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Abstract: In this article, the security control problem of discrete-time fractional-order networked sys-
tems under denial-of-service (DoS) attacks is considered. A practically applicable finite-dimensional
control strategy will be developed for fractional-order systems that possess nonlocal characteristics.
By employing the Lyapunov method, it is theoretically proved that under the proposed controller,
the obtained closed-loop fractional system is globally input-to-state stable (ISS), even in the presence
of DoS attacks. Finally, the effectiveness of the designed control method is demonstrated by the
numerical example.

Keywords: security control; discrete-time networked systems; denial-of-service (DoS) attacks;
fractional-order

1. Introduction

The utilization of fractional-order calculus, due to its distinctive nonlocal features, is
highly advantageous in precisely representing the dynamic characteristics of a multitude
of real-world phenomena or systems that have infinite memory; see, for instance, [1–3].

The research and development of fractional-order systems and their associated con-
trols have recently been garnering increased interest [4–6]. It has been proposed that
fractional-order differential equations can more accurately capture the rheological consti-
tutive equation (RCE) for the viscoelasticity of polymer materials, as evidenced in [1,5].
In [7], a full-cell model of fractional order with a distinct physical interpretation was
developed. Two studies [8,9], utilize fractional-order methods to simulate lithium-ion
batteries. Several recent works regarding the application of fractional systems can be
found in, for example, [10–13]. For the continuous-time case, the concept of a propor-
tional integral derivative (PID) controller of fractional order was initially presented in [14].
The linear fractional-order systems’ stability is discussed in [15]. Sampled-data control
schemes for linear fractional-order systems that take the unique properties of fractional-
order calculus into account are investigated in [16–18]. The fractional-order Lyapunov
direct stability analysis method employed in [19] yields Mittag–Leffler stable conditions for
nonlinear fractional-order systems. In [20–23], the development of adaptive backstepping-
based controllers for fractional-order uncertain nonlinear systems subject to unknown
disturbances is reported. An adaptive fractional controller is developed for high-order
nonlinear integer uncertain systems in [24]. By truncating the fractional operator, which is
infinite-dimensional, refs. [25–28] propose the finite-dimensional control approaches for
fractional-order systems in the discrete-time domain based on the truncated approximated
finite-dimensional systems. Further improvement was then made in [29–31], where the
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finite-dimensional approximation errors were considered in designing a controller by treat-
ing them as the additive uncertainty terms, thus ensuring practical asymptotic stability of
the actual fractional-order systems.

Attacks on communication links in a networked control system can be divided into
two categories: denial-of-service (DoS) attacks and deception attacks. An interruption of
communication between networks leads to a DoS attack [32], whereas deception attacks
usually involve altering the data that are sent [33]. This article focuses on DoS attacks.
Nowadays, some controllers have been created to mitigate the impact of DoS attacks
on integer-order systems [34–38]. In [37,38], event-triggered resilient cooperative control
schemes are proposed for continuous-time multiagent systems under DoS attacks, such
that the controlled multiagent systems can achieve secure consensus exponentially. As
for discrete-time multiagent systems in the presence of aperiodic sampling and random
DoS attacks, a distributed output-feedback control scheme is developed to reach output
consensus by assuming that the sampling process is nonuniform and the consecutive attack
duration is upper-bounded [36]. Despite this, there are a limited number of published secu-
rity control studies for fractional-order systems in the literature. References [39,40] analyze
the control problem for continuous-time fractional-order multiagent systems and complex
networks that are vulnerable to DoS attacks, respectively. Reference [41] studies the control
of discrete-time fractional-order multiagent systems under DoS attacks, disregarding the
nonlocal characteristics of fractional-order calculus when designing the control scheme. As
of yet, the topic of DoS attacks and their effects on discrete-time fractional-order networked
systems has not been explored in depth, which provides the impetus for this work.

In spite of the aforementioned discussion, in this work, we analyze the discrete-
time fractional-order systems in which the plant and controller are connected via the
network, while the attacker attempts to disrupt the control system’s stability by hindering
communication between the sensors and controller (measurement channel). The main
contributions of this work are outlined in the following:

1. The development of a safety control protocol for discrete-time fractional-order systems
subject to external disturbance and DoS attacks is investigated in this article, with the
unique properties of fractional-order calculus being taken into account.

2. The controller proposed is finite-dimensional, which makes it possible to calculate the
control input with only a limited number of prior system states, making it suitable for
practical use.

3. A sufficient condition is provided to guarantee the global stability of the closed-loop
system, resulting in the system output eventually settling at an ultimate bound around
the origin.

This article is organized as follows: Section 2 presents the problem statement. The
controller design procedure is given in Section 3. In Section 4, the proposed control strategy
will be examined by simulation example, and finally, Section 5 provides the conclusions of
this work.

2. Problem Formulation

Consider a discrete-time linear fractional system described as follows:{
0∆α

k+1z(k + 1) = Az(k) + Bu(k) + Bωω(k)

y(k) = C2z(k), z(0) = z0
(1)

where z(k) ∈ Rn is the state vector at time step k ∈ N0, 0∆α
k+1z(k + 1) =

[
0∆

α1
k+1z1(k +

1), · · · , 0∆
αn
k+1zn(k + 1)

]T, u(k) ∈ Rm is the control input, y(k) ∈ Rp is the measurement
output, ω(k) ∈ Rr is the exogenous disturbance signal bounded as ‖ω(k)‖ ≤ qω with
qω > 0 and A, B, Bω and C2 are known real matrices with appropriate dimensions. In
accordance with Remark 4 in [18], the state, control signal, and disturbance before the
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initial time are considered to be all equal to zero in this work, i.e., z(q) = 0, u(q) = 0 and
ω(q) = 0, ∀q < 0.

Remark 1. For discrete-time fractional systems, several existing works [25–31] focus on the control
problem. Nevertheless, none of these present studies concern the influence of attacks when designing
control schemes, which highlights the advantages of our work where a safety control strategy is
proposed for discrete-time fractional systems.

According to [42], the Grünwald–Letnikov (GL) fractional-order difference of a discrete-
variable bounded function f (k) : N0 → R is defined as

0∆α
k f (k) =

k

∑
j=0

(−1)j
(

α

j

)
f (k− j), α ∈ R+, k ∈ N0, (2)

where (
α

j

)
=

{
1 j = 0
α(α−1)···(α−j+1)

j! j > 0
for all j ∈ N0. (3)

Define cj(α) = (−1)j
(

α

j

)
, and due to the fact that |cj(α)| ≤ αj

j! , for any α ∈ R+, the

sequence {cj(α)}j∈N0 is absolutely summable.
For the i-th state (i = 1, 2, · · · , n), we have

0∆
αi
k+1zi(k + 1) =

k+1

∑
j=0

cj(αi)zi(k + 1− j), (4)

in which αi is the fractional-order corresponding to zi. Equation (4) can be rewritten as

zi(k + 1) = 0∆
αi
k+1zi(k + 1)−

k+1

∑
j=1

cj(αi)zi(k + 1− j), (5)

and hence, the evolution of z(k + 1) can be expressed as

z(k + 1) = Az(k) + Bu(k) + Bωω(k)−
k+1

∑
j=1

Fj(α)z(k + 1− j) (6)

where Fj(α) = diag
(
cj(α1), cj(α2), · · · , cj(αn)

)
∈ Rn. Alternatively, (6) can be presented as

z(k + 1) =
k

∑
j=0

Ajz(k− j) + Bu(k) + Bωω(k) (7)

in which A0 = A− F1(α) and Aj = −Fj+1(α) for j ≥ 1. As a result, the linear discrete-time
fractional-order system (1) can be described as

z(k + 1) =
k

∑
j=0

Ajz(k− j) + Bu(k) + Bωω(k)

y(k) = C2z(k), z(0) = z0.

(8)

Notation. In indicates an identity matrix with a dimension equal to n. R+, R, N0, N,
and Z, respectively, represent the set of non-negative reals, reals, non-negative integers,
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positive integers, and integer numbers. The identity function is denoted by Id, i.e., Id(z) =
z. ‖z‖_∞ = sup

j∈Z
‖z(j)‖ and ‖z‖_[j1, j2] is defined as:

‖z‖_[j1, j2] =

 max
j1≤j≤j2

‖z(j)‖, if j1 ≤ j2

0, if j1 > j2.

It can be seen from the expression of the GL fractional-order difference of function
f (k) given in (2) that the cumulative term used to implement the fractional-order difference
will increase as k increases. Different from the controller proposed in [43], which is a linear
weighted combination of all the past states of the observer, which will consequently result
in the computational explosion as time goes by, a finite-dimensional controller that contains
finite steps of recent states is considered in this work.

Reformulate (8) as {
ẑ(k + 1) = ÂL ẑ(k) + B̂u(k) + B̂ωω̂(k)

y(k) = Ĉ2ẑ(k),
(9)

where L ∈ N0, ẑ(k) =
[
zT(k), zT(k − 1), · · · , zT(k − L)

]T ∈ R(L+1)n is the recent-finite-

steps state vector, ω̂(k) =
[
ωT(k), zT(k− L− 1), · · · , zT(0)

]T ∈ Rr+(k−L)n, and ÂL, B̂, B̂ω

and Ĉ2 are defined as

ÂL =


A0 A1 · · · AL−1 AL
In 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

, B̂ =


B
0
...
0

,

B̂ω =


Bω AL+1 · · · Ak−1 Ak
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

, ĈT
2 =


C2
0
...
0

.

Assumption 1. The pair (ÂL, B̂) is stabilizable.

Assumption 2. No DoS attacks occur at initial time k = 0.

Remark 2. Assumption 1 is needed for the existence of the positive matrices P and Q that will
be applied during the controller design in Section 3. As will be mentioned in Section 3, under the
influence of DoS attacks, in this paper, the latest received state will be utilized for control until
receiving the next successfully transmitted state, and thus, Assumption 2 is required for avoiding
the whole control system becoming open-loop at the beginning of the control stage.

The openness of network communication in networked control makes it susceptible
to cyberattacks. This study investigates the effects of aperiodic DoS attacks on the mea-
surement channel. A graphical illustration of the total networked fractional-order system
under our proposed control law is depicted in Figure 1.

Suppose that a DoS attack occurs in the measurement channel at the instant ai ∈
[k − L, k), where i denotes the i-th attack event. The control objective of this work is to
design a finite-dimensional controller that the corresponding closed-loop fractional-order
system (1) is globally input-to-state stable (ISS) under DoS attacks, i.e., for arbitrary initial
condition z0 ∈ Rn, the closed-loop state satisfies

‖z(k)‖ ≤ βa(‖z0‖, k) + γa(qω), k ∈ N0, (10)
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where function βa is a KL-function and γa is a K-function. Detailed definitions of the
KL-function, K∞-function, and K-function [44] are given below.

A continuous function γ : R+ → R+ is a K-function if it is strictly increasing and
γ(0) = 0. A continuous function β : R+ ×R+ → R+ is a KL-function if for each fixed
t ≥ 0, function β(·, t) is a K-function, and for each fixed s ≥ 0, function β(s, ·) is decreasing
and β(s, t)→ 0 as t→ ∞.

Figure 1. Framework of closed-loop fractional-order networked systems under DoS attacks.

3. Controller Design

Define the difference vector as

ê(k) = ẑ(k)a − ẑ(k) (11)

where ẑ(k)a stands for the recent-finite-steps state vector under DoS attacks that is utilized
for controller design. In this work, if a DoS attack occurs at the current time instant, or in
other words, no information is available for the controller currently, then the latest received
state will be used for controlling until the next successful state information transmission.
The controller is designed as

u(k) = KL ẑ(k)a (12)

with control matrix KL ∈ Rm×(L+1)n.

Theorem 1. Consider the closed-loop discrete-time fractional-order system consisting of the system
(1) and controller (12). Under Assumptions 1 and 2, for L ∈ N0 that satisfies 0 < hΨmax

i
φαi (L)k <

1 (i = 1, · · · , n), where hΨ and φαi (L)k will be defined later, then the obtained closed-loop fractional
system under DoS attacks is ensured to be globally ISS, with (10) being satisfied.

Proof. With the controller designed in (12), the evolution of the recent-finite-steps state in
the closed-loop system can be expressed as

ẑ(k + 1) =ÂL ẑ(k) + B̂KL ẑ(k)a + B̂ωω̂(k)a

=ÂL ẑ(k) + B̂KL ẑ(k) + B̂KL ê(k) + ω̄(k)a
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=Φẑ(k) + B̂KL ê(k) + ω̄(k)a (13)

where ω̂(k)a is the ω̂(k) under DoS attacks, ω̄(k)a = B̂ωω̂(k)a and Φ = ÂL + B̂KL. Accord-
ing to Assumption 1, for any positive definite matrix Q, ΦTPΦ− P + Q = 0 holds for a
positive definite matrix P.

Let the Lyapunov function be W(k) = ẑT(k)Pẑ(k), then

W(k + 1) =ẑT(k + 1)Pẑ(k + 1)

=ẑT(k)(P−Q)ẑ(k) + 2ẑT(k)ΦTPB̂KL ê(k)

+ 2ẑT(k)ΦTPω̄(k)a + êT(k)KL
TB̂TPB̂KL ê(k)

+ 2êT(k)KL
TB̂TPω̄(k)a + ω̄(k)T

a Pω̄(k)a

=W(k)− ẑT(k)Qẑ(k) + 2ẑT(k)ΦTPB̂kL ê(k)

+ 2ẑT(k)ΦTPω̄(k)a + êT(k)KL
TB̂TPB̂KL ê(k)

+ 2êT(k)KL
TB̂TPω̄(k)a + ω̄(k)T

a Pω̄(k)a. (14)

From (14), we obtain

W(k + 1)−W(k) ≤− λmin(Q)‖ẑ(k)‖2 + ‖2ΦTPB̂KL‖‖ẑ(k)‖‖ê(k)‖
+ ‖2ΦTP‖‖ẑ(k)‖‖ω̄(k)a‖+ [KL

TB̂TPB̂KL]‖ê(k)‖2

+ ‖2PB̂KL‖‖ê(k)‖‖ω̄(k)a‖+ P‖ω̄(k)a‖2. (15)

The following inequality should be guaranteed to ensure closed-loop system stability:

‖ê(k)‖ ≤ σ‖ẑ(k)‖+ σ‖ω̄(k)a‖, (16)

where σ ∈ R+ is a suitable designed parameter. Substituting (16) into (15), we have

W(k + 1)−W(k) ≤− λmin(Q)‖ẑ(k)‖2 + ‖2ΦTPB̂KL‖σ‖ẑ(k)‖2

+ ‖2ΦTPB̂KL‖σ‖ẑ(k)‖‖ω̄(k)a‖
+ ‖2ΦTP‖‖ẑ(k)‖‖ω̄(k)a‖
+ [KL

TB̂TPB̂KL]σ
2[‖ẑ(k)‖2 + ‖ω̄(k)a‖2

+ 2‖ẑ(k)‖‖ω̄(k)a‖
]
+ ‖2PB̂KL‖σ‖ẑ(k)‖‖ω̄(k)a‖

+ ‖2PB̂KL‖σ‖ω̄(k)a‖2 + P‖ω̄(k)a‖2. (17)

Let ζ1 = λmin(Q), ζ2 = ‖2ΦTPB̂KL‖, ζ3 = ‖2ΦTP‖, ζ4 = λmax(KL
TB̂TPB̂KL), ζ5 =

‖2PB̂KL‖, η2 = λmax(P), then

W(k + 1)−W(k) ≤− ζ1‖ẑ(k)‖2 + ζ2σ‖ẑ(k)‖2 + ζ2σ‖ẑ(k)‖‖ω̄(k)a‖
+ ζ3‖ẑ(k)‖‖ω̄(k)a‖+ ζ4σ2‖ẑ(k)‖2 + ζ4σ2‖ω̄(k)a‖2

+ ζ5σ‖ẑ(k)‖‖ω̄(k)a‖+ ζ5σ‖ω̄(k)a‖2 + η2‖ω̄(k)a‖2

+ 2ζ4σ2‖ẑ(k)‖‖ω̄(k)a‖
=− (ζ1 − ζ2σ− ζ4σ2)‖ẑ(k)‖2 + (ζ2σ + ζ3 + ζ5σ+

2ζ4σ2)‖ẑ(k)‖‖ω̄(k)a‖+ (ζ4σ2 + ζ5σ + η2)‖ω̄(k)a‖2. (18)

Choosing σ that satisfies ζ1 − ζ2σ − ζ4σ2 > 0 and letting ζ6 = ζ1 − ζ2σ − ζ4σ2, ζ7 =

ζ2σ + ζ3 + ζ5σ + 2ζ4σ2, ζ8 = ζ4σ2 + ζ5σ + η2, ζ9 =
ζ2

7
2ζ6

+ ζ8, then

W(k + 1)−W(k) ≤− ζ6‖ẑ(k)‖2 + ζ7‖ẑ(k)‖‖ω̄(k)a‖+ ζ8‖ω̄(k)a‖2. (19)



Fractal Fract. 2023, 7, 562 7 of 14

Since for any positive real scalar δ, the following inequality holds:

‖ẑ(k)‖‖ω̄(k)a‖ ≤
‖ẑ(k)‖2

2δ
+

δ‖ω̄(k)a‖2

2
, (20)

Thus, (19) becomes

W(k + 1)−W(k) ≤− ζ6‖ẑ(k)‖2 +
ζ7

2δ
‖ẑ(k)‖2 +

ζ7δ

2
‖ω̄(k)a‖2 + ζ8‖ω̄(k)a‖2. (21)

Let δ = ζ7
ζ6

, then we obtain

W(k + 1)−W(k) ≤− ζ6‖ẑ(k)‖2 +
ζ6

2
‖ẑ(k)‖2 +

ζ2
7

2ζ6
‖ω̄(k)a‖2 + ζ8‖ω̄(k)a‖2

=− ζ6

2
‖ẑ(k)‖2 + ζ9‖ω̄(k)a‖2. (22)

Define µ1(‖ẑ(k)‖) = λmin(P)‖ẑ(k)‖2, µ2(‖ẑ(k)‖) = λmax(P)‖ẑ(k)‖2, µ3(‖ẑ(k)‖) =
ζ6
2 ‖ẑ(k)‖2, µ4(W(k)) = µ3 ◦ µ−1

2 (W(k)) = ζ6
2η2

W(k), µ5(‖ω̄(k)a‖) = ζ9‖ω̄(k)a‖2; therefore
we obtain

µ1(‖ẑ(k)‖) ≤W(k) ≤ µ2(‖ẑ(k)‖), (23)

and

W(k + 1)−W(k) ≤ −µ3(‖ẑ(k)‖) + µ5(‖ω̄(k)a‖)
≤ −µ4(W(k)) + µ5(‖ω̄(k)a‖). (24)

Given that µ1, µ2, µ3, µ5 ∈ K∞, it is evident that the function W(k) is an ISS–Lyapunov
function, implying the existence of a KL-function βa : R+ ×R+ → R+ and a K-function
γa : R+ ×R+ such that

‖ẑ(k0 + k)‖ ≤ βa(‖ẑ(k0)‖, k) + γa(‖ω̄a‖_[k0,k0+k−1]), (25)

where k0, k ≥ 0. Let µ̂4(‖ω̄a‖) be any K∞-lower bound of µ4 ∈ K∞ such that Id− µ̂4 ∈ K.
Hence, we can have µ̂4(‖ω̄a‖) = ĥ4‖ω̄a‖, where ĥ4 = min( ζ6

2η2
, θ̂a) with θ̂a ∈ (0, 1). Let

ρ1(‖ω̄a‖) = hρ‖ω̄a‖ with hρ ∈ (0, 1), then according to [44], (25) holds with γa = µ−1
1 ◦ γ̂a

where γ̂a(‖ω̄a‖) = ζ9
ĥ4hρ
‖ω̄a‖2 and βa(s, t) = µ−1

1 (β̂a(µ2(s)), t) for a KL-function β̂a :

R+ ×R+ → R+; therefore, (25) can be written as

‖ẑ(k0 + k)‖ ≤βa(‖ẑ(k0)‖, k) +

√
ζ9

ĥ4hρλmin(P)
‖ω̄a‖_[k0,k0+k−1]

=βa(‖ẑ(k0)‖, k) + hΨ‖ω̄a‖_[k0,k0+k−1] (26)

with hΨ =

√
ζ9

ĥ4hρλmin(P)
.

Since Fj+1(α) = diag
(
cj+1(α1), cj+1(α2), · · · , cj+1(αn)

)
, its maximum norm can be

obtained as

‖Fj+1(α)‖∞ = max
i
|cj+1(αi)| ≤ max

i

α
j+1
i

(j + 1)!
. (27)
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For simplicity, the maximum norm of matrix F will be expressed as ‖F‖. Thus, the
following inequality can be derived as

‖ω̄(k)a‖ ≤‖Bω‖qω +
k

∑
j=L+1

‖Aj‖‖z(k− j)a‖

≤‖Bω‖qω +
k

∑
j=L+1

‖Aj‖‖z‖_∞

=‖Bω‖qω +
k

∑
j=L+1

‖Fj+1(α)‖‖z‖_∞

≤‖Bω‖qω +
k

∑
j=L+1

max
i

α
j+1
i

(j + 1)!
‖z‖_∞

=‖Bω‖qω + max
i

φαi (L)k‖z‖_∞ (28)

where φαi (L)k = ∑k
j=L+1

α
j+1
i

(j+1)! . Combining (26) with (28) results in

‖ẑ‖_∞ ≤βa(‖ẑ(0)‖, 0) + hΨ‖Bω‖qω + hΨmax
i

φαi (L)k‖z‖_∞. (29)

Due to the fact that ‖z‖_∞ ≤ ‖ẑ‖_∞, from (29), we obtain

‖ẑ‖_∞ ≤βa(‖ẑ(0)‖, 0) + hΨ‖Bω‖qω + hΨmax
i

φαi (L)k‖ẑ‖_∞. (30)

Consider L ∈ N0 that satisfies 0 < hΨmax
i

φαi (L)k < 1 and define dz =
[
1 −

hΨmax
i

φαi (L)k
]−1[

βa(‖ẑ(0)‖, 0) + hΨ‖Bω‖qω

]
; it then further implies ‖ẑ‖_∞ ≤ dz. Hence,

(28) becomes
‖ω̄(k)a‖ ≤‖Bω‖qω + max

i
φαi (L)kdz. (31)

Furthermore, (26) turns into

‖ẑ(k)‖ ≤βa(‖ẑ(0)‖, k) + hΨ
[
‖Bω‖qω + max

i
φαi (L)kdz

]
=βa(‖ẑ(0)‖, k) + pz (32)

where pz = hΨ
[
‖Bω‖qω + max

i
φαi (L)kdz

]
and βa : R+ ×R+ → R+ is a KL-function.

For any scalar M ∈ N, the boundedness inequality of ω̄a can be written as

‖ω̄(k)a‖ ≤‖Bω‖qω +
L+1+M

∑
j=L+1

‖Aj‖‖z(k− j)a‖+
k

∑
j=L+2+M

‖Aj‖‖z(k− j)a‖

≤‖Bω‖qω +
L+1+M

∑
j=L+1

‖Aj‖‖z‖_[k−L−1−M, k−L−1]

+
k

∑
j=L+2+M

‖Aj‖‖z‖_[0, k−L−2−M]

≤‖Bω‖qω +
L+1+M

∑
j=L+1

‖Aj‖‖z‖_[k−L−1−M, k−L] + max
i

φαi (L + 1 + M)kdz

≤‖Bω‖qω +
L+1+M

∑
j=L+1

max
i

α
j+1
i

(j + 1)!
‖z‖_[k−L−1−M, k−L]

+ max
i

φαi (L + 1 + M)kdz
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≤‖Bω‖qω + max
i

ψLαi (M)‖z‖_[k−L−1−M, k−L] + max
i

φαi (L + 1 + M)kdz (33)

where ψLαi (M) = ∑L+1+M
j=L+1

α
j+1
i

(j+1)! . Consider for constant pl ≥ 0 and function βal : R+ ×
R+ → R+, l ∈ N0 such that for any r, s ∈ R+, βal(r, s) is bounded and βal(r, s) → 0 as
s→ ∞, the following inequality holds:

‖ẑ(k)‖ ≤ βal(‖ẑ(0)‖, k) + pl . (34)

Step 1 (l = 0): Let βa0(r, s) = βa(r, s) and p0 = pz, from (32) we then obtain

‖ẑ(k)‖ ≤ βa0(‖ẑ(0)‖, k) + p0. (35)

Step 2 (l > 0): For a vl ∈ R that satisfies vl ∈
(
0, min{1, κ−χ

χ pl}
)
, where κ ∈ (χ, 1) and

χ = hΨmax
i

φαi (L)k, it then indicates χ(pl + vl) ≤ κpl . Choosing vl+1 ∈ (0, κvl), there then

exists a kl = kl(vl+1) that for k ≥ kl , ‖z‖_[k−L, k] ≤ ‖ẑ(k)‖ ≤ pl +
vl+1

2 . This further implies
that for any Ml ∈ N, there exists a k ≥ k̄l = kl + Ml + 2 such that ‖z‖_[k−L−1−Ml , k−L] ≤
pl +

vl+1
2 holds. After combining with (33), we obtain

‖ω̄(k)a‖ ≤‖Bω‖qω + max
i

ψLαi (Ml)(pl +
vl+1

2
)

+ max
i

φαi (L + 1 + Ml)kdz, for k ≥ k̄l . (36)

By selecting Ml that satisfies hΨmax
i

φαi (L + 1 + Ml)kdz ≤ χ
vl+1

2 , from (26), we obtain

‖ẑ(k̄l + k)‖ ≤βa(‖ẑ(k̄l)‖, k) + hΨ

[
max

i
ψLαi (Ml)(pl +

vl+1
2

)

+ ‖Bω‖qω + max
i

φαi (L + 1 + Ml)kdz

]
. (37)

Since for L, Ml ∈ N0, ψLαi (Ml) ≤ φαi (L)k; hence,

‖ẑ(k̄l + k)‖ ≤βa(‖ẑ(k̄l)‖, k) + hΨ‖Bω‖qω + hΨmax
i

φαi (L)k

(pl +
vl+1

2
) + χ

vl+1
2

≤βa(‖ẑ(k̄l)‖, k) + hΨ‖Bω‖qω + χ(pl +
vl+1

2
)

+ χ
vl+1

2
≤βa(‖ẑ(k̄l)‖, k) + hΨ‖Bω‖qω + χ(pl + vl)

≤βa(‖ẑ(k̄l)‖, k) + hΨ‖Bω‖qω + κpl . (38)

Thus, combining with (34) gives

‖ẑ(k)‖ ≤ βa(l+1)(‖ẑ(0)‖, k) + κpl + hΨ‖Bω‖qω (39)

where
βa(l+1)(r, k)

=


βal (r, k) + (1− κ)pl − hΨ‖Bω‖qω, k ∈ [0, k̄l − 1]
min

{
βal(r, k) + (1− κ)pl−

hΨ‖Bω‖qω, βa(‖ẑ(k̄l)‖, k− k̄l)
}

, k ∈ [k̄l , +∞)

(40)
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which recursively satisfies that βa(l+1)(r, k) → 0 as k → ∞, and it can be noticed from
(34) that the state will finally converge to pl . Also, (39) can be written as ‖ẑ(k)‖ ≤
βa(l+1)(‖ẑ(0)‖, k) + pl+1, where

pl+1 = κpl + hΨ‖Bω‖qω

= κ
(
κpl−1 + hΨ‖Bω‖qω

)
+ hΨ‖Bω‖qω

= κ
(
κ(κpl−2 + hΨ‖Bω‖qω) + hΨ‖Bω‖qω

)
+ hΨ‖Bω‖qω

= · · ·

= κl+1 p0 + hΨ‖Bω‖qω

( l

∑
j=0

κ j
)

. (41)

As a result, (34) indicates

‖ẑ(k)‖ ≤ βa∞(‖ẑ(0)‖, k) + p∞ (42)

where βa∞(‖ẑ(0)‖, k)→ 0 as k→ ∞ and

p∞ = lim
l→∞

pl = hΨ‖Bω‖qω
κ

1− κ
. (43)

In light of Assumption 2, ‖ẑ(0)‖ = ‖z(0)‖ and ‖z(k)‖ ≤ ‖ẑ(k)‖; thus,

‖z(k)‖ ≤βa(‖z(0)‖, k) + hΨ‖Bω‖qω
κ

1− κ

=βa(‖z(0)‖, k) + γa(qω) (44)

where γa(r) = cγar with cγa = hΨ‖Bω‖ κ
1−κ . Therefore, under DoS attacks, the closed-loop

fractional-order system (1) with controller (12) is globally ISS, and the control objective is
achieved.

Remark 3. Although there has been considerable research into secure control for integer-order
systems [32,35,37,38], comparatively little attention has been given to systems in fractional-order
systems, and even less to those in the discrete-time domain. This research is the first to address
the security control of discrete-time fractional-order systems under DoS attacks while taking into
account the memory and heredity effects of fractional calculus.

Remark 4. References [39,40] respectively investigate the control problem for fractional-order
multi-agent systems and complex networks which are vulnerable to DoS attacks in the continuous-
time domain. The control issue of discrete-time fractional-order multi-agent systems under DoS
attacks is studied in [41], yet the non-local characteristics of fractional-order calculus are ignored
when designing the control scheme. Different from such mentioned works, the control for discrete-
time fractional systems under the effect of DoS attacks that rigorously consider the unique hereditary
and infinite memory properties of fractional calculus is addressed in this work for the first time.

4. Numerical Example

Consider the fractional-order discrete-time system shown in (1) with

A =

[
1 1
1 −1

]
, B =

[
1
1

]
, Bω =

[
0 0
0 1

]
, C2 =

[
1 1

]
,

0∆α
k+1z(k + 1) =

[
0∆0.1

k+1z1(k + 1), 0∆0.4
k+1zn(k + 1)

]T
(k ∈ N0), z0 = [0.1, 0.5]T, and the ex-

ternal disturbance ω(k) is an uniformly distributed random signal with qω = 0.02. The
numerical example and its visualized results are both implemented in MATLAB. Details of
technical implementation can refer to [16–18,45].
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The results of the open-loop fractional-order system without control input, depicted
in Figure 2, demonstrate its instability, as evidenced by the outputs z1 and z2. By choosing
L = 1, σ = 0.1, and KL = [−1, 0.01, 0.01, 0.05]T, we can notice that even under the influence
of DoS attacks, the closed-loop system is ISS under our proposed controller, as presented
in Figures 3 and 4. Furthermore, it is presented in Figure 3 that under the proposed
control input, both system outputs can be driven to zero instead of just being bounded,
as illustrated in the proof of Theorem 1, which further indicates an interesting future
work to explore the design of security control law for fractional-order systems to achieve
asymptotic stability. Moreover, as displayed in Figures 5 and 6 where KL = [−1, 0.01]T

and L = 0, it is worth noting that with a proper selection of design parameters, the global
stability of the closed-loop system in the presence of DoS attacks can be ensured under our
proposed controller, even if only the current state is considered in designing the control
strategy. Consequently, the effectiveness of the investigated control strategy is verified by
the simulation results.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15
10

42

Figure 2. System output z1 and z2 without control effort.

0 20 40 60 80 100 120 140 160 180 200
-1

-0.5

0

0.5

1

Figure 3. System output z1 and z2 with DoS attacks under the proposed control law where L = 1.
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Figure 4. Control input u with L = 1.
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Figure 5. System output z1 and z2 with DoS attacks under the proposed control law where L = 0.
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-0.5

0

0.5

1

Figure 6. Control input u with L = 0.

5. Conclusions

The security control issue for discrete-time fractional-order linear systems under DoS
attacks is addressed in this work. A finite-dimensional controller, which requires merely
the information of a finite number of the previous state, and hence is practically useful,
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is proposed in this article. Our proposed control law is verified by numerical simulation,
ensuring the global input-to-state stability of the associated closed-loop system. In practice,
it is possible that the system matrices could not be known precisely, which consequently
implies an interesting future topic for considering the study of adaptive finite-dimensional
control for fractional systems under attack by introducing adaptive techniques in our work
to estimate system uncertainties.
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