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Abstract: In this investigation, weighted psi-Caputo fractional derivatives are applied to analyze the
solution of fractional pantograph problems with boundary conditions. We establish the existence of
solutions to the indicated pantograph equations as well as their uniqueness. The study also takes into
account the situation where ψ(x) = x. With the aid of Banach’s and Krasnoselskii’s classic fixed point
results, we have established a the qualitative study. Different values of ψ(x) and w(x) are discussed as
special cases that are relevant to our current results. Additionally, in light of our findings, we provide
a more general fractional system with the weighted ψ-Caputo-type that takes into account both the
new problems and certain previously existing, related problems. Finally, we give two illustrations to
support and validate the outcomes.
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1. Introduction

Fractional calculus (FC) is an extension of the integer order differential and integral.
In recent years, a large number of definitions of FC have been developed in response to
practical problem modeling requirements, such as Riemann–Liouville, Caputo, Hadamard,
Erdelyi–Kober, and Hilfer versions, see [1–4].

In the past few decades, many classes of fractional differential equations (FDEs) have
undergone in-depth research and analysis. For instance, concepts concerning the existence
and uniqueness of solutions have been mentioned in [5–7] and references therein.

An essential aspect of the theory of FDEs was addressed by the qualitative characteris-
tics of solutions. The area that was previously described has been thoroughly explored for
classical differential equations. Nevertheless, there are a number of FDE-related problems
and systems that need further research and analysis. Utilizing THE Riemann–Liouville
(Caputo, Hilfer) fractional operator, and other fractional operators, the existence and
uniqueness have been closely examined; for more information, see [8–13] and the refer-
ences therein.

Several authors have studied generalized FDs, and their applications. For instance,
Kilbas et al. [2] provided some interesting ψ-Riemann–Liouville FD characteristics. Alme-
dia [14] described the ψ-Caputo FD. In the Hilfer sense, Sousa and Oliveira [15] presented
another generalization. A singular kernel can be found in the aforementioned derivatives.
The substitution of a nonsingular kernel for a singular kernel has resulted in the presen-
tation of new types of FDs by certain authors; for more information, [16–18]. According
to [19–22], nonlocal FDs with nonsingular kernels have been shown to be a respectable tool
for simulating actual problems in a variety of engineering and scientific fields.

Another significant class of FDEs are the pantograph equations (PEs), which have not
been investigated as completely in the context of innovative FDs. PEs are a crucial class
of delay equations that provide changes in the dependant worth at a previous time [23],
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and are used in deterministic circumstances. A pantograph is essentially a measuring and
drawing tool. Currently, electric trains and electric cells employ this device [24–26]. In
1971, Ockendon and Taylor [27] investigated what is now known as PE, or how electric flow
is collected by the pantograph of an electric train. Since then, numerous researchers have
investigated it and used it in numerous mathematical and scientific domains, including
pharmacology, electrodynamics, probability, number theory, and more (see [27–29] and
the references therein). Several authors have thought carefully about the analytical and
numerical approaches of the following delay equation{

v′(x) = av(x) + bv(λx), x ∈ [0, T], 0 < λ < 1,
v(0) = v0,

(1)

see [30–32]. The PEs were accurately studied in [33,34]. The following nonlinear PE{
v′(x) = g(x, v(x), v(λ1x), ..., v(λmx)), x ∈ [0, T]

v(0) = v0, 0 < λ1 < ... < λm < 1
(2)

has been studied by Liu et al. [35]. In contrast, Sezer et al. [36] considered the nonlinear
neutral PE: {

v′(x) = g(x, v(x), v(λx), v′(λx)), x > 0,
v(0) = v0, 0 < λ < 1.

(3)

Because of the importance of fractional PE in many fields, it has been the subject of many
studies. For instance, the following Caputo pantograph problem{ CDϑ

0+v(x) = g(x, v(x), v(λx)), x ∈ [0, T], 0 < ϑ < 1
v(0) = v0 + h(v)

(4)

was the subject of discussion by Balachandran et al. [37].
In contrast, Agarwal [38], Kolokoltsov [39] and Jarad et al. [40] discussed weighted

FDs first, second, and third, respectively. Due to the importance of FDEs in many fields of
research, some recent studies addressed the existence of solutions to FDEs; for instance,
Abdo et al. [41,42], discussed the following problems C

0 D
ν
ψ,w

∣∣∣v(x) = g(x, v(x)), 0 < x ≤ 1,

v(0) = v0, and PC
0 Dν

ψ v(x) = g(x, v(x), v(λ1x), ..., v(λmx)), 0 ≤ x ≤ b, v(0) = v0 + h(v),

where 0 < ν < 1, C
0 D

ν
ψ,w

∣∣∣ and PC
0 Dν

ψ

∣∣∣ are the ψ-Caputo FD and piecewise Caputo FD,
respectively. In this regard, Al-Rafai and Jarrah [43], obtained the uniqueness result of
the Cauchy problem involving the [w, ψ]-Caputo–Fabrizio FD with ψ and w which are
monotone and weight functions, respectively.

Motivated by the aforementioned works, this paper focuses on novel classes of
weighted pantograph FDEs:{

C
a D

ν
x,w(x) v(x) = g(x, v(x), v(λ1x), ..., v(λmx)), x ∈ f,

v(a) = va, v(b) = vb,
(5)

and {
C
a D

ν
ψ(x),w(x) v(x) = g(x, v(x), v(λ1x), ..., v(λmx)), x ∈ f,

v(a) = va, v(b) = vb,
(6)

where 1 < ν < 2, x ∈ f := [a, b], 0 < λi < 1, for i = 1, 2, ..., m, m ∈ N, g : f×R×Rm → R
is a given function, CDν

x,w(x) and CDν
ψ(x),w(x) are weighted Caputo FD and ψ-weighted

Caputo FD, respectively, ψ(x) and w(x) are monotone and weight functions, respectively,
with w, ψ ∈ C1(f) with w,w′, ψ′ > 0 on f, and va, vb ∈ R.

The presented problems have not been addressed yet. By selecting particular kernel
functions in the derivative and weight functions, some current results that concentrate on
the novel fractional operators, including [40,43–46], are enhanced and supplemented.
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Remark 1.

(i) If ψ(x) = x, then problem (6) is reduced to problem (5).

(ii) Problem (6) with v(0) = v0 + h(v) reduces to the problem (4) if ψ(x) = x, w(x) = 1 and
m = 1, see [37].

(iii) Problem (6) with ψ(x) = x, w(x) = 1, ν = 1 and v(0) = v0 reduces to the Cauchy
problem (2), as shown in [35].

(iv) Our current results for the problem (6) stay available on problem (5).

(v) Our current problems cover a wide range of problems which uses less general derivatives
operators by make use of different values of ψ and w.

The following is an outline of the paper’s content. Some basic results about weighted
FC are presented in Section 2. In Section 3, we present our main results for problems (5)
and (6). Section 4 gives a more general pantograph problem. Section 5 offers two examples
illustration that demonstrates the validity of the theories. The conclusions of the work are
included in the final section.

2. Primitive Results

We first give some notions and definitions of the generalized weighted fractional
calculus, and then we state some fundamental results and remarks. Let f := [a, b], a < b <
∞. The spaces L1

ψ(f), C1
ψ(f) and ACn

ψ(f) are defined as in [46].

Definition 1 ([46]). Let 0 < ν, ρ ∈ L1
ψ(f) and ψ,w ∈ C1

ψ(f). The weighted ψ-RL fractional
integral is defined as

RL
a Iν

ψ(x),w(x) ρ(x) =
1

Γ(ν)w(x)

∫ x

a
ψ′(ϑ)(ψ(x)− ψ(ϑ))w(ϑ)ρ(ϑ)dϑ.

Definition 2 ([46]). Let 0 < ν, and ρ ∈ ACn. The weighted ψ-Caputo FD is defined as

C
a D

ν;ψ
ψ(x),w(x)

ρ(x) = RL
a In−ν

ψ(x),w(x)

(
Dψ(x),w(x)

)n
ρ(x),

where Dψ(x),w(x)ρ(x) := 1
w(x)ψ′(x)

d
dx (w(x)ρ(x)) =

1
ψ′(x)

[
d

dx +
w′(x)
w(x)

]
ρ(x).

Lemma 1 ([46]). Let ρ ∈ Cn
ψ(f). Then

CDν
ψ(x),w(x) I

ν
ψ(x),w(x)ρ(x) = ρ(x),

aI
ν
ψ(x),w(x)

C
a D

ν
ψ(x),w(x)ρ(x) = ρ(x)−

n−1

∑
k=0

[ψ(x)− ψ(a)]k

k!
w(a+)
w(x)

lim
x→a+

(
Dψ(x),w(x)

)k
ρ(x).

Lemma 2 ([46]). The weighted RL and Caputo operators of ρ with respect to ψ are given as follows:

RL
a Dν

ψ(x),w(x)

[ψ(x)− ψ(a)]β

w(x)
=

Γ(β + 1)
Γ(β− ν + 1)

[ψ(x)− ψ(a)]β−ν

w(x)
, ν ∈ C, Re(β) > −1;

C
a D

ν
ψ(x),w(x)

Eν

(
λ[ψ(x)− ψ(a)]ν

)
w(x)

= λ
Eν

(
λ[ψ(x)− ψ(a)]ν

)
w(x)

, λ ∈ C, Re(β) > −1,

where Eν is the Mittag–Leffler function.

We will require Krasnoselskii’s fixed point theorem [47] and Banach’s contraction
map [48] for our upcoming analysis.
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3. Main Results

Here, we provide some qualitative analyses of pantograph problems (5) and (6).

3.1. Basic Result

Lemma 3. Let 0 < ν < 1, and v ∈ AC. Then the Cauchy problem{
C
a D

ν
ψ(x),w(x) v(x) = f (x),

v(a) = va
(7)

has the unique solution

v(x) =
w(a)
w(x)

va +
1

Γ(ν)w(x)

∫ x

a
ψ′(ϑ)(ψ(x)− ψ(ϑ))w(ϑ) f (ϑ)dϑ, x ∈ f. (8)

Proof. Assume v satisfies the first equation of (7). From Lemma 1, we have

aI
ν
ψ(x),w(x)

C
a D

ν
ψ(x),w(x) v(x) = v(x)− w(a)

w(x)
v(a). (9)

Further, from (7), we obtain

aI
ν
ψ(x),w(x)

C
a D

ν
ψ(x),w(x) v(x) = aI

ν
ψ(x),w(x) f (x). (10)

By (9) and (10), we find that

v(x) =
w(a)
w(x)

v(a) + aI
ν
ψ(x),w(x) f (x).

Hence, by initial condition v(a) = va, we obtain

v(x) =
w(a)
w(x)

va + aI
ν
ψ(x),w(x) f (x),

which is (8).
Conversely, if v satisfies (8), then by Lemmas 2 and 1, we have

C
a D

ν
ψ(x),w(x) v(x) = C

a D
ν
ψ(x),w(x)

w(a)
w(x)

va + aI
ν
ψ(x),w(x) f (x) = CDν

ψ(x),w(x) aI
ν
ψ(x),w(x) f (x) = f (x).

Moreover, the condition v(a) = va is directly achieved by taking x → a of the Equa-
tion (8).

Lemma 4. Let 1 < ν < 2, 0 < λ < 1 and assume that g is a continuous. Then the following
ψ-weighted pantograph FDE{

C
a D

ν
ψ(x),w(x) v(x) = g(x, v(x), v(λx)), x ∈ f,

v(a) = va, v(b) = vb,
(11)

has the unique solution

v(x) =
1
χ

(
w(a)
w(x)

+ [ψ(x)− ψ(a)]
w′(a)

ψ′(a)w(x)

)(
vb − aI

ν
ψ(b),w(b) g(b, v(b), v(λb))

)
+ aI

ν
ψ(x),w(x) g(x, v(x), v(λx)) (12)

where χ :=
(
w(a)
w(b) +

[ψ(b)−ψ(a)]
w(b)

w′(a)
ψ′(a)

)
.
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Proof. Assume v satisfies the first equation of (11). It follows from Lemma 1 that

aI
ν
ψ(x),w(x)

C
a D

ν
ψ(x),w(x) v(x) = v(x)− w(a)

w(x)
v(a)− [ψ(x)− ψ(a)]

×w(a)
w(x)

lim
x→a

1
ψ′(x)

[
d
dx

+
w′(x)

w(x)

]
v(x). (13)

By (11), we have

aI
ν
ψ(x),w(x)

CDν
ψ(x),w(x) v(x) = aI

ν
ψ(x),w(x) g(x, v(x), v(λx)). (14)

From (13) and (14), we have

v(x) =
w(a)
w(x)

v(a) + [ψ(x)− ψ(a)]
w(a)
w(x)

(
v′(a)
ψ′(a)

+
v(a)w′(a)
ψ′(a)w(a)

)
+ aI

ν
ψ(x),w(x) g(x, v(x), v(λx))

By boundary conditions v(a) = va and v(b) = vb, we get

vb =
w(a)
w(b)

va + [ψ(b)− ψ(a)]
va

w(b)
w′(a)
ψ′(a)

+ aI
ν
ψ(b),w(b) g(b, v(b), v(λb)),

which implies

va =
1
χ

(
vb −

1
Γ(ν)w(b)

∫ b

a
ψ′(ϑ)(ψ(b)− ψ(ϑ))ν−1w(ϑ)g(ϑ, v(ϑ), v(λϑ))dϑ

)
.

Hence,

v(x) =
w(a)
w(x)

1
χ

(
vb − aI

ν
ψ(b),w(b) g(b, v(b), v(λb))

)
+[ψ(x)− ψ(a)]

1
w(x)

1
χ

(
vb − aI

ν
ψ(b),w(b) g(b, v(b), v(λb))

)
w′(a)

ψ′(a)
+ aI

ν
ψ(x),w(x) g(x, v(x), v(λx))

which is (12).
Conversely, if v satisfies (12), then by Lemma 1, we have

C
a D

ν
ψ(x),w(x) v(x) =

1
χ

C
a D

ν
ψ(x),w(x)

(
w(a)
w(x)

+ [ψ(x)− ψ(a)]
w′(a)

ψ′(a)w(x)

)
(

vb − aI
ν
ψ(b),w(b) g(b, v(b), v(λb))

)
+ CDν

ψ(x),w(x) aI
ν
ψ(x),w(x) g(x, v(x), v(λx))

= g(x, v(x), v(λx)).

Moreover, v(a) = va and v(b) = vb.

Hence, we can deduce the next corollary:

Corollary 1. Let 1 < ν < 2 and 0 < λi < 1, for i = 1, 2, ..., m. Assume that g is continuous
function. The problem (6) is equivalent to
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v(x) =
1
χ

(
w(a)
w(x)

+ [ψ(x)− ψ(a)]
w′(a)

ψ′(a)w(x)

)
×
(

vb − aI
ν
ψ(b),w(b) g(b, v(b), v(λ1b), ..., v(λmb))

)
+ aI

ν
ψ(x),w(x) g(x, v(x), v(λ1x), ..., v(λmx))), (15)

where χ is defined as Lemma 4.

Regarding Corollary 1, we define an operator K : AC → AC by

(Kv)(x)

=
1
χ

(
w(a)
w(x)

+ [ψ(x)− ψ(a)]
w′(a)

ψ′(a)w(x)

)(
vb −

1
Γ(ν)w(b)

×
∫ b

a
ψ′(ϑ)(ψ(b)− ψ(ϑ))ν−1w(ϑ)g(ϑ, v(ϑ), v(λ1ϑ), ..., v(λmϑ)))dϑ

)
+

1
Γ(ν)w(x)

∫ x

a
ψ′(ϑ)(ψ(x)− ψ(ϑ))ν−1w(ϑ)g(ϑ, v(ϑ), v(λ1ϑ), ..., v(λmϑ)))dϑ (16)

The following assumptions are necessary in order to prove the main results:

(P1) |w(x)g(x, v1, ..., vm+1)− w(x)g(x, v1, ..., vm+1)| ≤ Lg ∑m+1
j=1

∣∣vj −v j
∣∣, ∀x ∈ f, Lg > 0,

vj, v j ∈ R.
(P2) |w(x)g(x, v1, ..., vm+1)| ≤ ng + mg ∑m+1

j=1

∣∣vj
∣∣, ∀x ∈ f, vj ∈ R, ng, mg > 0.

For convenience, let us set vλ(x) := (v(λ1x), ..., v(λmx)), ψν
x,a := (ψ(x)− ψ(a))ν,

ψν−1
x,ϑ := ψ′(ϑ)(ψ(x)− ψ(ϑ))ν−1,

Λ :=
∣∣∣∣w(a)
w(b)

∣∣∣∣+ [ψb,a]

∣∣∣∣ w′(a)
ψ′(a)w(b)

∣∣∣∣,
Π :=

ψν
b,a

Γ(ν + 1)
Lg(m + 1)

(
Λ
|χ| + 1

)
,

∆ :=
(

Λ
|χ| + 1

)
w0g0

ψν
b,a

Γ(ν + 1)
+

Λ
|χ| |vb|.

3.2. Existence Results

Theorem 1. Assume that (wg) : f×R×Rm → R is a continuous and satisfies the condition
(P1) with [

Λ
χ
+ 1

]
ψν

b,a

Γ(ν + 1)
(m + 1)Lg < 1, (17)

then the ψ-weighted pantograph problem (6) has a unique solution.

Proof. Let maxx∈f(w(x)g(x, 0, ..., 0)) = w0g0 and choosing r ≥ ∆
1−Π , where Π > 0. First,

we prove that KBr ⊂ Br, where Br = {v ∈ AC : ‖v‖ ≤ r}. Indeed, for v ∈ Br, we have
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|(Kv)(x)|

≤ 1
|χ|

(∣∣∣∣w(a)
w(x)

∣∣∣∣+ [ψx,a]

∣∣∣∣ w′(a)
ψ′(a)w(x)

∣∣∣∣)(|vb|+
1

Γ(ν)|w(b)|

×
∫ b

a
ψν−1

b,ϑ [| w(ϑ)g(ϑ, v(ϑ), vλ(ϑ))− w(ϑ)g(ϑ, 0, 0)|+ |w(ϑ)g(ϑ, 0, 0)|]dϑ

+
1

Γ(ν)|w(x)|

∫ x

a
ψν−1
x,ϑ [| w(ϑ)g(ϑ, v(ϑ), vλ(ϑ))− w(ϑ)g(ϑ, 0, 0)|

+ |w(ϑ)g(ϑ, 0, 0)|]dϑ

≤ Λ
|χ|

(
|vb|+

1
Γ(ν)|w(b)|

∫ b

a
ψν−1

b,ϑ [Lg(|v|+ |v1|+ ... + |vm|) + w0g0] dϑ

)
+

1
Γ(ν)|w(x)|

∫ x

a
ψν−1
x,ϑ [Lg(|v|+ |v1|+ ... + |vm|) + w0g0] dϑ

≤ Λ
|χ|

(
|vb|+ [Lg(m + 1)r + w0g0]

1
Γ(ν)|w(b)|

∫ b

a
ψν−1

b,ϑ dϑ

)
+[Lg(m + 1)r + w0g0]

1
Γ(ν)|w(x)|

∫ x

a
ψν−1
x,ϑ dϑ

=
Λ
|χ|

(
|vb|+ [Lg(m + 1)r + w0g0] aI

ν
ψ(b),w(b)w

−1(b)
)

+[Lg(m + 1)r + w0g0] aI
ν
ψ(x),w(x)w

−1(x)

≤ Λ
|χ|

(
|vb|+ [Lg(m + 1)r + w0g0]

ψν
b,a

Γ(ν + 1)

)

+[Lg(m + 1)r + w0g0]
ψν

b,a

Γ(ν + 1)
= Πr + ∆ ≤ r.

Next, we show that K is contraction in AC. For v(x), v(x) ∈ AC and for each x ∈ f,
we have

|(Kv)(x)− (Kv)(x)|

≤ 1
χ

(
w(a)
w(x)

+ ψx,a
w′(a)

ψ′(a)w(x)

)
× 1

Γ(ν)w(b)

∫ b

a
ψν−1

b,ϑ |w(ϑ)g(ϑ, v, vλ)− w(ϑ)g(ϑ, v, vλ)|dϑ

+
1

Γ(ν)w(x)

∫ x

a
ψν−1
x,ϑ |w(ϑ)g(ϑ, v, vλ)− w(ϑ)g(ϑ, v, vλ)|dϑ

≤ Λ
χ

1
Γ(ν)w(b)

∫ b

a
ψν−1

b,ϑ Lg

m+1

∑
j=1

∣∣vj(ϑ)−v j(ϑ)
∣∣dϑ

+
1

Γ(ν)w(x)

∫ x

a
ψν−1
x,ϑ Lg

m+1

∑
j=1

∣∣vj(ϑ)−v j(ϑ)
∣∣dϑ

=
Λ
χ

aI
ν
ψ(b),w(b)w

−1(b)Lg

m+1

∑
j=1

∣∣vj(b)−v j(b)
∣∣

+ aI
ν
ψ(x),w(x)w

−1(x)Lg

m+1

∑
j=1

∣∣vj(x)−v j(x)
∣∣

≤
[

Λ
χ
+ 1

]
ψν

b,a

Γ(ν + 1)
(m + 1)Lg‖v−v‖.
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K is a contraction in accordance with condition (17), and thanks to the Banach fixed
point theorem, K has a unique fixed point, which is an unique solution to (6).

Then, in order to prove existence results, we apply Krasnoselskii’s fixed point theo-
rem [47].

Theorem 2. Let wg : f×R×Rm → R be a continuous satisfying (P2). If

Λ
χ

ψν
b,a

Γ(ν + 1)
(m + 1)Lg < 1, (18)

Then the ψ-weighted pantograph problem (6) has a least one solution.

Proof. From (16), we define the operators K1,K2 : AC → AC by

(K1v)(x) =
1
χ

(
w(a)
w(x)

+ ψx,a
w′(a)

ψ′(a)w(x)

)
×
(

vb −
1

Γ(ν)w(b)

∫ b

a
ψν−1

b,ϑ w(ϑ)g(ϑ, v(ϑ), vλ(ϑ))dϑ

)
, x∈f,

and
(K2v)(x) = 1

Γ(ν)w(x)

∫ x
a ψν−1

x,ϑ w(ϑ)g(ϑ, v(ϑ), vλ(ϑ))dϑ, x ∈ f,

where (K1v +K2v)(x) = (Kv)(x). Let us define Br = {v ∈ AC : ‖v‖ ≤ r}, we fix

r ≥
ng

ψν
b,a

Γ(ν+1)

(
Λ
χ + 1

)
+ Λ

χ |vb|

1−mg(m + 1)
ψν

b,a
Γ(ν+1)

(
Λ
χ + 1

) . (19)

For v, ω ∈ Br, we find that

|(K1v +K2ω)(x)| ≤ |(K1v)(x)|+ |(K2ω)(x)|

≤ Λ
χ

(
|vb|+

1
Γ(ν)w(b)

∫ b

a
ψν−1

b,ϑ |w(ϑ)g(ϑ, v(ϑ), vλ(ϑ))|dϑ

)
+

1
Γ(ν)w(x)

∫ x

a
ψν−1
x,ϑ |w(ϑ)g(ϑ, ω(ϑ), ωλ(ϑ))|dϑ

≤ Λ
χ

(
|vb|+

1
Γ(ν)w(b)

∫ b

a
ψν−1

b,ϑ

(
ng + mg

m+1

∑
j=1

∣∣vj(ϑ)
∣∣)dϑ

)

+
1

Γ(ν)w(x)

∫ x

a
ψν−1
x,ϑ

(
ng + mg

m+1

∑
j=1

∣∣ωj(ϑ)
∣∣)dϑ

≤ Λ
χ

(
|vb|+

(
ng + mg(m + 1)

∥∥vj
∥∥) ψν

b,a

Γ(ν + 1)

)

+
(
ng + mg(m + 1)

∥∥ωj
∥∥) ψν

x,a

Γ(ν + 1)

≤ Λ
χ

(
|vb|+ (ng + mg(m + 1)r)

ψν
b,a

Γ(ν + 1)

)

+(ng + mg(m + 1)r)
ψν

b,a

Γ(ν + 1)

≤ (ng + mg(m + 1)r)
ψν

b,a

Γ(ν + 1)

(
Λ
χ
+ 1
)
+

Λ
χ
|vb|

= mg(m + 1)r
ψν

b,a

Γ(ν + 1)

(
Λ
χ
+ 1
)
+ ng

ψν
b,a

Γ(ν + 1)

(
Λ
χ
+ 1
)
+

Λ
χ
|vb|.
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Due to (19), we deduce that ‖K1v +K2v‖ ≤ r.
Further, K1 is a contraction operator. Indeed, for each v(x), v(x) ∈ AC, and for each

x ∈ f, we have

|K1v(x)−K1v(x)|

≤ 1
χ

(
w(a)
w(x)

+ ψx,a
w′(a)

ψ′(a)w(x)

)
1

Γ(ν)w(b)

×
∫ b

a
ψν−1

b,ϑ | w(ϑ)g(ϑ, v(ϑ), vλ(ϑ))− w(ϑ)g(ϑ, v(ϑ), vλ(ϑ))|dϑ

≤ Λ
χ

1
Γ(ν)w(b)

∫ b

a
ψν−1

b,ϑ Lg

m+1

∑
j=1

∣∣vj(ϑ)−v j(ϑ)
∣∣dϑ

=
Λ
χ

aI
ν
ψ(b),w(b)w

−1(b)Lg

m+1

∑
j=1

∣∣vj(b)−v j(b)
∣∣

≤ Λ
χ

ψν
b,a

Γ(ν + 1)
(m + 1)Lg‖v−v‖.

From (17), K1 is a contraction.
Continuity of g,w and ψ implies that K2 is continuous. Further, K2 is uniformly

bounded on Br as

|(K2v)(x)| ≤ (ng + mg(m + 1)r)
ψν

b,a

Γ(ν + 1)
.

Now, we prove that K2 is compact. In fact∣∣∣(K1v)′(x)
∣∣∣ ≤ Dw

(
1

Γ(ν)w(x)

∫ x

a
ψν−1
x,ϑ |w(ϑ)g(ϑ, v(ϑ), vλ(ϑ))|dϑ

)
= Dw aI

ν
ψ(x),w(x) g(x, v(x), vλ(x))

= aI
ν−1
ψ(x),w(x)

g(x, v(x), vλ(x))

=
1

Γ(ν− 1)w(x)

∫ x

a
ψν−2
x,ϑ |w(ϑ)g(ϑ, v(ϑ), vλ(ϑ))|dϑ

≤ (ng + mg(m + 1)r)
ψν−1

b,a

Γ(ν)
.

Let v ∈ Br, and x ∈ f with xε < xδ ∈ f. Then

| (K1v)(xδ)− (K1v)(xε)| =
∫ xδ

xε

∣∣∣(K1v)′(ϑ)
∣∣∣dϑ ≤ (ng + mg(m + 1)r)

ψν−1
b,a

Γ(ν)
(xδ − xε).

Thus, | (K1v)(xδ)− (K1v)(xε)| → 0 as xε → xδ. Thus, K1 is equicontinuous on Br . Hence,
K1 is relatively compact on Br as a result of the steps that came before, and according to
the Arzela–Ascoli theorem, K1 has at least one fixed point. The Krasnoselskii theorem [47]
shows that there is at least one solution to the problem (6).

Remark 2. When ψ(x) = x, the results on the problem (6) still hold true for the problem (5).

4. Weighted ψ-Caputo Fractional System

Consider a more general problem as{
C
a D

νk
ψ(x),w(x)

vk(x) = gk(x, v1,λi (x), v2,λi (x), ..., vn,λi (x)), x ∈ f := [a, b],
vk(a) = vk

a , vk(b) = vk
b, , k = 1, ..., n, i = 1, ..., m

(20)
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where 1 < νk < 2, C
a D

νk
ψ(x),w(x)

is the generalized weighted Caputo FD of order νi and

v1,λi (x) = v1(x), v1(λ1x), ..., v1(λmx),

v2,λi (x) = v2(x), v2(λ1x), ..., v2(λmx),
...

vn,λi (x) = vn(x), vn(λ1x), ..., vn(λmx),

It is possible to write the system (20) as{
C
a D

Υ
ψ(x),w(x)V(x) = G(x,Vλ(x) ), x ∈ f,
V(a) = Va, V(b) = Vb,

(21)

where

V(x) =


v1(x)
v2(x)

...
vn(x)

, G(x,Vλ(x) ) =


g1(x, v1,λi (x))
g2(x, v2,λi (x))

...
gn(x, vn,λi (x))

, and

V(a) =


v1(a)
v2(a)

...
vn(a)

, V(b) =


v1(b)
v2(b)

...
vn(b)

, Vc =


v1

c
v2

c
...

vn
c

, Υ =


ν1
ν2
...

νn

.

By using Corollary 1, the system (21) has the following solution

V(x) =
1
χ

(
w(a)
w(x)

+ [ψ(x)− ψ(a)]
w′(a)

ψ′(a)w(x)

)
×
(
Vb − aI

Υ
ψ(b),w(b)G(b,Vλ(b))

)
+ aI

Υ
ψ(x),w(x)G(x,Vλ(x) ), (22)

where χ is defined as Lemma 4. We can write the system (22) as

v1(x) =


1
χ

(
w(a)
w(x) + [ψ(x)− ψ(a)] w′(a)

ψ′(a)w(x)

)
×
(

v1
b − aI

ν1
ψ(b),w(b) g1(b, v1(b), v1(λ1b), ..., v1(λmb))

)
+ aI

ν1
ψ(x),w(x)

g1(x, v1(x), v1(λ1x), ..., v1(λmx),

v2(x) =


1
χ

(
w(a)
w(x) + [ψ(x)− ψ(a)] w′(a)

ψ′(a)w(x)

)
×
(

v2
b − aI

ν2
ψ(b),w(b) g2(b, v2(b), v2(λ1b), ..., v2(λmb))

)
+ aI

ν2
ψ(x),w(x)

g2(x, v2(x), v2(λ1x), ..., v2(λmx),
...

vn(x) =


1
χ

(
w(a)
w(x) + [ψ(x)− ψ(a)] w′(a)

ψ′(a)w(x)

)
×
(

vn
b − aI

νn
ψ(b),w(b) gn(b, vn(b), vn(λ1b), ..., vn(λmb))

)
+ aI

νn
ψ(x),w(x)

gn(x, vn(x), vn(λ1x), ..., vn(λmx).

(23)

Banach’s and Krasnoselskii’s fixed point theorem can be used to present the following
theorems without the need for proofs.

Theorem 3. Assume that (wgk) : f×R×Rm → R is a continuous and satisfies
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(P3) |w(x)gk(x, v1, ..., vm+1)− w(x)gk(x, v1, ..., vm+1)| ≤ Lgk ∑m+1
j=1

∣∣vj −v j
∣∣, for k = 1, ...,

n, x ∈ f, Lgk > 0, vj, v j ∈ R with

[
Λ
χ
+ 1

]
ψ

νk
b,a

Γ(νk + 1)
(m + 1)Lgk < 1.

Then the ψ-weighted pantograph system (21) has a unique solution.

Theorem 4. Let wgk : f×R×Rm → R be a continuous satisfying

(P4) |w(x)gk(x, v1, ..., vm+1)| ≤ ngk + mgk ∑m+1
j=1

∣∣vj
∣∣, for k = 1, ..., n, x ∈ f, vj ∈ R,

ngk , mgk > 0
Λ
χ

ψ
νk
b,a

Γ(νk + 1)
(m + 1)Lgk < 1.

Then the ψ-weighted pantograph system (21) has a least one solution.

Remark 3. Theorems 3 and 4 for the nonlinear system (21) in light of the formula (22) or (23) can
be proved using the same procedure as in the preceding sections.

5. Examples

To illustrate our acquired results, we provide two examples.

Example 1. Consider the following weighted ψ-Caputo-type problem{
C
0 D

ν
ψ(x),w(x)

∣∣∣v(x) = g(x, v(x), v(λ1x), v(λ2x)), 0 ≤ x ≤ 1,
v(0) = 1, v(1) = 2,

(24)

where m = 2, g(x, v(x), v(λ1x), v(λ2x)) =
cos|v(x)+v( x4 )|+sin|v( x6 )|

10+x + x+1
10 , ν = 5

4 , ψ(x) = e
x
3 ,

w(x) = e−x, a = 0, b = 1, v0 = 1, v1 = 2, λ1 = 1
4 , and λ2 = 1

6 .
(I) Application of Theorem 1: For x ∈ [0, 1], and v, ω ∈ [0, ∞), we have

| w(x)g(x, v(x), v(λ1x), v(λ2x))− w(x)g(x, ω(x), ω(λ1x), ω(λ2x))|

≤ 1
ex(10 + x)

| v(x)−ω(x)|+
∣∣∣v(

x

4
)−ω(

x

4
)
∣∣∣+ ∣∣∣v(

x

6
)−ω(

x

6
)
∣∣∣

≤ 1
10

3

∑
j=1

∣∣vj −ωj
∣∣

where |v1(x)−ω1(x)| = | v(x)−ω(x)|, |v2(x)−ω2(x)| =
∣∣v( x4 )−ω( x4 )

∣∣ and
|v3(x)−ω3(x)| =

∣∣v( x4 )−ω( x4 )
∣∣.

Thus, (P1) holds with Lg = 1
10 . Moreover, the condition (17) holds. Indeed,

[
Λ
χ
+ 1

]
ψν

b,a

Γ(ν + 1)
(m + 1)Lg =

[
3e

4
3 − 2e

e− 3e
4
3

+ 1

] [
e

1
3 − 1

] 5
4

Γ( 7
4 )

3
10

< 1

where Λ = 3e
4
3 − 2e and χ = e− 3e

4
3 . Thus, Theorem 1 shows that (24) has a unique solution on

[0, 1].
(II) Application of Theorem 2: For x ∈ [0, 1], and v ∈ [0, ∞), we have

| w(x)g(x, v(x), v(λ1x), v(λ2x))| ≤
∣∣v(x) + v( x4 )

∣∣+ ∣∣v( x6 )
∣∣

ex(10 + x)
+

x+ 1
10

≤ 1
5
+

1
10

3

∑
j=1

∣∣vj
∣∣,
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where |v1(x)| = | v(x)|, |v2(x)| =
∣∣v( x4 )

∣∣ and |v3(x)| =
∣∣v( x4 )

∣∣.
Thus, (P2) holds with ng = 1

5 and mg = 1
10 . Also,

Λ
χ

ψν
b,a

Γ(ν + 1)
(m + 1)Lg =

[
3e

4
3 − 2e

e− 3e
4
3

] [
e

1
3 − 1

] 5
4

Γ( 5
4 )

3
10

< 1

Consequently, (P2) holds with ng = 1
5 and mg = 1

10 . Thus, Theorem 2’s presumptions are all
satisfied. As a result, (24) has a solution on [0, 1].

Example 2. Consider the following weighted ψ-Caputo-type problem C
0 D

4
3
ψ(x),w(x)

∣∣∣∣v(x) = g(x, v(x), v( 1
2x)), 0 ≤ x ≤ 1

2 ,

v(0) = 1, v( 1
2 ) = 2,

(25)

where m = 1, g(x, v(x), v(λ1x)) = e−x
ν
v(x) + e−x

ν
v( x2 ) +

1
8 , ν = 4

3 , ψ(x) = x
3 , w(x) = e−x

4 ,
a = 0, b = 1

2 , v0 = 1, v1 = 2, and λ1 = 1
2 .

(I) Application of Theorem 1: For x ∈ [0, 1], and v, ω ∈ [0, ∞), we have

| w(x)g(x, v(x), v(λ1x))− w(x)g(x, ω(x), ω(λ1x))|

≤ 1
4ex

(
1

exν | v(x)−ω(x)|+ 1
exν

∣∣∣v(
x

2
)−ω(

x

2
)
∣∣∣)

≤ 1
4

(
|v(x)−ω(x)|+

∣∣∣v(
x

2
)−ω(

x

2
)
∣∣∣).

Thus, (P1) holds with Lg = 1
4 . Moreover, the condition (17) holds. Indeed,[

Λ
χ
+ 1

]
ψν

b,a

Γ(ν + 1)
(m + 1)Lg = 0.098424 < 1,

where Λ = 73
72
√

e and χ = 1√
e −

1
72
√

e . Thus, Theorem 1 shows that (25) has a unique solution on

[0, 1
2 ].

(II) Application of Theorem 2: For x ∈ [0, 1
2 ], and v ∈ [0, ∞), we have

| w(x)g(x, v(x), v(λ1x))| ≤

∣∣∣ e−x
ν
v(x)

∣∣∣+ ∣∣∣e−xν
v( x2 )

∣∣∣
4ex

+
1

8

≤ 1
8
+

1
4

(
| v(x)|+

∣∣∣v(
x

4
)
∣∣∣).

Consequently, (P2) holds with ng = 1
8 and mg = 1

4 . Also,

Λ
χ

ψν
b,a

Γ(ν + 1)
(m + 1)Lg = 0.099791 < 1.

Thus, Theorem 2’s presumptions are all satisfied. As a result, (25) has a solution on [0, 1
2 ].

6. Conclusions

The current paper was epitomized as follows: Sufficient conditions were provided
to investigate some qualitative results for the solution of fractional pantograph equations
with boundary conditions in scalar real spaces. Weighted ψ-Caputo FDs have been applied;
these were based on the weighted Caputo FD which was defined by Jarad et al. [40] and Al-
Refai et al. [43]. Recently, it was discovered that the relevant differential operator is a potent
tool for spotting crossover behavior in many evolutionary processes. We have established
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the existence and uniqueness of boundary value problems for pantograph equations as
further contributions to this area of study. As a result of Banach and Krasnoselskii’s recog-
nized fixed point theorems, we have also established a substantial analysis. Additionally, in
light of our most recent discoveries, a more general problem for the fractional pantograph
system has been presented, which includes problems comparable to the one being studied.
Finally, we have provided two related examples to illustrate potential applications, hence,
validating the main results. It would be interesting to study the present problem in the
context of the modern operators introduced by Atangana-Baleanu [18] and Al-Refai [44].
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