(

πω

2
√

b1

)∣∣∣∣∣ >
∣∣∣∣∣4µεb1

√
b1

b2
A +

4εbb2
1

3
√

b1b2

∣∣∣∣∣ (19)

Simplifying Equation (19), one could obtain
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√
2
b2

ε f πω sec h
(

πω

2
√

b1

)
>

∣∣∣∣∣4µεb1
√

b1

b2
A +

4εbb2
1

3
√

b1b2

∣∣∣∣∣ (20)

Substituting the original system parameters into Equation (20), one could yield the
necessary condition for generating chaos in the sense of Smale horseshoes as follows.√

2m
k3

Fπω sec h
(

πω

2

√
m
k1

)
>

∣∣∣∣∣4hk1

k3

√
k1

m
A +

4c1k2
1

3mk3

√
m
k1

∣∣∣∣∣ (21)

According to Equation (21), the necessary condition for transverse intersections of
stable manifolds (Ws

±) and the unstable manifold (Wu
±) could be obtained. An illustrative

example is investigated herein, as defined by system parameters m = 1, k1 = 1, k3 = 1,
c1 = 0.4, h = −0.5, p = 0.5, and τ = 0.5. After substituting those system parameters into
Equation (19), the relationship curve between the critical excitation amplitude F and the
excitation frequency ω is obtained and shown in Figure 1.
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Figure 1. Chaotic threshold curve of a fractional-order time-delayed Duffing system. Region 1:
Horseshoes chaos may exist. Region 2: Horseshoes chaos does not exist.

From the analysis of Figure 1, it could be found that the occurrence of chaotic motion
is affected by the external excitation amplitude F and frequency ω. With the increase of
excitation frequency ω, the chaotic threshold would be larger initially, then smaller, and
finally towards zero. In region 1, the system may produce chaotic motion; in region 2, the
system has periodic motion.

3. Dynamical Analysis of Fractional-Order Time-Delayed Duffing System

In this part, the numerical simulation is used to verify the above theoretical results
and continue to study other complex nonlinear dynamic problems, including bifurcation
and chaotic behaviors. In order to demonstrate the validity of the chaotic threshold curve
obtained based on the Melnikov method in Figure 1, the numerical simulations of the system
are carried out. The power series expansion method (PSE) [39] is applied to numerical
simulations for Equation (1). The discretization process of fractional-order differential
terms is as follows.

Dp[x(tk)] ≈ d−p
l

∑
j=0

Cp
j x
(

tk−j

)
(22)

where tk = ld is the sampling points for time, d is the time step of calculation, and Cj
p

is the binomial coefficients of fractional-order differential terms. It has the following
iterative relationship

Cp
0 = 1, Cp

j =

(
1− 1 + p

j

)
Cp

j−1 (23)



Fractal Fract. 2023, 7, 638 7 of 23

Since the fractional-order derivative in Equation (1) involves time delay, one could not
utilize Equation (23) to calculate directly. Therefore, in the process of numerical calculation,
letting τ = i × d, (i is natural number), it could yield

Dp[x(t− τ)] = Dp[x(t− id)] (24)

Based on Equations (22)–(24), one could obtain the numerical iterative algorithm of
Equation (1) as

x(tk) = y(tk−1)h−
l

∑
j=1

c1
j x
(

tk−j

)
(25)

y(tk) =
(

F cos(ωtk) + hz(tk−1−i) + k1x(tk−1)− k3x3(tk−1)− c1y(tk−1)
)

h−
l

∑
j=1

c1
j y
(

tk−j

)
(26)

z(tk) = hqy(tk−1)−
l

∑
j=1

cq
j z
(

tk−j

)
(q=1−p)

(27)

where, x(tk) is displacement, y(tk) is velocity, and z(tk) is the fractional-order derivative of
displacement. In the process of numerical calculation, select time step d = 0.01, and the
total computation time is generally 500 excitation periods. In total, 200 points are sampled
in each period. The frontal transient response is omitted, and the posterior 100 periods
(the steady response of the numerical results) are selected for analysis. The initial value
is [x0, y0, z0] = [1, 1, 1]. According to the above numerical iteration process, the following
numerical simulation analysis is carried out for the system. In the following parts, the
values for the system parameters are chosen as follows: m = 1, k1 = 1, k3 = 1, c1 = 0.4,
h = −0.5, p = 0.5, and τ = 0.5.

3.1. Numerical Solutions of the Chaotic Threshold Curve

The correctness of the approximate analytical solution is further verified by analyzing
the numerical results. According to the numerical iterative algorithm of Equations (25)–(27),
one could obtain the critical value of F at each external excitation frequency when the
system generates chaos. The largest Lyapunov exponent σ is calculated by changing the
amplitude F at each fixed frequency ω. When σ changes from negative to positive for
the first time, the amplitude F is the chaotic threshold of the system. In the process of
numerical calculation, the step size of the external excitation frequency ω is 0.1. The results
are shown in Figure 2, where the small circles are the numerical results, and the solid linear
line denotes the approximate analytical results.
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From the analysis of Figure 2, it could be concluded that numerical results and approx-
imate analytical results are in qualitative agreement. The chaotic threshold obtained by
the two methods increases first and then decreases with the increase of external excitation
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frequency. Because Melnikov’s method is a first-order approximation method, there are
numerical differences between the two results when solving chaotic motion. Even if this
difference exists, it could be useful for reference in analyzing and predicting chaotic motion
of similar dynamical systems.

In terms of the values of two methods, there are differences between them. When
ω < A, the results obtained by the numerical method are smaller; when A < ω < B, the results
obtained by the two methods are in good agreement; when B < ω, the results obtained by
the numerical method are larger; when C < ω, it can be seen that the numerical results do
not show chaotic motion, only single periodic motion and multiple periodic motion in the
system. Moreover, when the value of 1/F tends to be zero, the external amplitude F tends
to be infinite; this difference of those two methods means that the Melnikov method is not
valid for these values.

Furthermore, it could be concluded that below the threshold curve of chaotic motion,
there may be chaotic motion or periodic motion in the system. As we know, the chaos
threshold curve calculated by the Melnikov method is a necessary condition but not a
sufficient and necessary condition. That is to say that when the parameters of the system
satisfy the conditions shown in Equation (21), chaos may occur in the system. When the
excitation frequency ω stays constant, chaotic motion is easy to occur when the excitation
amplitude is increased; when the excitation amplitude F stays constant, chaotic motion
may occur when the excitation frequency ω is within a certain range. If the excitation
frequency ω of the system is very large or the excitation amplitude F is very small, chaotic
motion would not occur in the system. Chaotic motions mainly exist in the range of lower
external excitation frequency ω and higher external excitation amplitude F. There results
could provide a certain reference value and theoretical guidance for designing similar
fractional-order systems.

3.2. Bifurcation Analysis and the Largest Lyapunov Exponents

In order to analyze the influence of external excitation amplitude F on the dynamic
response of the system, as the amplitude F varies, the bifurcation diagrams and corre-
sponding largest Lyapunov exponents of the system under external periodic excitation are
calculated and obtained. In order to further study the bifurcation and chaos of the system,
four cases, ω = 1.6, ω = 2.3, ω = 2.9, and ω = 3.5, are shown in Figures 3–6, respectively.

Lyapunov index is generally used as a general quantitative index to evaluate the
divergence of nearby orbits in nonlinear dynamics. When the maximum Lyapunov index
is positive, the system is in a chaotic state [40]. The traditional method of determining the
maximum Lyapunov index is based on the benetin-wolf algorithm. Detailed numerical
simulation methods for the maximum Lyapunov exponent of fractional differential equa-
tions and some typical examples can be found in the relevant literature [41–43]. From the
observation of Figures 3–6, it could be found that the bifurcation diagrams are in agreement
with the numerical results of the largest Lyapunov exponents graphs.

The bifurcation diagram of system (1) in (F, x) plane and the corresponding largest
Lyapunov exponents for ω = 1.6 are given in Figure 3. From Figure 3, it could be found that
when the excitation amplitude F < 0.7, the system dynamic response is period-1 motion.
For the period-2 motion at 0.7 < F < 0.75, the chaos occurs at F = 0.75; that is to say that the
chaotic threshold is 0.75; and the period-3 window appears at 1 < F < 1.3. When 1.3 < F, the
system enters period-1 motion and period-doubling bifurcation to chaos for 5 < F. When
the excitation amplitude is near F = 4, chaotic motion appears in little scope. Periodic or
quasi-periodic windows and chaotic windows at 6 < F < 7.5 also exist. When F > 7.5, the
system enters period-1 motion too. Therefore, the motion state of the system alternates
between periodic motion and chaotic motion, with the excitation amplitude increasing.

The bifurcation diagram of system (1) in (F, x) plane and the corresponding largest
Lyapunov exponents for ω = 1.6 are given in Figure 4. From Figure 4, it could be found
that the motion state of the system alternates between periodic motion and chaotic motion
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with the excitation amplitude increasing, and period-doubling bifurcation behavior of the
system does not exist.
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The bifurcation diagram of system (1) in (F, x) plane and the corresponding largest
Lyapunov exponents for ω = 2.9 are given in Figure 5. From Figure 5, it can be seen that
when F < 1.5, the system dynamic response is period-1 motion. When 1.5 < F < 2.7, the
system turns from period-doubling bifurcation period-2 and period-4 motion to chaotic
motion. When 2.7 < F < 4.2, the system is in the chaotic motion state. Therefore, F = 2.7
is the chaotic threshold at ω = 2.9. This value is the same as the F value of point L in
Figure 6b. With the increasing value of F, it could be found that the turn from an inverse
period-doubling bifurcation to chaotic motion occurs when F = 3.9. With the increase of F,
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the system transforms from period-doubling motion to periodic-2 motion and finally to
periodic-1 motion.
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The bifurcation diagram of system (1) in (F, x) plane and the corresponding largest
Lyapunov exponents for ω = 3.5 are given in Figure 6. From Figure 6, it can be seen
that with the change of the amplitude of external excitation, period-1 motion and period-
doubling motion state occur in the system response and the chaotic motion state does not
exist. Moreover, as can be seen from the largest Lyapunov exponents graph, all the largest
Lyapunov exponents are less than or equal to zero. This conclusion is the same as that in
Figure 2.

3.3. Analysis of the System Dynamical Responses at Some Different Typical Points

From the observation of Figures 3–6, it could be found that there exist abundant
dynamical phenomena with the variations of different excitation amplitudes F. In order to
further analyze these dynamical phenomena, the nonlinear dynamic analysis method of
time history, phase portrait, frequency spectrogram, and Poincare maps at different typical
points are presented.

Some typical points are shown in Figure 7. When the excitation frequency ω = 1.6,
select points A, B, C, and D; when the excitation frequency ω = 2.3, select points E, F, and
G; when the excitation frequency ω = 2.9, select points H, G, K, and L. In the following
part, each point is presented and analyzed, respectively. From Figures 8–18, the four
figures are (a) time history, (b) frequency spectrograms, (c) phase portraits, and (d) Poincare
maps, respectively.
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Point A: The system dynamical response is period-1 motion at F = 0.55 N in Figure 8.
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Point B: The system dynamical response is period-2 motion at F = 0.65 N in Figure 9.
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From Figure 9, it could be found that the Poincare maps have two fixed points,
and there is a dominant frequency, which is equal to the excitation frequency (ω = 1.6),
half frequency division (ω = 0.8), and weak frequency multiplication in the frequency
spectrogram. It is obvious that the system response is period-2 motion in this case.

Point C: The system dynamical response is chaotic motion at F = 0.75 N in Figure 10.
In Figure 10b, the frequency spectrogram exhibits a strong peak at the fundamental

frequency together with a higher and lower frequency broad band. The Poincare maps
show a collection of discrete points. It is obvious that the system response is chaotic motion
in this case.
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3.3.2. Numerical Simulation Results (ω = 2.3)

Point E: The system dynamical response is period-1 motion at F = 1 N in Figure 12.
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When F = 1.38, the time history, frequency spectrogram, phase portraits, and Poincare
maps are shown in Figure 13a–d, respectively. It is obvious that the system response is
intermittency chaotic motion in this case. Intermittency is a typical route to chaotic motion.
Intermittent motion is called pseudo-random alternating motion between regular and
irregular motion. The time of the irregular motion becomes longer and longer until the
system enters the chaotic motion state completely.

Point G: The system dynamical response is chaotic motion at F = 5.5 N in Figure 14.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 16 of 24 
 

 

Figure 13. The system response at F = 1.38 N. (a) Displacement response. (b) The amplitude–fre-

quency curves. (c) Phase trajectory. (d) Poncaret section diagram. 

When F = 1.38, the time history, frequency spectrogram, phase portraits, and Poincare 

maps are shown in Figure 13a–d, respectively. It is obvious that the system response is 

intermittency chaotic motion in this case. Intermittency is a typical route to chaotic motion. 

Intermittent motion is called pseudo-random alternating motion between regular and ir-

regular motion. The time of the irregular motion becomes longer and longer until the sys-

tem enters the chaotic motion state completely.  

Point G: The system dynamical response is chaotic motion at F = 5.5 N in Figure 14. 

  
(a) (b) 

  
(c) (d) 

Figure 14. The system response at F = 5.5 N. (a) Displacement response. (b) The amplitude–fre-

quency curves. (c) Phase trajectory. (d) Poncaret section diagram. 

3.3.3. Numerical Simulation Results (ω = 2.9) 

Point H: The system dynamical response is period-1 motion at F = 1.2 N in Figure 15. 

  
(a) (b) 

Figure 14. The system response at F = 5.5 N. (a) Displacement response. (b) The amplitude–frequency
curves. (c) Phase trajectory. (d) Poncaret section diagram.

3.3.3. Numerical Simulation Results (ω = 2.9)

Point H: The system dynamical response is period-1 motion at F = 1.2 N in Figure 15.
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Point J: The system dynamical response is period-2 motion at F = 2 N in Figure 16.
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Point K: The system dynamical response is period-4 motion at F = 2.5 N in Figure 17.
The time history, frequency spectrogram, phase portrait, and Poincare maps are

shown in Figure 17a–d, respectively. There are four fixed points in the Poincare maps, and
frequency spectrogram exhibits a dominant frequency, quarter frequency division, half
frequency division, and weak frequency multiplication. It could be found that the system
response is period-4 motion in this case.
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In this section, the system response for ω = 1.6 (A → B → C → D), ω = 2.3 (E →
F → G), and ω = 2.9 (H → J → K → L) are analyzed. When ω = 1.6, the state of the
system motion undergoes the transformation: period-1→ period-2→ chaotic motion, and
a period-3 window appears in chaotic motion. When ω = 2.3, the state of the system motion
undergoes the transformation: period-1→ intermittency chaotic motion→ chaotic motion,
and intermittency chaotic motion abruptly appears at F = 1.38. When ω = 2.9, the state of the
system motion undergoes the transformation: period-1→ period-2→ period-4→ chaotic
motion, and an inverse period-doubling bifurcation to period motion with the excitation
amplitude F increases. From all the above analyses, it could be concluded that there are two
routes to chaotic motion: period-doubling bifurcation and intermittency chaotic motion,
and periodic or quasi-periodic windows exist in the region of chaotic motion. Moreover,
the critical excitation amplitude of F when the chaotic motion appears is in agreement
with the chaotic threshold based on the Melnikov method. With the change of external
excitation parameters, the response of the system changes between chaotic motion and
periodic motion. These results demonstrate the validity of the chaotic threshold curve
obtained based on the Melnikov method in Figure 1.

Accordingly, the dynamic characteristics of the fractional-order time-delayed Duffing
system can be achieved by adjusting the external excitation parameters of the system to
change the motion state of the system.

4. Effect of System Parameters on the Chaotic Threshold Curve

In this section, the main purpose is to study the effects of fractional-order delayed
feedback term parameters (including τ, h, and p), linear stiffness coefficient k1, and linear
viscous damping coefficient c1 on the necessary condition for chaos in the sense of Smale
horseshoes. According to Equation (23), the chaotic threshold curve could be obtained with
variations of each parameter. The analysis on the effects of those parameters are presented,
respectively, in the following text.

In Figure 19, the influence of the delay parameter τ on the chaotic threshold curve
is given. From the observation of Figure 19, it could be found that the region of chaotic
motion increases with the increase of time-delay parameter τ. That is to say, the threshold
value of generating chaos decreases so that it is easy to find chaotic motion in this case, and
the possibility of chaos of the system increases.
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Figure 19. Chaotic threshold curve with different τ values. (m = 1, k1 = 1, k3 = 1, c1 = 0.4, h = −0.5,
p = 0.5).

In order to further explain the influence of fractional-order time-delay parameter τ
on chaotic threshold, a typical case is presented in the following part. The time-delay
parameter τ is chosen as 0.1. When the system is at points C, G, and L, the time history and
phase portrait of the displacement are shown in Figures 20–22, respectively.

Through comparing Figure 10 with Figure 20, Figure 14 with Figure 21, and Figure 18
with Figure 22, it could be found that with the decrease of the fractional-order time-delay
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parameter τ, the dynamical response of the system would transform from chaotic motion
to periodic or period-doubling motion.
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In Figure 23, the influence of the fractional-order parameter p on the chaotic threshold
curve is given. The graph shows that as the fractional-order p increases, the maximal value
of the chaotic threshold curve decreases. That is to say, the possibility of generating chaos
in the system decreases. The change of order p of fractional-order differential term mainly
affects the peak value of the curve.
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Figure 23. Chaotic threshold curve with different p values. (a) Panoramic view. (b) Local view. (m = 1,
k1 = 1, k3 = 1, c1 = 0.4, h = −0.5, τ = 0.5).

In Figure 24, the influence of the fractional-order coefficient h of fractional-order
differential term on the chaotic threshold curve is given. The fractional-order coefficient h
changes as 0, −0.25, −0.5, and −0.75, respectively. As the absolute value of fractional-order
coefficient h increases, the region of system generating chaos decreases, and the possibility
of chaos in the system decreases.
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Figure 24. Chaotic threshold curve with different h values. (m = 1, k1 = 1, k3 = 1, c1 = 0.4, p = 0.5,
τ = 0.5).

In Figure 25a, the influence of the linear stiffness coefficient k1 on the chaotic threshold
curve is given. From the observation of Figure 25, it could be found that as the linear
stiffness coefficient k1 decreases, the maximal value of the chaotic threshold curve increases,
and the possibility of chaos in the system increases. Moreover, the excitation frequency
corresponding to the maximal value of the chaotic threshold curve also decreases.

In Figure 25b, the influence of the linear viscous damping coefficient c1 on the chaotic
threshold curve is given. From the observation of Figure 25b, it could be found that
the increase of linear viscous damping coefficient c1 would make the threshold value of
generating chaos decrease, especially the maximal value of the chaotic threshold curve,
and the possibility of generating chaos in the system decreases.

Consequently, the system parameters of time delay τ, fractional-order coefficient h,
and fractional order p, linear stiffness coefficient k1 and linear viscous damping coefficient
c1 all affect the chaotic threshold. These parameters mainly affect the maximum value
of curve in Figures 19 and 23–25 but have no influence on the shape and trend of the
curve. Since chaotic motion is unpredictable, in the application of practical engineering, by
adjusting the parameters of the system, chaotic motion can be avoided.
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Figure 25. Chaotic threshold curve with different k1 values (a) (m = 1, k3 = 1, c1 = 0.4, h = −0.5, p = 0.5,
τ = 0.5) and c1 values (b) (m = 1, k1 = 1, k3 = 1, h = −0.5, p = 0.5, τ = 0.5).

5. Conclusions

The abundant nonlinear dynamic behaviors, which include bifurcation and chaotic
motion of a fractional-order time-delayed Duffing system under harmonic excitation, are
investigated in this paper.

Based on the Melnikov theory, the necessary condition for chaos in the sense of
Smale horseshoes is obtained. The comparison between the results from the Melnikov
method and numerical integration shows that the two methods have good qualitative and
quantitative agreements, which demonstrate the validity of approximate analytical results
directly. It could be found that the Melnikov method has certain limitations; when the
excitation frequency of the system is larger than a certain value, the Melnikov theory is
not valid. Furthermore, the bifurcation diagrams and the corresponding largest Lyapunov
exponents are presented. Moreover, the phase portraits, Poincare maps, time histories,
and frequency spectrograms at some typical points are analyzed. From the analysis of
numerical simulations, it could be found that there exist two routes to chaotic motion:
period-doubling bifurcation and intermittency chaotic motion, and alternation appears
between periodic motion and chaotic motion with the variations of the system parameters.
In addition, the effects of the system parameters on the chaotic threshold curve are analyzed
in detail. The increase of fractional-order coefficient h, linear viscous damping coefficient
c1, linear stiffness coefficient k1, and the decrease of time delay τ can suppress chaos. By
adjusting these parameters, chaotic motion could be avoided.

In some fields of science or engineering, the analysis of chaotic dynamics is of
great significance. The results shown in this paper might have a relevant value to bet-
ter understanding the complexity of chaotic motion of the fractional-order time-delay
Duffing system.
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