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Abstract: This work investigates a weighted Banach space second order pantograph fractional
differential equation. The considered equation is of second order, expressed in terms of the Caputo–
Hadamard fractional operator, and constructed in a general manner to accommodate many specific
situations. The asymptotic stability of the main equation’s trivial solution has been given. The
primary theorem was demonstrated in a unique manner by employing the Krasnoselskii’s fixed point
theorem. We provide a concrete example that supports the theoretical findings.
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1. Introduction

Fractional calculus (FC) is a branch of mathematical analysis that investigates alter-
native approaches to define the real or complex number powers of the differentiation
and integration operators. FC has numerous and varied applications in the domains of
engineering and science, including optics, signals processing, viscoelasticity, fluid me-
chanics, electrochemistry, biological population models, and electromagnetics; consult for
instance [1,2].

Fractional differential equations (FDE) are often treated via many types of fractional
derivatives, including the two most well-known, Riemann–Louville fractional deriva-
tive (RLFD) and Caputo fractional derivative (CFD), which have drawn the majority of
researchers’ attention. On the other hand, the Caputo–Hadamard fractional derivative
(CHFD) is advantageous since it uses a logarithmic kernel with memory, which is appropri-
ate for describing complicated systems. The works in [3,4] provide useful summaries and
applications of how and where the CHFD arises. FDE within CHFD are a very important
class of equations, and their applications can be found in a variety of engineering and scien-
tific disciplines, such as mechanics, biology, chemistry, physics, the stability and instability
of geodesics on Riemannian varieties, Hamiltonian systems, and technical engineering
sciences [5,6].
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A pantograph is a mechanical linkage that is used to copy and scale a drawing or
image. It consists of a series of interconnected parallelograms that are able to maintain
the same shape, even as they change size. The pantograph was first invented in the 17th
century and has since been used for a wide range of applications. The pantograph can
be modeled mathematically using a set of equations known as the pantograph equations.
These equations describe the relationships between the various lengths and angles of the
parallelograms that make up the pantograph. Important application of the pantograph is
in the field of engineering including the design of machines and mechanisms that require
precise scaling and copying of movements. For example, a pantograph can be used to
design a linkage system for a robot arm that needs to move in a specific way. There are
some other pertinent applications of pantograph in electrodynamics [7], number theory [8],
and the energy absorbed by an electronic locomotive [9–12].

Due to its importance, numerous researchers have recently focused on the fractional
pantograph equation and made helpful contributions in this direction. In [13], the authors
studied the existence of solutions of nonlinear fractional pantograph equations. Existence
and uniqueness results for nonlinear neutral pantograph equations with generalized frac-
tional derivative were proved in [14]. Several significant conclusions have been made
on this subject using different iterations of the pantograph equation and various types of
fractional operators [15–20]. Fixed point theorems are frequently used to demonstrate the
solutions’ existence and uniqueness. Few results used fixed point methods to show the
stability of the solutions; for example in the recent paper [21], stability results in the sense
of Ulam–Hyers and its generalized form of stability are established for generalized hybrid
discrete pantograph equation. The fact that all of the aforementioned research was done
using first-order fractional operators is noteworthy. The literature rarely considers works
on second-order fractional pantograph equations [22].

In [23], Agarwal et al. used the Krasnoselskii’s fixed point theorem (KFPT) to prove
the existence of solutions for the following neutral FDE with bounded delay{ CDα(X(t)− g(t, Xt)) = f (t, Xt), t ≥ t0,

Xt0 = χ,

where CDα is CFD of order 0 < α < 1, f , g : [t0, ∞) × C([−r, 0],Rn) → Rn and
χ ∈ C([−r, 0],Rn). Further, in [24], Ge and Kou employed the KFPT in weighted Ba-
nach space to discuss the asymptotic stability (AS) of the zero solution for the following
nonlinear FDE: { CDα

0+X(t) = f (t, X(t)), t ≥ 0,
X(0) = X0, X′(0) = X1,

where 1 < α < 2, X0, X1 ∈ R, f : R+ ×R→ R is a continuous function where f (t, 0) ≡ 0,
and R+ = [0, ∞). Motivated by the aforementioned arguments, the pertinent literature
that is currently available [25–31], and the fact that the second order pantograph fractional
differential equations are not frequently used in the literature, we consider the following
second order pantograph CHFD equation:{

Dα
1 ϕ(ς)−Dα−1

1 H(ς, ϕ(1 + ϑς)) = F (ς, ϕ(ς), ϕ(1 + ϑς)), ς ≥ 1,
ϕ(1) = ϕ0, ϕ′(1) = ϕ1,

(1)

where ϑ ∈ (0, 1), 1 < α ≤ 2, ϕ0, ϕ1 ∈ R, Dα
1 is the standard CHFD, H : [1, ∞)×R → R

and F : [1, ∞)×R×R→ R are continuous functions (CFs) and the nonlinearities satisfy
H(ς, 0) = F (ς, 0, 0) = 0. The solution of Equation (1) is denoted by ϕ(ς). The objective
of the paper is to prove the AS of the zero solution of Equation (1). Our method relies on
KFPT, which calls for the conversion of Equation (1) into an integral equation combining
two mappings, one of which is a compact mapping and the other is a contraction mapping.
The main contributions of this paper are summarized by
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(i) Equation (1) is a second order pantograph fractional differential equation that has
received less attention in the literature.

(ii) Rather than being used to demonstrate the system’s solvability, the KFPT is utilized to
demonstrate the AS of the primary equation.

(iii) Equation (1) is exposed in generic form and encompasses a wide range of particu-
lar cases.

The following is the structure of this article. Section 2 discusses certain notations
and lemmas, as well as some preliminary results that will be needed in following section.
Section 3 is devoted to the main results, where we prove the stability of Equation (1). The
application, which includes an example, concludes the paper in Section 4.

2. Fundamental Concepts

This section introduces some basic definitions, essential lemmas and fundamental
theorems that are utilized throughout this work. For more details, see [1,2,32–40].

Definition 1 ([1,2]). The Riemann–Liouville fractional integral (RLFI) of order α > 0 for a
function ϕ : [0,+∞)→ R is defined as

Iα ϕ(ς) =
1

Γ(α)

∫ ς

0
(ς− τ)α−1 ϕ(τ)dτ,

where
Γ(α) =

∫ ∞

0
e−ςςα−1dς,

is the Euler gamma function.

Definition 2 ([1,2]). The Hadamard fractional integral of order α > 0 for a CF ϕ : [1,+∞)→ R
is defined as

Iα
1 ϕ(ς) =

1
Γ(α)

∫ ς

1

(
log

ς

τ

)α−1
ϕ(τ)

dτ

τ
.

Definition 3 ([1,2]). The RLFD of order α > 0 for a CF ϕ : [0,+∞)→ R is defined as

Dα ϕ(ς) =
1

Γ(n− α)

∫ ς

0
(ς− τ)n−α−1 ϕ(n)(τ)dτ, n− 1 < α < n, n ∈ N.

Definition 4 ([1,2]). The CHFD of order α > 0 for a CF ϕ : [1,+∞)→ R is defined as

Dα
1 ϕ(ς) =

1
Γ(n− α)

∫ ς

1

(
log

ς

τ

)n−α−1
δn ϕ(τ)

dτ

τ
, n− 1 < α < n,

where δn =
(

ς d
dς

)n
, n ∈ N.

Lemma 1 ([1,2]). For α ∈ (n− 1, n], n ∈ N. The equality
(
Iα

1D
α
1 ϕ
)
(ς) = 0 is true if and only if

ϕ(ς) =
n

∑
k=1

ck(log ς)α−k for ς ∈ [1, ∞),

where ck ∈ R is arbitrary constant for k = 1, . . . , n.

Lemma 2 ([1,2]). Let m− 1 < α ≤ m, m ∈ N and ϕ ∈ Cn−1[1, ∞). So

Iα
1 [D

α
1 ϕ(ς)] = ϕ(ς)−

m−1

∑
k=0

(
δk ϕ
)
(1)

Γ(k + 1)
(log ς)k.
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Lemma 3 ([1,2]). For all ρ > 0 and ν > −1,

1
Γ(ρ)

∫ ς

1

(
log

ς

τ

)ρ−1
(log τ)ν dτ

τ
=

Γ(ν + 1)
Γ(ρ + ν + 1)

(log ς)ρ+ν.

Lemma 4 ([1,2]). Let ϕ(ς) = (log ς)ρ, where ρ ≥ 0 and m− 1 < α ≤ m, m ∈ N. Then,

Dα
1 ϕ(ς) =

{
0 if ρ ∈ {0, 1, . . . , m− 1},

Γ(ν+1)
Γ(ρ+ν+1) (log ς)ρ−ν if ρ ∈ N, ρ ≥ m or ρ /∈ N, ρ > m− 1.

Remark 1. By Definitions 2 and 4 and Lemma 2, we have

(i) Let <(α) > 0. If ϕ is continuous on [1,+∞), then Dα
1I

α
1 ϕ(ς) = ϕ(ς) holds for all [1,+∞).

(ii) Let ϕ(ς) = c. Then, Dα
1 ϕ(ς) = 0.

Define the Banach space

E =

{
ϕ ∈ C([1,+∞)) : sup

ς≥1
|ϕ(ς)|/G(log ς) < ∞

}
,

which serves as a crucial link in our research. Let G : [0,+∞) → [1,+∞) be a strictly
increasing CF with G(0) = 1, G(log ς)→ ∞ as ς→ ∞,

G(log τ)G(log
ς

τ
) ≤ G(log ς) for all 1 ≤ τ ≤ ς ≤ ∞.

Then, E is a Banach space equipped by ‖ϕ‖ = supς≥1
|ϕ(ς)|

G(log ς)
. For more information

about this space, one may consult [35]. Define

‖Ψ‖ς = max{|Ψ(τ)| : 1 ≤ τ ≤ ς},

for any ς ≥ 1, where Ψ ∈ C([1,+∞)). Then, we obtain B(ε) = {ϕ ∈ E : ‖ϕ(ς)‖ ≤ ε for
ς ∈ [1,+∞)} for any ε > 0.

Lemma 5. Let W(ς) ∈ C([1,+∞)). Then, ϕ ∈ C([1,+∞)) is a solution of the Cauchy
type problem {

Dα
1 ϕ(ς) =W(ς), ς ≥ 1, 1 < α < 2,

ϕ(1) = ϕ0, ϕ′(1) = ϕ1,
(2)

if and only if f ϕ is a solution of{
ςϕ′(ς) = Iα−1

1 W(ς) + ϕ1, ς ≥ 1,
ϕ(1) = ϕ0.

(3)

Proof. First, we suggest that for any 0 < γ < 1, if ψ ∈ C[1,+∞), then
(
I

γ
1 ψ
)
(1) = 0. In

fact, since

I
γ
1 ψ(ς) =

1
Γ(γ)

∫ ς

1
(log

ς

τ
)γ−1ψ(τ)

dτ

τ
,

we can conclude that

∣∣Iγ
1 ψ(ς)

∣∣ = 1
Γ(γ)

∣∣∣∣∫ ς

1
(log

ς

τ
)γ−1ψ(τ)

dτ

τ

∣∣∣∣ ≤ ‖ψ‖ς

Γ(γ + 1)
(log ς)γ → 0 as ς→ 1.

Let ϕ ∈ C[1,+∞) be a solution of Equation (2). For any ς ≥ 1, Definition 4 shows that

Dα
1 ϕ(ς) =

(
Dα−1

1 D1
1 ϕ
)
(ς) =W(ς).



Fractal Fract. 2023, 7, 560 5 of 13

Due to Lemma 2, we have

ςϕ′(ς) = ϕ′(1) + Iα−1
1 W(ς) = Iα−1

1 W(ς) + ϕ1.

This indicates that ϕ(ς) is a solution of Equation (3). On other hand, assume that ϕ(ς)
is a solution of Equation (3). For all ς ≥ 1, one can straightforwardly see

Dα
1 ϕ(ς) = Dα−1

1
(
ςϕ′(ς)

)
=
(
Dα−1

1 Iα−1
1 W

)
(ς) +Dα−1

1 ϕ1 =W(ς).

Further, we note thatW(ς) ∈ C[1,+∞), and thus we have ϕ′(1) = Iα−1
1 W(1)+ ϕ1 = ϕ1.

Lemma 6. Let k ∈ R. Then, ϕ ∈ C([1,+∞)) is a solution of (1) if and only if

ϕ(ς) = ϕ0e−kς + (ϕ1 −H(1, ϕ(1 + ϑ)))
∫ ς

1
e−k(ς−τ) dτ

τ

+
∫ ς

1
e−k(ς−τ)(kτϕ(τ) +H(τ, ϕ(1 + ϑτ)))

dτ

τ

+
1

Γ(α− 1)

∫ ς

1

∫ ς

v
e−k(ς−τ)

(
log

ς

v

)α−2 dτ

τ
F (v, ϕ(v), ϕ(1 + ϑv))

dv
v

. (4)

Proof. Let ϕ ∈ C([1,+∞)) be a solution of Equation (1). By Lemma 5, obtain{
ςϕ′(ς) = Iα−1

1

[
F (ς, ϕ(ς), ϕ(1 + ϑς)) +Dα−1

1 H(ς, ϕ(1 + ϑς))
]
+ ϕ1, ς ≥ 1,

ϕ(1) = ϕ0.

It follows that
ςϕ′(ς) = 1

Γ(α−1)

∫ ς
1

(
log ς

τ

)α−2F (τ, ϕ(τ), ϕ(1 + ϑτ))
dτ

τ
+H(ς, ϕ(1 + ϑς))−H(1, ϕ(1 + ϑ)) + ϕ1, ς ≥ 1,

ϕ(1) = ϕ0.

(5)

Rewrite Equation (5) as
ϕ′(ς) + kϕ(ς) = kϕ(ς) + 1

ς
1

Γ(α−1)

∫ ς
1

(
log ς

τ

)α−2F (τ, ϕ(τ), ϕ(1 + ϑτ))
dτ

τ
+ 1

ςH(ς, ϕ(1 + ϑς))− 1
ςH(1, ϕ(1 + ϑ)) + 1

ς ϕ1, ς ≥ 1,
ϕ(1) = ϕ0.

By the help of the formula of variation of parameters, we end up with Equation (4).
The reverse can be easily justified and hence is omitted. The proof is complete.

Definition 5. The trivial solution ϕ = 0 of Equation (1) is

(i) Stable in E , if for every ε > 0, there is a δ = δ(ε) > 0 as such |ϕ0|+ |ϕ1| ≤ δ requires that
the solution ϕ(ς) = ϕ(ς, ϕ0, ϕ1) exists for all ς ≥ 1 and satisfies ‖ϕ‖ ≤ ε.

(ii) Asymptotically stable, if (i) investigator and there is a number σ > 0 such that |ϕ0|+ |ϕ1| ≤ σ
implies limς→∞‖ϕ(ς)‖ = 0.

The KFPT will be presented to demonstrate the AS of the zero solution of Equation (1).

Theorem 1 (Krasnoselskii [40]). If Θ is a non-empty closed convex subset of a Banach space
(Z, ‖.‖), P and Q map Θ into Z, then

(i) Pϕ + Qy ∈ Θ for all ϕ, y ∈ Θ,
(ii) P is continuous and PΘ is contained in a compact set of Z,
(iii) Q is a contraction with l < 1.
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Thus, there is a ϕ ∈ Θ with Pϕ + Qϕ = ϕ.

To complete proving the main results, we need the following theorem.

Theorem 2 ([35]). Let E be a Banach space and ℵ ⊂ E . Thus, ℵ is relatively compact in E if the
next assumptions are fulfilled:

(i) {ϕ(ς)/G(log ς) : ϕ ∈ ℵ} is uniformly bounded,
(ii) On any compact interval of [1,+∞), the set {ϕ(ς)/G(log ς) : ϕ ∈ ℵ} is equicontinuous,
(iii) {ϕ(ς)/G(log ς) : ϕ ∈ ℵ} is equiconvergent for any given ε > 0, there exists a T0 > 1 as

such for all ϕ ∈ ℵ and ς1 , ς2 > T0, if holds

|ϕ(ς2)/G(log ς2)− ϕ(ς1)/G(log ς1)| < ε.

3. Main Results

Before mentioning and proving the main results, we set forth some essential conditions.

(Σ1)H and F are CFs and H(ς, 0) = F (ς, 0, 0) = 0. Assuming H is locally Lipschitz
continuous in ϕ. This means there is a LH > 0 as that if |ϕ|, |y| ≤ l then

|H(ς, ϕ)−H(ς, y)| ≤ LH‖ϕ− y‖.

(Σ2)There exists a β1 ∈ (0, 1) as such

β1

(
1 +

LH
|k|

)
< 1, (6)

and

e−kς/G(log ς) ∈ BC([1,+∞)) ∩ L1([1,+∞)), |k|
∫ ς

1
e−kv/G(log v)dv ≤ β1 < 1. (7)

(Σ3)There exists constants η > 0, 0 < β2 < 1− β1 and a CFF : [1, ∞)× (0, η]× (0, η]→ R+

such that
|F (ς, υ1G(log ς), υ2G(log(1 + ϑς)))|

G(log ς)
≤ F (ς, |υ1|, |υ2|), (8)

holds for all ς ≥ 1, 0 < |υ1|, |υ2| ≤ η and

sup
ς≥1

∫ ς

1

K(log ς
v )

G(log ς
v )

F (v, r1, r2)

η

dv
v
≤ β2 < 1− β1, (9)

holds for every 0 < r1, r2 ≤ η, where F (ς, r1, r2) is nondecreasing in r1 and r2 for fixed
ς, F (ς, r1, r2) ∈ L1([1,+∞)) in ς for fixed r1 and r2, and

K(log
ς

v
) =

{
1

Γ(α−1)

∫ ς
v e−k(ς−τ)

(
log τ

v
)α−2 dτ

τ , ς
v ≥ 1,

0, ς
v < 1.

(10)

Theorem 3. Assume that (Σ1)− (Σ3) hold. Then, ϕ = 0 of Equation (1) is stable in E .

Proof. First, we show the existence of δ > 0, for all given ε > 0, such that

|ϕ0|+ |ϕ1| < δ implies ‖ϕ‖ ≤ ε.

Due to Equation (7), there is a constant M1 > 0 as such

e−kς

G(log ς)
≤ M1. (11)
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Let 0 < δ ≤
(

1−β1

(
1+ LH

|k|

)
−β2

)
|k|

M1|k|+(1+M1)(1+LH)
ε. Proposing the non-empty closed convex subset

B(ε) ⊆ E , for ς ≥ 1, we define the two mappings P and Q on B(ε) as under

Pϕ(ς) =
1

Γ(α− 1)

∫ ς

1

∫ ς

v
e−k(ς−τ)

(
log

τ

v

)α−2
dτF (v, ϕ(v), ϕ(1 + ϑv))

dv
v

=
∫ ς

1
K(log

ς

v
)F (v, ϕ(v), ϕ(1 + ϑv))

dv
v

, (12)

and

Qϕ(ς) = ϕ0e−kς + (ϕ1 −H(1, ϕ(1 + ϑ)))
∫ ς

1
e−k(ς−τ) dτ

τ

+
∫ ς

1
e−k(ς−τ)(kτϕ(τ) +H(τ, ϕ(1 + ϑτ)))

dτ

τ
. (13)

Clearly, for ϕ ∈ B(ε), Pϕ and Qϕ are CFs on [1,+∞). In addition, for ϕ ∈ B(ε), by
Equations (7)–(9) for any ς ≥ 1, we have

|Pϕ(ς)|
G(log ς)

≤
∫ ς

1

K(log ς
v )

G(log ς
v )

|F (v, ϕ(v), ϕ(1 + ϑv))|
G(log v)

dv
v

≤
∫ ς

1

K(log ς
v )

G(log ς
v )
F
(

v,
|ϕ(v)|

G(log v)
,
|ϕ(1 + ϑv)|

G(log(1 + ϑv))

)
dv
v

≤ β2‖ϕ‖ ≤ β2ε < ∞, (14)

and

|Qϕ(ς)|
G(log ς)

=

∣∣∣∣∣ϕ0
e−kς

G(log ς)
+ (ϕ1 −H(1, ϕ(1 + ϑ)))

∫ ς
1 e−k(ς−τ) dτ

τ

G(log ς)

+
∫ ς

1

e−k(ς−τ)

G(log ς)
(kτϕ(τ) +H(τ, ϕ(1 + ϑτ)))

dτ

τ

∣∣∣∣∣
≤ M1|ϕ0|+

1 + M1

|k| (|ϕ1|+ |H(1, ϕ(1 + ϑ))|)

+ |k|
∫ ∞

1

e−kv

G(log v)
dv(1 +

LH
|k| )‖ϕ‖

≤ M1|ϕ0|+
1 + M1

|k| (|ϕ1|+ LH |ϕ(ς)|) + β1

(
1 +

LH
|k|

)
ε < ∞. (15)

Therefore, we have PB(ε) ⊆ E and QB(ε) ⊆ E . Then, we utilize the Theorem 1 to
demonstrate that there is at least one fixed point of the operator P + Q in B(ε). We now
present the proof in three steps.
Step 1. Proving Pϕ+ Qy ∈ B(ε) for every ϕ, y ∈ B(ε). By Equations (14) and (15), we have

sup
ς≥1

|Pϕ(ς) + Qy(ς)|
G(log ς)

= sup
ς≥1

{∣∣∣∣∣ϕ0
e−kς

G(log ς)
+ (ϕ1 −H(1, y(1 + ϑ)))

∫ ς
1 e−k(ς−τ) dτ

τ

G(log ς)

+
∫ ς

1

e−k(ς−τ)

G(log ς)
(kτy(τ) +H(τ, y(1 + ϑτ)))

dτ

τ

+
∫ ς

1

K(log ς
v )

G(log ς)
F (v, ϕ(v), ϕ(1 + ϑv))

dv
v

∣∣∣∣∣
}

≤ M1|ϕ0|+
1 + M1

|k| (|ϕ1|+ LHδ)

+ |k|
∫ ∞

1

e−kv

G(log v)
dv
(

1 +
LH
|k|

)
‖y‖+ β2‖ϕ‖

≤ M1|k|+ (1 + M1)(1 + LH)
|k| δ + β1

(
1 +

LH
|k|

)
ε + β2ε ≤ ε,

which conclude that Pϕ + Qy ∈ B(ε) for all ϕ, y ∈ B(ε).
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Step 2. Now we just show that PB(ε) is relatively compact in E , to see that P is continu-
ous. In fact, from Equation (14), we obtain that {ϕ(ς)/G(log ς) : ϕ ∈ B(ε)} is uniformly
bounded in E . In addition, the usual theory says that the convolution of an L1-function
with a function tending to zero. So, we summarize that for ς

v ≥ 1, we obtain

0 ≤ lim
ς→∞

K(log ς
v )

G(log ς
v )
≤ lim

ς→∞

1
Γ(α− 1)

∫ ς

v

e−k(ς−τ)

G(log ς
v )

(
log τ

v
)α−2

G(log τ
v )

dτ

τ

= lim
ς→∞

1
Γ(α− 1)

∫ ς

1

e−k(ς−vτ)

G(log ς
vτ )

(log τ)α−2

G(log τ)

dτ

τ
= 0, (16)

due to the fact limς→∞
(log ς)α−2

G(log ς)
= 0. With continuity of K and G, we find that there is a

constant M2 > 0 as such ∣∣∣∣∣K(log ς
v )

G(log ς
v )

∣∣∣∣∣ ≤ M2, (17)

and for any T0 ∈ [1, ∞), the function K(log ς
v )G(log v)/G(log ς) is uniformly continuous

on {(ς, v) : 1 ≤ v ≤ ς ≤ T0}. For any ς1 , ς2 ∈ [1, T0], ς1 < ς2 , we have∣∣∣∣ Pϕ(ς2)

G(log ς2)
− Pϕ(ς1)

G(log ς1)

∣∣∣∣ =
∣∣∣∣∣
∫ ς2

1

K(log
ς2
v )

G(log ς2)
F (v, ϕ(v), ϕ(1 + ϑv))

dv
v

−
∫ ς1

1

K(log
ς1
v )

G(log ς1)
F (v, ϕ(v), ϕ(1 + ϑv))

dv
v

∣∣∣∣∣
≤
∫ ς1

1

∣∣∣∣∣K(log
ς2
v )

G(log ς2)
−
K(log

ς1
v )

G(log ς1)

∣∣∣∣∣|F (v, ϕ(v), ϕ(1 + ϑv))|dv
v

+
∫ ς2

ς1

K(log
ς2
v )

G(log
ς2
v )
F (v, ε, ε)

dv
v

≤
∫ ς1

1

∣∣∣∣∣K(log
ς2
v )G(log v)

G(log ς2)
−
K(log

ς1
v )G(log v)

G(log ς1)

∣∣∣∣∣F (v, ε, ε)
dv
v

+ M2

∫ ς2

ς1

F (v, ε, ε)
dv
v
→ 0,

as ς2 → ς1 , which means that {ϕ(ς)/G(log ς) : ϕ ∈ B(ε)} is equicontinuous. By Theorem 2,
to prove that PB(ε) is a relatively compact set of E . It is enough just to prove {ϕ(ς)/G(log ς):
ϕ ∈ B(ε)} is equiconvergent at infinity. For this, for every ε1 > 0, there is L > 1 as such

M2

∫ ∞

L
F (v, ε, ε)

dv
v
≤ ε1

3
.

From Equation (16), we obtain

lim
ς→∞

sup
v∈[1,L]

K(log ς
v )

G(log ς
v )
≤ max

{
lim
ς→∞

K(log ς
L )

G(log ς
L )

, lim
ς→∞

K(log ς)

G(log ς)

}
= 0.

Thus, there exists T > L as such ς1 , ς2 ≥ T, we obtain

sup
v∈[1,L]

∣∣∣∣∣K(log
ς2
v )G(log v)

G(log ς2)
−
K(log

ς1
v )G(log v)

G(log ς1)

∣∣∣∣∣ ≤ sup
v∈[1,L]

∣∣∣∣∣K(log
ς2
v )

G(log
ς2
v )

∣∣∣∣∣+ sup
v∈[1,L]

∣∣∣∣∣K(log
ς1
v )

G(log
ς1
v )

∣∣∣∣∣
≤ ε1

3

(∫ ∞

1
F (v, ε, ε)

dv
v

)−1
.
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Consequently, for ς1 , ς2 ≥ T,∣∣∣∣ Pϕ(ς2)

G(log ς2)
− Pϕ(ς1)

G(log ς1)

∣∣∣∣ =
∣∣∣∣∣
∫ ς2

1

K(log
ς2
v )

G(log ς2)
F (v, ϕ(v), ϕ(1 + ϑv))

dv
v

−
∫ ς1

1

K(log
ς1
v )

G(log ς1)
F (v, ϕ(v), ϕ(1 + ϑv))

dv
v

∣∣∣∣∣
≤
∫ L

1

∣∣∣∣∣K(log
ς2
v )G(log v)

G(log ς2)
−
K(log

ς1
v )G(log v)

G(log ς1)

∣∣∣∣∣F (v, ε, ε)
dv
v

+
∫ ς2

L

K(log
ς2
v )

G(log
ς2
v )
F (v, ε, ε)

dv
v

+
∫ ς1

L

K(log
ς1
v )

G(log
ς1
v )
F (v, ε, ε)

dv
v

≤ ε1

3
+ 2M2

∫ ∞

L
F (v, ε, ε)

dv
v
≤ ε1.

Therefore, the necessary conclusion is achieved.
Step 3. Let us say that Q : B(ε)→ E is a contraction mapping. In fact, for any ϕ, y ∈ B(ε),
from Equation (7), we find that

sup
ς≥1

∣∣∣∣ Qϕ(ς)

G(log ς)
− Qy(ς)

G(log ς)

∣∣∣∣ = sup
ς≥1

{∣∣∣∣∣
∫ ς

1

e−k(ς−v)

G(log ς)
(kvϕ(v) +H(v, ϕ(1 + ϑv)))

dv
v

−
∫ ς

1

e−k(ς−v)

G(log ς)
(kvy(v) +H(v, y(1 + ϑv)))

dv
v

∣∣∣∣∣
}

≤ sup
ς≥1
|k|
∫ ς

1

e−k(ς−v)

G(log ς
v )

v|ϕ(v)− y(v)|
G(log v)

dv
v

+ sup
ς≥1

∫ ς

1

e−k(ς−v)

G(log ς
v )

|H(v, ϕ(1 + ϑv))−H(v, y(1 + ϑv))|
G(log v)

dv
v

≤ |k|
∫ ς

1

e−k(ς−v)

G(log ς
v )

dv
(

1 +
LH
|k|

)
‖ϕ− y‖

≤ β1

(
1 +

LH
|k|

)
‖ϕ− y‖.

By Theorem 1, we are aware that the operator P + Q has at least one fixed point in

B(ε). Finally, for any ε2 > 0, if 0 < δ1 ≤
(

1−β1

(
1+ LH

|k|

)
−β2

)
|k|

|k|M1+(1+M1)(1+LH)
ε2, then |ϕ0| + |ϕ1| ≤ δ1

implies that

‖ϕ‖ = sup
ς≥1

∣∣∣∣∣ϕ0
e−kς

G(log ς)
+ (ϕ1 −H(1, ϕ(1 + ϑ)))

∫ ς
1 e−k(ς−τ) dτ

τ

G(log ς)

+
∫ ς

1

e−k(ς−τ)

G(log ς)
(kvϕ(v) +H(v, ϕ(1 + ϑv)))

dv
v

+
∫ ς

1

K(log ς
v )

G(log ς)
F (v, ϕ(v), ϕ(1 + ϑv))

dv
v

∣∣∣∣∣
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≤ sup
ς≥1

 e−kς

G(log ς)
ϕ0 +

∣∣∣1− e−kς
∣∣∣

|k|G(log ς)
(|ϕ1|+ LH|ϕ(1 + ϑ)|)

+|k|
∫ ς

1

e−k(ς−v)

G(log ς
v )G(log v)

(
v|ϕ(v)|+ LH

|k| |ϕ(v)|
)

dv
v

+
∫ ς

1

K(log ς
v )

G(log ς
v )

|F (v, ϕ(v), ϕ(1 + ϑv))|
G(log v)

dv
v

}

≤ M1δ1 +
1 + M1

|k| (δ1 + LHδ1) + β1

(
1 +

LH
|k|

)
‖ϕ‖+ β2‖ϕ‖

≤ |k|M1 + (1 + M1)(1 + LH)(
1− β1

(
1 + LH

|k|

)
− β2

)
|k|

δ1 ≤ ε2.

Therefore, we assert that the trivial solution of Equation (1) is stable in E .

Theorem 4. Let all assumptions of Theorem 3 be verified,

lim
ς→∞

e−kς/G(log ς) = 0, (18)

and for any r > 0, there exists a function ψr(ς) ∈ L1([1,+∞)), ψr(ς) > 0 as such |v|, |v| ≤ r implies

|F (ς, v, v)|/G(log ς) ≤ ψr(ς), a.e. ς ∈ [1,+∞). (19)

Then the trivial solution of Equation (1) is AS.

Proof. By virtue of Theorem 3, the trivial solution of Equation (1) is stable. Next, we
demonstrate that the trivial solution ϕ = 0 of Equation (1) is attractive.

For any r > 0, defining

B∗(r) =

{
ϕ ∈ B(r), lim

ς→∞
ϕ(ς)/G(log ς) = 0

}
.

We need to prove that Pϕ + Qy ∈ B∗(r) for every ϕ, y ∈ B∗(r), i.e.,

Pϕ(ς) + Qy(ς)

G(log ς)
→ 0 as ς→ ∞,

where

Pϕ(ς) + Qy(ς) = ϕ0e−kς + (ϕ1 −H(1, y(1 + ϑ)))

∫ ς
1 e−k(ς−τ) dτ

τ

G(log ς)

+
∫ ς

1
e−k(ς−τ)(kvy(v) +H(v, y(1 + ϑv)))

dv
v

+
∫ ς

1
K(log

ς

v
)F (v, ϕ(v), ϕ(1 + ϑv))

dv
v

.

From Equations (7) and (18) and for ϕ, y ∈ B∗(r), we have

∫ ς

1

e−k(ς−v)

G(log ς
v )

(kvy(v) +H(v, y(1 + ϑv))
G(log v)

dv
v
→ 0, as ς→ ∞

and

K(log ς
v )

G(log ς
v )

=

∫ ς
v

e−k(ς−τ)

G(log ς
v )

(
log τ

v
)α−2 dτ

τ

Γ(α− 1)
→ 0, as ς→ ∞.
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By the hypothesis that ψr(ς) ∈ L1([1,+∞)), we find that

∫ ς

1

K(log ς
v )

G(log ς
v )

|F (v, ϕ(v), ϕ(1 + ϑv))|
G(log v)

dv
v
≤
∫ ς

1

K(log ς
v )

G(log ς
v )

ψr(v)
dv
v
→ 0,

as ς→ ∞. We obtain the conclusion.

4. An Application

Consider the following equation in frame of CFD, which is a particular case of CHFD:{
CD

3
2
0+ϕ(ς) = δ

ς2 ϕ2

e(λ+1)ς +
δϕ
√

ϕ

(1+ς2)eλς/2 ,

ϕ(0) = ϕ0, ϕ′(0) = ϕ1,
(20)

where λ > 1, δ > 0 and α = 3
2 . Let 0 < |k| ≤ λ−1

2 , G(ς) = eλς, and β1 = |k|
λ+k . Then,

Equation (7) holds.
It follows that the Banach space is

E =

{
ϕ(ς) ∈ C[0,+∞) : sup

ς≥0
|ϕ(ς)|/eλς < ∞

}
,

equipped with the norm ‖ϕ‖ = supς≥0
|ϕ(ς)|

eλς . Let F̃ (ς, r) = δr2ς2e−ς + δr
√
r

1+ς2 . Then,

Equation (8) holds and F̃ (ς, r) ∈ L1[0,+∞) in ς for fixed r. Note that

K(ς− u)
eλ(ς−u)

=
1

Γ(1/2)

∫ ς

u

1√
s− ueλ(s−u)

1
e(λ+k)(ς−s)

ds

≤

∫ ς
u

1√
s−ueλ(s−u) ds

Γ(1/2)
=

∫ ς−u
0

1√
σeλσ ds

Γ(1/2)
≤
√

λ,

for all ς ≥ 0, if there exists η ≥ 0 such that

δ ≤ 1
2(2η + π

2 η1/2)(λ + k)λ1/2 + 1
, (21)

then ∫ ς

0

K(ς− u)
G(ς− u)

f̃ (u, r)
r

du = δ
∫ ς

0

K(ς− u)
G(ς− u)

(rς2e−ς +
r1/2

1 + ς2 )du ≤ 1/2
λ + k

< 1− β1,

for all ς ≥ 0, 0 ≤ r ≤ η. Thus, the trivial solution of Equation (20) is stable in E∗, which
follows from Theorem 3.

Moreover, if we let ϕr(ς) = δ ς2r2

e(λ+1)ς +
δr
√
r

(1+ς2)eλς/2 ∈ L1[0,+∞), then for any bounded

r > 0, we find that |F (ς, u)| ≤ ϕr(ς) and

lim
ς→∞

e−kς/G(ς) ≤ lim
ς→∞

e−
λς
2 = 0,

which implies that the trivial solution of Equation (20) is AS, by the conclusion of Theorem 4.

5. Conclusions

In this paper, a second-order pantograph fractional differential equation in weighted
Banach space has been studied. The considered equation is of the second-order, framed in
terms of the Caputo–Hadamard fractional operator, and designed in a general form so it
covers several particular cases. The AS of the trivial solution of the main equation has been
provided. By using the KFPT and turning Equation (1) into an analogous integral equation,
the main theorem was proved in a different way than the usual procedures.
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The findings can be viewed as adding to the body of knowledge because they describe
less-frequent sorts of equations. The same strategy can be used to demonstrate higher
order pantograph fractional differential equations of hybrid type or higher-order panto-
graph fractional differential equations with impulsive effects. We leave these ideas for
future consideration.
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