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Abstract: The main purpose of this paper is to show the existence of a sequence of infinitely many
small energy solutions to the nonlinear elliptic equations of Kirchhoff–Schrödinger type involving
the fractional p-Laplacian by employing the dual fountain theorem as a key tool. Because of the
presence of a non-local Kirchhoff coefficient, under conditions on the nonlinear term given in the
present paper, we cannot obtain the same results concerning the existence of solutions in similar ways
as in the previous related works. For this reason, we consider a class of Kirchhoff coefficients that are
different from before to provide our multiplicity result. In addition, the behavior of nonlinear terms
near zero is slightly different from previous studies.
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1. Introduction

In the last two decades, an increasing amount of attention has been devoted to the
study of fractional Sobolev spaces and the corresponding non-local equations because they
can be substantiated as a model for many physical phenomena that arise in the research of
optimization; fractional quantum mechanics; the thin obstacle problem; anomalous diffu-
sion in plasma; frames propagation; geophysical fluid dynamics; and American options in
finances, image process, game theory, and Lévy processes (see [1–6] and references therein
for more details).

In this direction, the present paper is devoted to a non-local problem of Schrödinger–
Kirchhoff type as follows:

M
(
[w]s,p

)
LKw(y) + V(y)|w|p−2w = λg(y, w) in RN , (1)

where [w]s,p :=
∫
RN

∫
RN |w(y)−w(x)|pK(y, x) dy dx, 1 < p < N

s , M ∈ C(R+) is a function
of Kirchhoff type, V : RN → (0, ∞) is continuous potential function, and a Carathéodory
function g : RN ×R→ R satisfies the subcritical and p-superlinear nonlinearity. Here, LK

is non-local operator defined pointwise as:

LKw(y) = 2
∫
RN
|w(y)− w(x)|p−2(w(y)− w(x))K(y, x)dx for all y ∈ RN ,

where K : RN ×RN → (0,+∞) is a kernel function with the following properties:

(L1) aK ∈ L1(RN ×RN), where a(y, x) = min{|y− x|p, 1};
(L2) there is a constant β0 > 0 such that K(y, x)|y − x|N+sp ≥ β0 for almost all

(y, x) ∈ RN ×RN and y 6= x, where 0 < s < 1;
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(L3) K(y, x) = K(x, y) for all (y, x) ∈ RN ×RN .

WhenK(y, x) = |y− x|−(N+sp), the operator LK becomes the fractional p-Laplacian
operator (−∆)s

p defined as:

(−∆)s
p w(y) = 2 lim

ε↘0

∫
RN\Bε(y)

|w(y)− w(x)|p−2 (w(y)− w(x))
|y− x|N+sp dx, y ∈ RN ,

where s ∈ (0, 1) and Bε(y) := {x ∈ RN : |y− x| ≤ ε}. Moreover, the Kirchhoff coefficient
M : [0, ∞)→ R+ fulfils the following requirements:

(M1) M ∈ C(R+) fulfils infζ∈R+ M(ζ) ≥ τ0 for a positive constant τ0;
(M2) there exists a constant ϑ ≥ 1 and a non-negative constant K such that ϑM(ζ) =

ϑ
∫ ζ

0 M(η)dη ≥ M(ζ)ζ and:

M̂(tζ) ≤ M̂(ζ) + K

for ζ ≥ 0 and t ∈ [0, 1], where M̂(ζ) = ϑM(ζ)−M(ζ)ζ.

The study on elliptic problems with the non-local Kirchhoff term was initially intro-
duced by Kirchhoff [7] to investigate an expansion of the classical D’Alembert’s wave
equation by taking the changes in the length of the strings during the vibrations into ac-
count. The variational problems of Kirchhoff type have a powerful background in various
applications in physics and have been concentrically explored by many researchers in re-
cent decades; as an illustration, see [8–24] and the references therein. A detailed discussion
about the physical implications based on the fractional Kirchhoff model was first proposed
by the work of Fiscella and Valdinoci [25]. In their paper, they obtained the existence of
nontrivial solutions by exploiting the mountain pass theorem and a truncation argument on
the non-local Kirchhoff term. In particular, the condition imposed on the non-degenerate
Kirchhoff function M : R+

0 → R+
0 is an increasing and continuous function with (M1); see

also [26] and references therein. However, this increasing condition eliminates the case that
is not monotone, for instance:

M(ζ) = (1 + ζ)−1 + (1 + ζ)k with 0 < k < 1

for all ζ ∈ R+
0 . For this purpose, the authors in [22] discussed the existence of multiple

solutions to a class of fractional p-Laplacian equations of Schrödinger–Kirchhoff type,
where the Kirchhoff function M is continuous, and satisfies (M1) and the condition:

(M3) for 0 < s < 1, there is ϑ ∈ [1, N
N−sp ) such that ϑM(ζ) ≥ M(ζ)ζ for any t ≥ 0.

We also recommend the papers [22,27–34] for some recent results in this direction.
Very recently, the existence result of a positive ground state solution for the elliptic

problem of Kirchhoff type with critical exponential growth was studied by Huang-Deng [35]
under the following condition:

(M4) there exists ϑ > 1 such that M(ζ)
ζθ−1 is non-increasing for ζ > 0.

From this condition, it is immediate that M̂(ζ) is non-decreasing for all ζ ≥ 0 and,
thus, we have the following condition:

(M3)′ there exists ϑ > 1 such that ϑM(ζ) ≥ M(ζ)ζ for any ζ ≥ 0.

This is weaker than (M4). A typical model for M satisfying (M1) and (M3)′ is given
by M(ζ) = 1 + aζϑ with a ≥ 0 for all ζ ≥ 0; hence, the condition (M3)′ includes the above
classical example, as well as the case that is not monotone. For this reason, the nonlinear
elliptic equations with the Kirchhoff coefficient satisfying (M3)′ (or (M3)) have recently
been extensively researched by many authors; see [11,15,18,22,28,32–34,36–38].
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Remark 1. Let us consider:

M(ζ) =

(
1 +

ζr√
1 + ζ2r

)
ζr−1 + (1 + ζ)−α

with its primitive function:

M(ζ) =
1
r

(
ζr +

√
1 + ζ2r − 1

)
+

1
1− α

(1 + ζ)1−α − 1
1− α

for all ζ ≥ 0. Then, it is clear that:

M̂(ζ) =

(
ϑ

r
− 1
)

ζr +

(
ϑ

r
− ζ2r

1 + ζ2r

)√
1 + ζ2r +

(
ϑ

1− α
(1 + ζ)− ζ

)
(1 + ζ)−α − ϑ

1− α
− ϑ

r
.

If r = 2 and N = 4 in (M3)′, then we cannot find a constant ϑ ∈ [1, 2) satisfying M̂(ζ) ≥ 0
for any ζ ≥ 0, by being limζ→∞ M̂(ζ) = −∞. If 1 < α ≤ r, there exists a constant ϑ ≥ r such
that M̂(ζ) ≥ 0 holds for all ζ ≥ 0.

Additionally, if we set r = ϑ = 1.5 and 1 < α ≤ r, we then have:

M̂(ζ) =
1√

1 + ζ3
+

(
3

2− 2α
(1 + ζ)− ζ

)
(1 + ζ)−α − 3

2− 2α
− 1

which is not non-decreasing and M̂(ζ) ≥ 0 for all ζ ≥ 0 from the simple computation. Hence, this
example does not satisfy the condition (M4). This implies that:

M̂(ζ)− M̂(tζ) ≥ 0

does not hold. However, we can choose a positive constant K satisfying our condition (M2).
Of course, since (M4) implies the condition (M2), our condition is a generalization of the
condition (M4).

Inspired by the fact illustrated in the remark above, the primary aim of the present pa-
per is devoted to deriving the multiplicity result of solutions to the Kirchhoff–Schrödinger
type problem with the fractional p-Laplacian on a class of a non-local Kirchhoff coeffi-
cient M that differs slightly from the previous related studies [11,15,18,22,28,32–34,36–38].
In particular, for the superlinear p-Laplacian problem:

−div(|∇w|p−2∇w) + V(y)|w|p−2w = g(y, w) in RN ,

the existence result of a ground-state solution is dealt with in the paper [39]. Here, the
potential function V ∈ C(RN) fulfils appropriate conditions and the Carathéodory function
g : RN ×R→ R fulfils the conditions (F1)–(F2) and the conditions as follows:

(g1) there is a constant µ ≥ 1, such that:

µ
[
g(y, ζ)ζ − pϑG(y, ζ)

]
≥ g(y, tζ)(tζ)− pϑG(y, tζ)

for (y, ζ) ∈ RN × R and t ∈ [0, 1], where ϑ was given in (M2) and G(y, ζ) =∫ ζ
0 g(y, t) dt;

(g2) G(y, ζ) = o(|ζ|p) as ζ → 0 uniformly for all y ∈ RN .

The condition (g1) was initially provided by the work of Jeanjean [40]. Afterward,
there has been considerable research dealing with the p-Laplacian problem; see [39,41]
and see also [18,42–44] for variable exponents p(·). However, because of the presence of a
non-local Kirchhoff coefficient M, the same results concerning the existence of solutions
cannot be obtained, even if we follow the similar ways as in [18,39,41,42,44]. More precisely,
under conditions (F1) and (g1)–(g2), we cannot verify the compactness condition of the
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Palais–Smale type for an energy functional corresponding to (1) when assumptions (M1)
and (M3) are satisfied. In particular, to guarantee this compactness condition of an energy
functional corresponding to problems of the elliptic type with the nonlinear term satisfying
(F2), it is crucial that M̂(ζ) is non-decreasing for all ζ ≥ 0. Because of this reason, when
(M3) is satisfied, many researchers have considered some conditions of the nonlinear term
which differ from (F2); see [11,15,18,22,28,31–34,36–38,45]. From this perspective, one of
the novelties of the present paper is to accomplish the existence of a sequence of small
energy solutions to (1) without the monotonicity of M̂ when (F2) is assumed. The other
one is to provide our main result without assuming the condition (g2), which is essential in
obtaining the compactness condition of the Palais–Smale type and ensuring assumptions
in the dual fountain theorem. These arguments are based on the recent work [46].

To this end, by utilizing the dual fountain theorem as the key tool, we provide the result
of the existence of multiple solutions on classes of the Kirchhoff coefficient M and the nonlin-
ear function g, which differ from the previous related studies [11,15,18,22,28,31–34,36–38,45].
The basic idea of our proof for the existence of a sequence of small energy solutions to prob-
lem (1) comes from recent studies [45–47]. This multiplicity result for nonlinear problems of the
elliptic type is specifically inspired by contributions from recent studies [3,18,21,39,41,42,48–51].

The structure of the present paper is as follows. Section 2 presents some requisite
preliminary knowledge of the function space to be utilized throughout this paper. In
Section 3, we present the variational framework associated with problem (1), and then we
illustrate the result of the existence of a sequence of nontrivial small energy solutions to the
fractional p-Laplacian equations under suitable assumptions.

2. Preliminaries

In this section, we present some useful definitions and fundamental properties of the
fractional Sobolev spaces that will be used in the present paper. Let 0 < s < 1 < q ∈ (1,+∞)
and q∗s be the fractional critical Sobolev exponent, that is:

q∗s :=

{ Nq
N−sq if sq < N,

+∞ if sq ≥ N.

We define the fractional Sobolev space Ws,q(RN) as follows:

Ws,q(RN) :=
{

w ∈ Lq(RN) :
∫
RN

∫
RN

|w(y)− w(x)|q
|y− x|N+qs dydx < +∞

}
,

endowed with the norm:

||w||Ws,q(RN) :=
(
||w||qLq(RN)

+ |w|qWs,q(RN)

) 1
q

,

where:

||w||qLq(RN)
:=
∫
RN
|w|q dx and |w|qWs,q(RN)

:=
∫
RN

∫
RN

|w(y)− w(x)|q
|y− x|N+qs dydx.

Then, Ws,q(RN) is a separable and reflexive Banach space. Additionally, the space
C∞

0 (RN) is dense in Ws,q(RN), namely, Ws,q
0 (RN) = Ws,q(RN) (see [5,52]).

Lemma 1 ([5,53]). Let 0 < s < 1 < p < +∞ with ps < N. Then, there is a constant C > 0
depending on s, p, and N, such that:

||w||Lp∗s (RN)
≤ C |w|Ws,p(RN)
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for all w ∈Ws,p(RN). Additionally, the space Ws,p(RN) is continuously embedded in Lt(RN) for
any t ∈ [p, p∗s ]. Moreover, the embedding:

Ws,p(RN) ↪→ Lt
loc(R

N)

is compact for t ∈ [p, p∗s ).

Now, let us consider the space Ws,p
K (RN) defined as follows:

Ws,p
K (RN) :=

{
w ∈ Lp(RN) :

∫
RN

∫
RN
|w(y)− w(x)|pK(y, x) dydx < +∞

}
,

where K : RN × RN \ {(0, 0)} → (0,+∞) is a kernel function satisfying the properties
(L1)–(L3). By the condition (L1), the function:

(y, x) 7→ (w(y)− w(x))K
1
p (y, x) ∈ Lp(R2N)

for all w ∈ C∞
0 (RN). Let us denote by Ws,p

K (RN) the completion of C∞
0 (RN) with respect to

the norm:

||w||Ws,p
K (RN) :=

(
||w||pLp(RN)

+ |w|p
Ws,p

K (RN)

) 1
p

,

where:
|w|p

Ws,p
K (RN)

:=
∫
RN

∫
RN
|w(y)− w(x)|pK(y, x) dydx.

Lemma 2 ([33]). Let K : RN ×RN \ {(0, 0)} → (0, ∞) be a kernel function with the conditions
(L1)–(L3). If w ∈Ws,p

K (RN), then w ∈Ws,p(RN). Moreover:

||w||Ws,p(RN) ≤ max{1, β
− 1

p
0 }||w||Ws,p

K (RN).

From Lemmas 1 and 2, we can obtain the following assertion immediately.

Lemma 3 ([33]). Let K : RN ×RN \ {(0, 0)} → (0, ∞) satisfy the conditions (L1)–(L3). Then,
there exists a constant C0 > 0 depending on s, p, and N, such that for any w ∈ Ws,p

K (RN) and
p ≤ q ≤ p∗s :

||w||pLq(RN)
≤ C0

∫
RN

∫
RN

|w(y)− w(x)|p
|y− x|N+ps dydx

≤ C0

β0

∫
RN

∫
RN
|w(y)− w(x)|pK(y, x) dydx.

Additionally, the space Ws,p
K (RN) is continuously embedded in Lq(RN) for any q ∈ [p, p∗s ].

Furthermore, the embedding:
Ws,p

K (RN) ↪→ Lq
loc(R

N)

is compact for q ∈ [p, p∗s ).

Next, we suppose that the potential function V satisfies:

(V) V ∈ C(RN), infy∈RN V(y) > 0, and meas
{

y ∈ RN : V(y) ≤ V0
}
< +∞ for all V0 ∈ R.

On the linear subspace:

Ws,p
K,V (R

N) :=
{

w ∈ Lp
V (R

N) :
∫
RN

∫
RN
|w(y)− w(x)|pK(y, x) dydx < +∞

}
,
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we equip the norm:

||w||Ws,p
K,V (RN) :=

(
||w||p

Lp
V (RN)

+ |w|p
Ws,p

K (RN)

) 1
p

,

where:
||w||p

Lp
V (RN)

:=
∫
RN
V(y)|w|p dy.

Then, Ws,p
K,V (R

N) is continuously embedded into Ws,p(RN) as a closed subspace. There-
fore, (Ws,p

K,V (R
N), || · ||Ws,p

K,V (RN)) is also a separable reflexive Banach space.

In view of Lemma 3, the following assertion was carried out by the same scheme as
that in [54].

Lemma 4. Assume that the conditions (L1)–(L3) and (V) hold. Let 0 < s < 1 < p < +∞ with
ps < N. Then, there is compact embedding Ws,p

K,V (R
N) ↪→ Lq(RN) for q ∈ [p, p∗s ).

Throughout this paper, we denote E := Ws,p
K,V (R

N), and the kernel function
K : RN × RN \ {(0, 0)} → (0, ∞) ensures the assumptions (L1)–(L3). Additionally, let
the Kirchhoff function M satisfy the conditions (M1)–(M2) and the potential V fulfil the
condition (V) . 〈·, ·〉 denotes the pairing of E and its dual E∗.

3. Variational Framework and Main Result

This section provides the existence result of infinitely many nontrivial small energy
solutions to (1) by utilizing the dual fountain theorem under appropriate assumptions.

Definition 1. We say that w ∈ E is a weak solution of (1) if:

M
(
[w]s,p

) ∫
RN

∫
RN
|w(y)− w(x)|p−2(w(y)− w(x))(z(y)− z(x))K(y, x) dydx

+
∫
RN
V(y)|w|p−2wz dy = λ

∫
RN

g(y, w)z dy

for any z ∈ E, where:

[w]s,p :=
∫
RN

∫
RN
|w(y)− w(x)|pK(y, x) dy dx.

Let us define the functional A : E→ R by:

A(w) =
1
p
M
(
[w]s,p

)
+
∫
RN

V(y)
p
|w|p dy.

Let G(y, ζ) =
∫ ζ

0 g(y, t) dt. Suppose that:

(F1) g : RN ×R → R is the Carathéodory function and there are ρ2 > 0 and κ ∈ [p, p∗s ),
0 ≤ ρ1 ∈ Lκ′(RN) ∩ L∞(RN) such that:

|g(y, ζ)| ≤ ρ1(y) + ρ2|ζ|`−1

for all (y, ζ) ∈ RN ×R where 1 < p < ` < p∗s .
(F2) There is θ ≥ 1 such that:

θG(y, ζ) ≥ G(y, tζ)

for (y, ζ) ∈ RN × R and t ∈ [0, 1], where G(y, ζ) = g(y, ζ)ζ − pϑG(y, ζ), and ϑ is
given in (M2).
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(F3) There are real numbers C > 0, 1 < m < p, τ > 1 with p ≤ τ′m ≤ p∗ and a positive
function ν ∈ L∞(RN) ∩ Lτ(RN) such that:

lim inf
|ζ|→0

g(y, ζ)

ν(y)|ζ|m−2ζ
≥ C

uniformly for almost all y ∈ RN .
(F4) lim|ζ|→∞

G(y,ζ)
|ζ|ϑp = ∞ uniformly for almost all y ∈ RN .

Remark 2. Let us consider the function:

g(y, ζ) = σ(y)

(
ν(y)|ζ|m−2ζ + |ζ|`−2ζ ln (1 + |ζ|) + |ζ|

`−1ζ

1 + |ζ|

)

with its primitive function:

G(y, ζ) = σ(y)
(

ν(y)
m
|ζ|m +

1
`
|ζ|` ln (1 + |ζ|)

)
for all ζ ∈ R, where m < p < ` and a continuous function σ : RN → R holds
0 < infy∈RN σ(y) ≤ supy∈RN σ(y) < ∞. Then, when ϑ = 1, this example fulfils the assumptions
(F1)–(F4), but not (g2).

Let the functional Bλ : E→ R be defined as:

Bλ(v) = λ
∫
RN

G(y, v) dy

for any v ∈ E. Then, it is trivial that Bλ is of class C1(E,R) with:

〈
B′λ(v), z

〉
= λ

∫
RN

g(y, v)z dy

for any v, z ∈ E. Additionally, the functional Iλ : E→ R is defined as:

Iλ(v) = A(v)− Bλ(v)

for any v ∈ E. Then, taking into account Lemma 3.2 in [43], we get that the functional
Iλ ∈ C1(E,R), and its Fréchet derivative is:〈

I′λ(w), z
〉
=M

(
[w]s,p

) ∫
RN

∫
RN
|w(y)− w(x)|p−2(w(y)− w(x))(z(y)− z(x))K(y, x) dy dx

+
∫
RN
V(y)|w|p−2wz dy− λ

∫
RN

g(y, w)z dy

for any w, z ∈ E.

Definition 2. We say that Iλ satisfies the Cerami condition at level c ((C)c-condition, for short) if
any (C)c-sequence {wn}n ⊂ E for any c ∈ R, i.e., Iλ(wn) → c and ||I′λ(wn)||E∗(1 + ||wn||E) →
0 as n→ ∞ has a convergent subsequence in E.

The following assertion is crucial to establish the existence of multiple solutions to our
problem. The fundamental idea of proofs of this consequence follows similar arguments as
in [46]; see also [18].

Lemma 5. It is assumed that (F1), (F2), and (F4) hold. Then, the functional Iλ assures the
(C)c-condition for any λ > 0.
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Proof. For any c ∈ R, let {wn} be a (C)c-sequence in E, i.e.,

Iλ(wn)→ c and
〈

I′λ(wn), wn
〉
= o(1)→ 0, as n→ ∞. (2)

From the same arguments as in [22], we know I′λ is of type (S+) and so it suffices
to show the boundedness of {wn} in E since E is reflexive. To do this, suppose to the
contrary that ||wn||E > 1 and ||wn||E → ∞ as n → ∞, and a sequence {zn} is defined by
zn = wn/||wn||E. Then, up to a subsequence, still denoted by {zn}, we obtain zn ⇀ z in E
as n→ ∞, and by Lemma 4:

zn(y)→ z(y) a.e. in RN , zn → z in Lq(RN), and zn → z in Lp(RN) (3)

as n→ ∞, where p < q < ps
∗.

Due to (M1)–(M2) and the relation (2), we have:

Iλ(wn) =
1
p
M
(
[wn]s,p

)
+

1
p

∫
RN
V(y)|wn|p dy− λ

∫
RN

G(y, wn) dy

≥ τ0

ϑp
[wn]s,p +

1
p

∫
RN
V(y)|wn|pdy− λ

∫
RN

G(y, wn)dy

≥ min{τ0, ϑ}
ϑp

(
[wn]s,p +

∫
RN
V(y)|wn|pdy

)
− λ

∫
RN

G(y, wn)dy

≥ min{τ0, ϑ}
ϑp

||wn||pE − λ
∫
RN

G(y, wn) dy. (4)

Since ||wn||E → ∞ as n→ ∞, we assert by (4) that:

λ
∫
RN

G(y, wn) dy ≥ min{τ0, ϑ}
ϑp

||wn||pE − Iλ(wn)→ ∞ as n→ ∞. (5)

Moreover, the assumption (M2) and the relation (5) imply that:

Iλ(wn) =
1
p
M
(
[wn]s,p

)
+

1
p

∫
RN
V(y)|wn|pdy− λ

∫
RN

G(y, wn)dy

≤ M(1)
p

(
1 +

(
[wn]s,p

)ϑ
)
+

1
p

∫
RN
V(y)|wn|pdy− λ

∫
RN

G(y, wn)dy

≤ C1
max{M(1), 1}

p

(
1 + [wn]s,p +

∫
RN
V(y)|wn|pdy

)ϑ

− λ
∫
RN

G(y, wn)dy

≤ 2ϑC2||wn||ϑp
E − λ

∫
RN

G(y, wn)dy (6)

for some positive constants C1, C2. Then, we obtain by the relation (6) that:

2ϑC2 ≥
1

||wn||ϑp
E

(
λ
∫
RN

G(y, wn) dy + Iλ(wn)

)
. (7)

It follows from (F4) that there is a positive constant ζ0 > 1, such that G(y, ζ) > |ζ|ϑp

for all y ∈ RN and for any |ζ| > ζ0. Owing to (F1), we infer |G(y, ζ)| ≤ T for all
(y, ζ) ∈ RN × [−ζ0, ζ0] and for some positive constant T . We can choose a T0 ∈ R such
that G(y, ζ) ≥ T0 for all (y, ζ) ∈ RN ×R, and, thus:

G(y, wn)− T0

||wn||ϑp
E

≥ 0, (8)

for all n ∈ N and for all y ∈ RN . Put Γ1 =
{

y ∈ RN : z(y) 6= 0
}

. Assume that meas(Γ1) 6= 0.
In accordance with (3), we arrive at the conclusion that |wn(y)| = |zn(y)|||wn||E → ∞ as
n→ ∞ for all y ∈ Γ1. Additionally, on account of (F4), we get:
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lim
n→∞

G(y, wn)

||wn||ϑp
E

= lim
n→∞

G(y, wn)

|wn|ϑp |zn|ϑp = ∞ (9)

for all y ∈ Γ1. According to the Fatou lemma and (5)–(9), we infer that:

2ϑC2 = lim inf
n→∞

2ϑC2
∫
RN G(y, wn) dy∫

RN G(y, wn) dy + Iλ(wn)

≥ lim inf
n→∞

∫
RN

G(y, wn)

||wn||ϑp
E

dy

= lim inf
n→∞

∫
RN

G(y, wn)

||wn||ϑp
E

dy− lim sup
n→∞

∫
RN

T0

||wn||ϑp
E

dy

≥ lim inf
n→∞

∫
Γ1

G(y, wn)− T0

||wn||ϑp
E

dy

≥
∫

Γ1

lim inf
n→∞

G(y, wn)− T0

||wn||ϑp
E

dy

=
∫

Γ1

lim inf
n→∞

G(y, wn)

|wn|ϑp |zn|ϑp dy−
∫

Γ1

lim sup
n→∞

T0

||wn||ϑp
E

dy = ∞,

which is a contradiction. Thus, z(y) = 0 for almost all y ∈ RN . Since Iλ(twn) is continuous
at every t ∈ [0, 1], for each n ∈ N, we can choose tn ∈ [0, 1] satisfying:

Iλ(tnwn) := max
t∈[0,1]

Iλ(twn).

Let {ζk} be a positive sequence of real numbers with limk→∞ ζk = ∞ and ζk > 1 for
any k. Then, it is immediate that ||ζkzn||E = ζk > 1 for any k and n. Let k be fixed. As zn → 0
strongly in Lq(RN) as n → ∞, due to the continuity of the Nemytskii operator, we infer
G(y, ζkzn)→ 0 in L1(RN) as n→ ∞; hence,

lim
n→∞

∫
RN

G(y, ζkzn) dy = 0. (10)

Because ||wn||E → ∞ as n → ∞, we have ||wn||E > ζk for n large enough. Hence,
according to (M1)–(M2) and the relation (10), we have:

Iλ(tnwn) ≥ Iλ

(
ζk
||wn||E

wn

)
= Iλ(ζkzn)

=
1
p
M
(
[ζkzn]s,p

)
+

1
p

∫
RN
V(y)|ζkzn|p dy− λ

∫
RN

G(y, ζkzn) dy

≥ min{τ0, ϑ}
ϑp

(
[ζkzn]s,p +

∫
RN
V(y)|ζkzn|p dy

)
− λ

∫
RN

G(y, ζkzn) dy

≥ min{τ0, ϑ}
ϑp

||ζkzn||pE − λ
∫
RN

G(y, ζkzn) dy

≥ min{τ0, ϑ}
ϑp

ζ
p
k

for sufficiently large n. Then, letting n and k approach infinity, one has:

lim
n→∞

Iλ(tnwn) = ∞. (11)

Since Iλ(0) = 0 and Iλ(wn) → c as n → ∞, it is obvious that tn ∈ (0, 1) and〈
I′λ(tnwn), tnwn

〉
= 0. Therefore, by the assumptions (M2), (F2), as well as the relation (2),

for all n large enough, we have:
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1
θ

Iλ(tnwn) =
1
θ

Iλ(tnwn)−
1

pθϑ

〈
I′λ(tnwn), tnwn

〉
=

1
pθϑ

[
ϑM

(
[tnwn]s,p

)
−M

(
[tnwn]s,p

)
[tnwn]s,p

]
+

1
pθ

∫
RN

(
V(y)|tnwn|p −

V(y)
ϑ
|tnwn|p

)
dy

+
λ

pθϑ

∫
RN

(g(y, tnwn)tnwn − pϑG(y, tnwn)) dy

=
1

pθϑ

[
ϑM

(
tp
n[wn]s,p

)
− tp

n M
(

tp
n[wn]s,p

)
[wn]s,p

]
+

1
pθ

∫
RN

(
V(y)|tnwn|p −

V(y)
ϑ
|tnwn|p

)
dy

+
λ

pθϑ

∫
RN
G(y, tnwn) dy

=
1

pθϑ
M̂
(

tp
n[wn]s,p

)
+

tp
n

pθ

∫
RN

(
V(y)|wn|p −

V(y)
ϑ
|wn|p

)
dy

+
λ

pθϑ

∫
RN
G(y, tnwn) dy

≤ 1
pθϑ

[
M̂
(
[wn]s,p

)
+ K

]
+

1
pθ

∫
RN

(
V(y)|wn|p −

V(y)
ϑ
|wn|p

)
dy

+
λ

pϑ

∫
RN
G(y, wn) dy

≤ 1
pϑ

[
ϑM

(
[wn]s,p

)
−M

(
[wn]s,p

)
[wn]s,p

]
+

1
p

∫
RN

(
V(y)|wn|p −

V(y)
ϑ
|wn|p

)
dy

+
λ

pϑ

∫
RN
G(y, wn) dy +

1
pϑ

K

≤M
(
[wn]s,p

)
+
∫
RN
V(y)|wn|p dy− λ

∫
RN

G(y, wn) dy

− 1
pϑ

M
(
[wn]s,p

)
[wn]s,p −

1
pϑ

∫
RN
V(y)|wn|p dy

+
λ

pϑ

∫
RN

g(y, wn)wn dy +
1

pϑ
K

= Iλ(wn)−
1

pϑ

〈
I′λ(wn), wn

〉
+

1
pϑ

K → c +
1

pϑ
K, as n→ ∞,

which contradicts (11). This completes the proof.

Let G be a separable and reflexive Banach space. Then, we know (see [55,56]) that we
choose { fk} ⊆ G and {g∗k} ⊆ G∗ such that:

G = span{ fk : k = 1, 2, · · · }, G∗ = span{g∗k : k = 1, 2, · · · },

and:

〈
g∗i , f j

〉
=

{
1 if i = j,

0 if i 6= j.

Let us denote Gk = span{ fk}, Yn =
⊕n

k=1 Gk, and Zn =
⊕∞

k=n Gk.
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Definition 3. Assume that (G, || · ||) is a real reflexive and separable Banach space,
T ∈ C1(G,R), c ∈ R. We say that T fulfills the (C)∗c -condition (with respect to Yk) if
any sequence {wk}k∈N ⊂ G for which wk ∈ Yk, for any k ∈ N,

T (wk)→ c and ||(T |Yk )
′(wk)||G∗(1 + ||wk||)→ 0 as k→ ∞,

has a subsequence converging to a critical point of T .

Proposition 1 ([49]). Suppose that (G, || · ||G) is a Banach space, T ∈ C1(G,R) is an even
functional. If there is n0 > 0, so that for each n ≥ n0, there exists δn > γn > 0, such that:

(D1) inf{T (w) : w ∈ Zn, ||w||G = δn} ≥ 0;
(D2) ϕn := max{T (w) : w ∈ Yn, ||w||G = γn} < 0;
(D3) ψn := inf{T (w) : w ∈ Zn, ||w||G ≤ δn} → 0 as n→ ∞;
(D4) T fulfills the (C)∗c -condition for every c ∈ [ψn0 , 0),

then, T has a sequence of negative critical values ck < 0 satisfying ck → 0 as k→ ∞.

Lemma 6. Assume that (F1)–(F2) and (F4) hold. Then, Iλ satisfies the (C)∗c -condition.

Proof. Let c ∈ R and let the sequence {wk} in E be such that wk ∈ Yk, for any k ∈ N,

Iλ(wk)→ c and ||(Iλ|Yk )
′(wk)||E∗(1 + ||wk||)→ 0 as k→ ∞.

Therefore, we get c = Iλ(wk) + ok(1) and
〈

I′λ(wk), wk
〉
= ok(1), where ok(1) → 0 as

k→ ∞. Repeating the argument from the proof of Lemma 5, we derive the boundedness of
{wk} in E. Then the idea of the rest of the proof is fundamentally the same as that in ([49],
Lemma 3.12).

Our main consequence is formulated as follows. The basic idea of proof of this theorem
comes from the paper [46]. For the sake of convenience of the readers, we give the proof.

Theorem 1. Suppose that (F1)–(F4) hold and g(y,−ζ) = −g(y, ζ) for all (y, ζ) ∈ RN × R.
Then, the problem (1) possesses a sequence of nontrivial solutions {wk} in E satisfying Iλ(wk)→ 0
as k→ ∞ for all λ > 0.

Proof. By means of Lemma 6 and the oddness of g, the functional Iλ ensures the (C)∗c -
condition for every c ∈ R, and that it is even. Thus, we will show the conditions (D1)–(D3)
of Proposition 1.

(D1): Let us denote:

η1,n = sup
||w||E=1,w∈Zn

||w||Lκ(RN) and η2,n = sup
||w||E=1,w∈Zn

||w||L`(RN).

Then, it is clear to derive that η1,n → 0 and η2,n → 0 as n → ∞ (see [49]). Denote
ηn = max{η1,n, η2,n}. Let ηn < 1 for n large enough. Then, it follows from (M1), (M2),
and (F1) that:

Iλ(w) =
1
p
M
(
[w]s,p

)
+
∫
RN

V(y)
p
|w|p dy− λ

∫
RN

g(y, w) dy

≥ min{τ0, ϑ}
ϑp

||w||pE − λ
∫
RN

g(y, w) dy

≥ min{τ0, ϑ}
ϑp

||w||pE − λ||ρ1||Lκ′ (RN)||w||Lκ(RN) −
λρ2

`
||w||`L`(RN)

≥ min{τ0, ϑ}
ϑp

||w||pE − λ||ρ1||Lκ′ (RN)ηn||w||E −
λρ2

`
η`

n||w||`E

≥ min{τ0, ϑ}
ϑp

||w||pE − λ||ρ1||Lκ′ (RN)ηn||w||E −
λρ2

`
η`

n||w||2`E
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for n large enough and ||w||E ≥ 1. Choose:

δn =

[
2ρ2λϑpη`

n
`min {τ0, ϑ}

] 1
p−2`

. (12)

Let w ∈ Zn with ||w||E = δn > 1 for sufficiently large n. Then, there exists n0 ∈ N
such that:

Iλ(w) ≥ min{τ0, ϑ}
ϑp

||w||pE −
λρ2

`
η`

n||w||2`E − λ||ρ1||Lκ′ (RN)ηn||w||E

≥ min{τ0, ϑ}
2ϑp

δ
p
n − λη

p−`
p−2`

n ||ρ1||Lκ′ (RN)

[
2ρ2λϑp

`min {τ0, ϑ}

] 1
p−2`

≥ 0

for all n ∈ N with n ≥ n0, since limn→∞ δn = ∞. Consequently, we assert:

inf{Iλ(w) : w ∈ Zn, ||w||E = δn} ≥ 0.

(D2): Because Yn is finite-dimensional and so all the norms are equivalent, there exists
ς1,n > 0 and ς2,n > 0, such that for any w ∈ Yn:

ς1,n||w||E ≤ ||w||Lm(ν,RN) and ||w||L`(RN) ≤ ς2,n||w||E.

For any w ∈ Yn with ||w||E ≤ 1, in accordance with (F1) and (F3), there are C1, C2 > 0,
such that:

G(y, ζ) ≥ C1ν(y)|ζ|m − C2|ζ|`

for almost all (y, ζ) ∈ RN ×R. Note that:∫
RN

∫
RN

1
p
|w(y)− w(x)|pK(y, x) dy dx ≤ C3

for some positive constant C3. Then, we have:

Iλ(w) =
1
p
M
(
[w]s,p

)
+
∫
RN

V(y)
p
|w|pdy− λ

∫
RN

g(y, w) dy

≤
(

sup
0≤ξ≤C3

M(ξ)

) ∫
RN

∫
RN

1
p
|w(y)− w(x)|pK(y, x) dy dx

+
1
p

∫
RN
V(y)|w|pdy− C1

∫
RN

ν(y)|w|mdy + C2

∫
RN
|w|` dy

≤ C4||w||
p
E − C1||z||mLm(ν,RN) + C2||w||`L`(RN)

≤ C4||w||
p
E − C1ςm

1,n||w||mE + C2ς`2,n||w||`E

for a positive constant C4. Let h(t) = C4tp − C1ςm
1,ntm + C2ς`2,nt`. Since m < p < `, there is

a t0 ∈ (0, 1) which is sufficiently small such that h(t) < 0 for all t ∈ (0, t0). Thus Iλ(w) < 0
for all w ∈ Yn with ||w||E = t0. If we choose γn = t0 for all n ∈ N, we get:

ϕn := max{Iλ(w) : w ∈ Yn, ||w||E = γn} < 0.

If necessary, we can replace n0 with a large value, so that δn > γn > 0 for all n ≥ n0.
(D3): Because Yn ∩ Zn 6= φ and 0 < γn < δn, we have ψn ≤ ϕn < 0 for all n ≥ n0.

For any w ∈ Zn with ||w||E = 1 and 0 < t < δn, one has:
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Iλ(tw) =
1
p
M
(
[tw]s,p

)
+
∫
RN

V(y)
p
|tw|pdy− λ

∫
RN

G(y, tw) dy

≥ min{τ0, ϑ}
ϑp

||tw||pE − λ||ρ1||Lκ′ (RN)||tw||Lκ(RN) −
λρ2

`
||tw||`L`(RN)

≥ −λ||ρ1||Lκ′ (RN)δnηn −
λρ2

`
δ`nη`

n

for large enough n. Hence, it follows from the definition of δn that:

0 > ψn ≥ −λ||ρ1||Lκ′ (RN)δnηn −
λρ2

`
δ`nη`

n

= −λ||ρ1||Lκ′ (RN)

[
2ρ2λϑp

`min {τ0, ϑ}

] 1
p−2`

η
p−`
p−2`

n

− λρ2

`

[
2ρ2λϑp

`min {τ0, ϑ}

] `
p−2`

η
`(p−`)
p−2`

n . (13)

Because p < ` and ηn → 0 as n→ ∞, we assert that limn→∞ ψn = 0.
As a consequence, all assumptions of Proposition 1 are ensured, and, thus, the prob-

lem (1) possesses a sequence of nontrivial solutions {wk} in E satisfying Iλ(wk) → 0 as
k→ ∞ for any λ > 0.

4. Conclusions

In the present paper, by employing the dual fountain theorem as the key tool, we
give the multiplicity result of small energy solutions on classes of the Kirchhoff coefficient
M and the nonlinear term h, which differ from the previous related works. In particular,
we provide our main result when we do not assume the monotonicity of M̂ in (M2),
and the condition (g2), which are essential in showing the compactness condition of the
Palais–Smale type and verifying all hypotheses in the dual fountain theorem. These are
novelties of this paper.

Moreover, a new research direction in a strong relationship is the study of the fractional
p(·)-Laplacian:

M
(
[w]s,p(·,·)

)
Lw(y) + V(y)|w|p(y)−2w = λg(y, w) in RN ,

where:

[w]s,p(·,·) :=
∫
RN

∫
RN

|w(y)− w(x)|p(y,x)

p(y, x)|y− x|N+sp(y,x)
dy dx

and the operator L is defined by:

Lw(y) = 2 lim
ε↘0

∫
RN\Bε(y)

|w(y)− w(x)|p(y,x)−2 (w(y)− w(x))
|y− x|N+sp(y,x)

dy, y ∈ RN ,

where s ∈ (0, 1) and Bε(y) := {x ∈ RN : |x− y| ≤ ε}. Let us consider the condition:

( f 2) there is a positive constant θ ≥ 1, such that:

G(y, tζ) ≤ θG(y, ζ)

for t ∈ [0, 1] and (y, ζ) ∈ RN ×R, where:

G(y, ζ) = g(y, ζ)ζ − ϑ sup
(y,x)∈RN×RN

p(y, x)G(y, ζ).

Very recently, the author in [30] provided a multiplicity result of solutions to a non-
local problem of the Schrödinger–Kirchhoff type with a variable exponent under a suitable
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condition, which is different from ( f 2). As far as we know, there is no such existence result
of solutions to the nonlinear elliptic problems involving the fractional p(·)-Laplacian when
( f 2) is assumed.
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