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Abstract: In this article, we examine the Kraenkel–Manna–Merle system (KMMS) with an M-
truncated derivative (MTD). Our goal is to obtain rational, hyperbolic, and trigonometric solutions
by using the F -expansion technique with the Riccati equation. To our knowledge, no one has studied
the exact solutions to the KMMS in the presence/absence of a damping effect with an M-truncated
derivative, using the F -expansion technique. The magnetic field propagation in a zero-conductivity
ferromagnet is described by the KMMS; hence, solutions to this equation may provide light on
several fascinating scientific phenomena. We use MATLAB to display figures in a variety of 3D and
2D formats to demonstrate the influence of the M-truncated derivative on the exact solutions to
the KMMS.
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1. Introduction

The fractional differential equations (FDEs) are used in many disciplines including
mathematical biology, physics, quantum field theory, neural physics, solid state physics,
fluid mechanics, plasma physics, and optical fibers [1–3]. Moreover, the idea of the
fractional derivative has been utilized to characterize a broad variety of phenomena in
many areas such as a porous medium, fluid dynamics, ocean waves, signal processing,
plasma physics, electromagnetism, wave propagation, chaotic systems, photonics, and optical
fiber communication.

Due to the tremendous advances in information technology to meet the need for
large data and high-density storage, there has been an abundance of interesting studies on
ferromagnetic materials over the past several decades. As a result of recent technological
advances, tiny ferromagnetic particles may now be fabricated. It is critical to gain a better
understanding of the features of micro- and supermicrostructures in nanoscale ferrous
metals [4–8]. In the case of such magnetization, tiny nanoparticles could be thought of as ho-
mogeneous over these particles and can be represented by a magnetic moment. The dipolar
motions of the magnetic moments allow ferromagnetic particles to communicate. Solitons
are constantly produced as a result of these interactions. In consequence, a wide variety of
solitary waves’ dissemination phenomena has been examined.

The exact solution to the differential equation must be obtained in order to describe
whether the soliton is destroyed after the collision. However, solving nonlinear partial
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differential equations has long been a tough but critical endeavor. As a result, many brilliant
scientists in the domains of science and engineering have developed a number of strong
approaches for acquiring exact solutions, for instance, improved tan (ϕ/2)-expansion [9],
such as the (G′/G)-expansion method [10,11], the Kudryashov method [12], the first-
integral method [13], the sine–cosine [14,15], the exp(−φ(ς))-expansion [16], the direct
algebraic [17], the perturbation method [18,19], the tanh–sech [20,21], the sine-Gordon
expansion [22], the Jacobi elliptic function [23], and so on.

In this article, we take into consideration the Kraenkel–Manna–Merle system with an
M-truncated derivative (KMMS-MTD):{

D
α,β
i,t Φx −ΦΨx + κΨx = 0,

D
α,β
i,t Ψx −ΦΦx = 0,

(1)

where Φ = Φ(x, t) represents the magnetization, Ψ = Ψ(x, t) represents the external
magnetic fields, and κ denotes the damping coefficient. Nguepjouo et al. [24] investigated
a combination of magnetization density expansion and coordinate transformations and
converted the structure into the following type:{

Φxt −ΦΨx + κΨx = 0,
Ψxt −ΦΦx = 0,

(2)

which may describe the nonlinear propagation of short waves in saturated ferromagnetic
materials with zero conductivity. When damping is neglected (κ = 0), Equation (2) is inte-
grable and has Lax pairings. Numerous researchers have developed many approaches for
acquiring the solutions to the KMMS (2) with κ = 0, including the bilinear method [24], the
inverse scattering method [25], the (G′/G)-expansion method [26], the auxiliary equation
method [27], the semi-inverse technique and the new auxiliary equation method [28], the
mapping method [29], etc. However, the fractional derivative of the KMMS (2) with an
M-truncated derivative has not been treated until now.

The novelty of this paper is to obtain the exact solutions to the KMMS-MTD (1). We
use the F-expansion technique in order to obtain the rational, hyperbolic, and trigonometric
solutions to (1). We consider two different cases either with damping (i.e., κ 6= 0) or without
damping (i.e., κ = 0). We extend some previous results including the results reported in [28].
The solutions offered here would be very helpful to physicists in understanding important
physical phenomena, since the KMMS illustrates how nonlinear short waves travel through
ferromagnetic materials with zero conductivity in an external area. In addition, we give a
few graphical representations created using MATLAB software to study the effect of the
MTD on the acquired solutions to the KMMS-MTD (1). We deduce that the surface moves
to the right as the order of derivatives increases.

The article proceeds as follows: In the next section, we define the MTD and list its
characteristics. Then, we obtain the wave equation for the KMMS-MTD (1) in Section 3.
In Section 4, the F-expansion method is used to provide an exact solution to the KMMS-
MTD (1). In Section 5, we discuss the effect of the MTD on the obtained solutions. Finally,
the conclusions of the work are presented.

2. M-Truncated Derivative

Several mathematicians have provided several versions of fractional derivatives. The
most common are those suggested by Riesz, Riemann–Liouville, Marchaud Grunwald–
Letnikov, Erdelyi, Caputo, and Hadamard [30–34]. Traditional derivative formulae, such
as the product rule, quotient rule, and chain rule, do not apply to a large number of
fractional derivative types. Sousa et al. [35] recently proposed a novel derivative called the
M- truncated derivative (MTD) as follows:



Fractal Fract. 2023, 7, 523 3 of 12

Definition 1 ([35,36]). The MTD for the function ϕ : [0, ∞)→ R of order α ∈ (0, 1] is defined as

D
α,β
i,t ϕ(t) = lim

h→0

ϕ(tEi,β(ht−α))− ϕ(t)
h

, for t > 0,

where Ei,β is defined as

Ei,β(z) =
i

∑
k=0

zk

Γ(βk + 1)
,

for β > 0 and z ∈ C.

The following theorem states the features that the MTD must have.

Theorem 1 ([35,36]). If ϕ and ψ are differentiable functions and a, b, and υ are real constants, then

(1) D
α,β
i,t (aϕ + bψ) = aDα,β

i,t (ϕ) + bDα,β
i,t (ψ);

(2) D
α,β
i,t (t

ν) = ν
Γ(β+1) tν−α;

(3) D
α,β
i,t (ϕψ) = ϕD

α,β
i,t ψ + ψD

α,β
i,t ϕ;

(4) D
α,β
i,t (ϕ)(t) = t1−α

Γ(β+1)
dϕ
dt ;

(5) D
α,β
i,t (ϕ ◦ ψ)(t) = ϕ′(ψ(t))Dα,β

i,t ψ(t).

3. Traveling Wave Equation for the KMMS-MTD

Using the following wave transformation

Ψ(x, t) = ψ(ξ), Φ(x, t) = ϕ(ξ) and ξ = ξ1x +
ξ2Γ(β + 1)

α
tα, (3)

where the functions ψ(ξ) and ϕ(ξ) are real, ξ1, ξ2 are non-zero constants, and we are able
to obtain the wave equation of the KMMS-MTD (1). Inserting Equation (3) into Equation (1),
we obtain {

ξ1ξ2 ϕ′′ + κξ1ψ′ − ξ1 ϕψ′ = 0,
ξ1ξ2ψ′′ − ξ1 ϕϕ′ = 0.

(4)

Therefore, Equation (4) becomes{
ξ2 ϕ′′ + κψ′ − ϕψ′ = 0,
ξ2ψ′′ − ϕϕ′ = 0.

(5)

Integrating the second equation in (5) once, we have

ψ′ =
1

2ξ2
ϕ2 +

c0

ξ2
. (6)

Substituting Equation (6) into first equation in (5), we obtain

ϕ′′ + γ3 ϕ3 + γ2 ϕ2+γ1 ϕ + γ0 = 0, (7)

where
γ0 =

κc0

ξ2
2

, γ1 =
−c0

ξ2
2

, γ2 =
κ

2ξ2
2

, and γ3 =
−1
2ξ2

2
.

4. Exact Solutions to the KMMS-MTD (1)

The solutions to the wave Equation (7) are discovered using the F -expansion method
(see, for more details [37]). After that, the exact solutions to the KMMS-MTD (1) can be
obtained. Let the solution ϕ to Equation (7) be:
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ϕ(ξ) = a0 +
M

∑
k=1

(akF k +
bk

F k ), (8)

where F is the solution of
F ′ = F 2 + v. (9)

Equation (9) has the solutions:

F (ξ) =
√

v tan(
√

vξ) or F (ξ) = −
√

v cot(
√

vξ), (10)

if v > 0,

F (ξ) = −
√
−v tanh(

√
−vξ) or F (ξ) = −

√
−v coth(

√
−vξ), (11)

if v < 0, or

ϕ(ξ) =
−1
ξ

, (12)

or if v = 0.
Calculating M requires balancing ϕ′′ with ϕ3 in Equation (7) as follows:

M + 3 = 2M ⇒ M = 1.

Equation (8) becomes

ϕ(ξ) = a0 + a1F +
b1

F . (13)

Let us examine two separate cases that both rely on κ (damping term).

4.1. The KMMS-MTD without the Damping Term

Here, we assume that κ = 0; then, Equation (7) takes the form

ϕ′′ + γ3 ϕ3+γ1 ϕ = 0. (14)

Setting Equation (13) into Equation (14), we attain

(2a1 + γ3a3
1)F 3 + (3a0a2

1)F 2 + (2va1 + 3γ3a2
0a1

+3γ3a2
1b1 + γ1a1)F + (γ3a3

0 + 6γ3a0a1b1 + γ1a0)

+(2vb1 + 3γ3a2
0b1 + 3γ3a1b2

1 + γ1b1)F−1+

(3a0a2
1)F−2 + (2b1v2 + γ3b3

1)F−3 = 0.

We compare the coefficients of each power of F to zero:

2a1 + γ3a3
1 = 0,

3a0a2
1 = 0,

2va1 + 3γ3a2
0a1 + 3γ3a2

1b1 + γ1a1 = 0,

γ3a3
0 + 6γ3a0a1b1 + γ1a0 = 0,

2vb1 + 3γ3a2
0b1 + 3γ3a1b2

1 + γ1b1 = 0,

3a0b2
1 = 0,

and
2b1v2 + γ3b3

1 = 0.

By solving these equations, we obtain the three families of solutions as follows:



Fractal Fract. 2023, 7, 523 5 of 12

First family:

a0 = 0, a1 = ∓2
√

c0

2v
, b1 = 0, ξ2 = ±

√
c0

2v
. (15)

Second family:

a0 = 0, a1 = ∓
√
−c0

v
, b1 = ∓v

√
−c0

v
, ξ2 = ±

√
−c0

4v
. (16)

Third family:

a0 = 0, a1 = ∓
√

c0

2v
, b1 = ±v

√
c0

2v
, ξ2 = ±

√
c0

8v
. (17)

First family: Equation (14) has the following solution:

ϕ(ξ) = ±2
√

c0

2v
F (ξ).

For F (ξ), there are two cases:
Case 1: If v > 0 and c0 > 0, then the solution, with (10) and (3), to the KMMS-

MTD (1) is

Φ11(x, t) = ∓
√

2c0 tan(
√

vξ1x± Γ(β + 1)
α

√
c0

2
tα), (18)

and

Φ12(x, t) = ∓
√

2c0 cot(
√

vξ1x± Γ(β + 1)
α

√
c0

2
tα). (19)

Substituting into Equation (6) and integrating, we obtain

Ψ11(x, t) =
c0

ξ2
tan(
√

vξ1x± Γ(β + 1)
α

√
c0

2
tα), (20)

Ψ11(x, t) =
−c0

ξ2
cot(
√

vξ1x± Γ(β + 1)
α

√
c0

2
tα). (21)

Case 2: If v < 0 and c0 < 0, then the solution, with (11) and (3), to the KMMS-MTD (1) is

Φ13(x, t) = ∓
√
−2c0 tanh(

√
−vξ1x± Γ(β + 1)

α

√
−c0

2
tα), (22)

and

Φ14(x, t) = ∓
√
−2c0 coth(

√
−vξ1x± Γ(β + 1)

α

√
−c0

2
tα). (23)

Substituting into Equation (6) and integrating, we obtain

Ψ13(x, t) =
c0

ξ2
√
−v

tanh(
√
−vξ1x± Γ(β + 1)

α

√
−c0

2
tα), (24)

and

Ψ14(x, t) = − c0

ξ2
√
−v

coth(
√
−vξ1x± Γ(β + 1)

α

√
−c0

2
tα). (25)

Second family: Equation (14) has the solution

ϕ(ξ) = ∓
√
−c0

v
[F (ξ) + vF−1(ξ)].

For F(ξ), there are two cases:
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Case 1: If v > 0 and c0 < 0, then the solution, with (10) and (3), to the KMMS-
MTD (1) is

Φ15(x, t) = ±
√
−c0[tan(

√
vξ) + cot(

√
vξ)]. (26)

Substituting into Equation (6) and integrating, we obtain

Ψ15(x, t) =
c0

ξ2
ξ − c0

2ξ2
√

v
[tan(

√
vξ)− cot(

√
vξ), (27)

where ξ = ξ1x± Γ(β+1)
2α

√
− c0

v tα.
Case 2: If v < 0 and c0 > 0, then the solution, with (11) and (3), to the KMMS-

MTD (1) is
Φ16(x, t) = ∓

√
c0[tanh(

√
−vξ) + coth(

√
−vξ)]. (28)

Substituting into Equation (6) and integrating, we obtain

Ψ16(x, t) =
c0

ξ2
ξ − c0

2ξ2
√
−v

[tanh(
√
−vξ) + coth(

√
−vξ). (29)

where ξ = ξ1x± Γ(β+1)
2α

√
− c0

v tα.
Third family: Equation (14) has the solution

ϕ(ξ) = ∓
√

c0

2v
[F (ξ)−vF−1(ξ)].

For F (ξ), there are two cases:
Case 1: If v > 0 and c0 > 0, then the solution, with (10) and (3), to the KMMS-MTD (1) is

Φ17(x, t) = ∓
√

c0

2
[tan(ξ)− cot(ξ)]. (30)

Substituting into Equation (6) and integrating, we obtain

Ψ17(x, t) =
c0

4
√

vξ2
[tan(

√
vξ)− cot(

√
vξ)]. (31)

where ξ = ξ1x± Γ(β+1)
α

√
c0
8v tα.

Case 2: If v < 0 and c0 < 0, then the solution, with (11) and (3), to the KMMS-MTD (1) is

Φ18(x, t) = ∓
√
−c0

2
[tanh(ξ)− coth(ξ)]. (32)

Substituting into Equation (6) and integrating, we obtain

Ψ18(x, t) =
c0

4ξ2
[tanh(

√
−vξ) + coth(

√
−vξ)], (33)

where ξ = ξ1x± Γ(β+1)
α

√
c0
8v tα.

Remark 1. Putting α = 1 and β = 0 into Equations (18)–(25), we have the identical solutions to
those reported in [28].

4.2. The KMMS-MTD with the Damping Term

We assume now that κ 6= 0; then, we put Equation (13) into Equation (7) to obtain:

(2a1 + γ3a3
1)F 3 + (3γ3a0a2

1 + γ2a2
1)F 2 + (2va1 + 3γ3a2

0a1 + 3γ3a2
1b1

+γ1a1 + 2γ2a0a1)F + (γ3a3
0 + 6γ3a0a1b1 + γ1a0 + γ0 + γ2a2

0 + 2a1b1)

+(2vb1 + 3γ3a2
0b1 + 3γ3a1b2

1 + γ1b1 + 2γ2a0b1)F−1+
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(3γ3a0b2
1 + γ2b2

1)F−2 + (2b1v2 + γ3b3
1)F−3 = 0.

Equating the coefficients of each power of F to zero, we obtain a system of algebraic
equations. Solving the system, we obtain:

First family:

a0 =
κ

3
, a1 = ±2

√
c0

2v
− κ2

12v
, b1 = 0, and ξ2 = ±

√
c0

2v
− κ2

12v
.

Second family:

a0 =
κ

3
, a1 = ±

√
κ2

6v
− c0

v
, b1 = ±v

√
κ2

6v
− c0

v
, and ξ2 = ±

√
κ2

24v
− c0

4v
.

Third family:

a0 =
κ

3
, a1 = ±

√
c0

2v
− κ2

12v
, b1 = ∓v

√
c0

2v
− κ2

12v
, and ξ2 = ±

√
c0

8v
− κ2

48v
.

First family: Equation (7) has the following solution:

ϕ(ξ) =
κ

3
± 2

√
c0

2v
− κ2

12v
F (ξ), for

c0

2v
− κ2

12v
> 0.

For F (ξ), there are two cases:
Case 1: If v > 0 and c0 > κ2

6 , then the solution, with (10) and (3), to the KMMS-
MTD (1) is

Φ21(x, t) =
κ

3
± 2

√
c0

2
− κ2

12
tan(
√

vξ), (34)

and

Φ22(x, t) =
κ

3
± 2

√
c0

2
− κ2

12
cot(
√

vξ). (35)

Substituting into Equation (6) and integrating, we obtain

Ψ21(x, t) =
2κ2

9ξ2
ξ ± 2κ

3
ln
∣∣∣cos(

√
vξ)

∣∣∣+ 2ξ2
√

v tan(
√

vξ), (36)

and

Ψ22(x, t) =
2κ2

9ξ2
ξ ± 2κ

3
ln
∣∣∣sin(
√

vξ)
∣∣∣− 2ξ2

√
v cot(

√
vξ), (37)

where ξ = ξ1x± Γ(β+1)
α

√
c0
2v −

κ2

12v tα.

Case 2: If v < 0 and c0 < κ2

6 , then the solution, with (11) and (3), to the KMMS-
MTD (1) is

Φ23(x, t) =
κ

3
∓ 2

√
κ2

12
− c0

2
tanh(

√
−vξ), (38)

and

Φ24(x, t) =
κ

3
∓ 2

√
κ2

6
− c0 coth(

√
−vξ). (39)

Substituting into Equation (6) and integrating, we obtain

Ψ23(x, t) =
2κ2

9ξ2
ξ ± 2κ

3
ln
∣∣∣cosh(

√
−vξ)

∣∣∣− 2ξ2 tanh(
√
−vξ), (40)

and
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Ψ24(x, t) =
2κ2

9ξ2
ξ ± 2κ

3
ln
∣∣∣sinh(

√
−vξ)

∣∣∣− 2ξ2
√
−v coth(

√
−vξ), (41)

where ξ = ξ1x± Γ(β+1)
α

√
c0
2v −

κ2

12v tα.
Second family: Equation (7) has the solution

ϕ(ξ) =
κ

3
±
√

κ2

6v
− c0

v
[F (ξ) + vF−1(ξ)], for

κ2

24v
− c0

4v
> 0.

For F(ξ), there are two cases:
Case 1: If v > 0 and c0 < κ2

6 , then the solution, with (10) and (3), to the KMMS-
MTD (1) is

Φ25(x, t) =
κ

3
±
√

κ2

24
− c0

4
[tan(

√
vξ) + cot(

√
vξ)], (42)

Substituting into Equation (6) and integrating, we obtain

Ψ25(x, t) = (
κ2

18ξ2
+

c0

ξ2
)ξ ± κ

3
ln
∣∣∣tan(

√
vξ)

∣∣∣+ 2ξ2
√

v[tan(
√

vξ)− cot(
√

vξ)], (43)

where ξ = ξ1x± Γ(β+1)
α

√
κ2

24v −
c0
4v tα.

Case 2: If v < 0 and c0 > κ2

6 , then the solution, with (11) and (3), to the KMMS-
MTD (1) is

Φ26(x, t) =
κ

3
∓
√

c0

4
− κ2

24
[tanh(

√
−vξ) + coth(

√
−vξ)]. (44)

Substituting into Equation (6) and integrating, we obtain

Ψ26(x, t) = (
κ2

18ξ2
+

c0

ξ2
)ξ ± κ

3
ln
∣∣∣tanh(

√
−vξ)

∣∣∣
+2ξ2

√
−v[tanh(

√
−vξ)− coth(

√
−vξ)], (45)

where ξ = ξ1x± Γ(β+1)
α

√
κ2

24v −
c0
4v tα.

Third family: Equation (7) has the solution

ϕ(ξ) =
κ

3
∓
√

c0

2v
− κ2

12v
[F (ξ)−vF−1(ξ)], for

c0

2v
− κ2

12v
> 0.

For F (ξ), there are two cases:
Case 1: If v > 0 and c0 > κ2

6 , then the solution, with (10) and (3), to the KMMS-
MTD (1) is

Φ27(x, t) =
κ

3
∓
√

c0

2
− κ2

12
[tan(

√
vξ)− cot(

√
vξ)]. (46)

Substituting into Equation (6) and integrating, we obtain

Ψ27(x, t) = (
3c0

2ξ2
− κ2

18ξ2
)ξ ± 2κ

3
ln
∣∣∣tan(

√
vξ)

∣∣∣
+2ξ2

√
v[tan(

√
vξ) + cot(

√
vξ)], (47)

where ξ = ξ1x± Γ(β+1)
α

√
c0
v8 −

κ2

48v tα.

Case 2: If v < 0 and c0 < κ2

6 , then the solution, with (11) and (3), to the KMMS-
MTD (1) is

Φ28(x, t) =
κ

3
∓
√

κ2

12
− c0

2
[tanh(

√
−vξ)− coth(

√
−vξ)]. (48)
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Substituting into Equation (6) and integrating, we obtain

Ψ28(x, t) = (
3c0

2ξ2
− κ2

18ξ2
)ξ ± 2κ

3
ln
∣∣∣tanh(

√
−vξ)

∣∣∣
+2ξ2

√
−v[tanh(

√
−vξ) + coth(

√
−vξ)], (49)

where ξ = ξ1x± Γ(β+1)
α

√
c0
v8 −

κ2

48v tα.

5. Discussion and Graphical Representation

In this paper, we applied the F -expansion method to acquire new rational, hyperbolic,
and trigonometric solutions for the Kraenkel–Manna–Merle system. We obtained these
exact solutions to the KMMS in the presence and absence of damping terms. Different kinds
of solutions with fractional derivatives such as dark soliton, singular solition, periodic
solutions, and kink soliton were provided. We investigated how the wave profile was
changed for different values of the derivatives order. To understand the nature and behavior
of the solutions, it is better to provide graphical illustrations. We provide 2D and 3D figures
for the numerous solutions given by (38) and (40). Firstly, we present graphs for the solution
to Equation (38). We plotted them when v = −1, ξ1 = 1, x ∈ [0, 4], t ∈ [0, 4], and c0 = −8,
as follows

Secondly, we give profile of solution of Equation (22). We plotted them with v = −1,
ξ1 = 1, x ∈ [0, 4], t ∈ [0, 4], and c0 = −8, as follows.

From Figures 1 and 2, we can see that the solution curves did not overlap each other.
Moreover, as the order of the derivatives rose, the surface moved to the right.

(a) α = 1, β = 0 (b) α = 1, β = 0, and α = 0.7, 0.5, β = 0.9

(c) α = 0.5, β = 0.9 (d) α = 1, β = 0, and α = 0.7, 0.5, β = 0.9

Figure 1. (a–c) identify the 3D profile of Equation (38), (d) denotes the 2D plot for various values of α

at x = 1, and each solution curve is completely distinct from every other one.



Fractal Fract. 2023, 7, 523 10 of 12

(a) α = 1, β = 0 (b) α = 1, β = 0, and α = 0.7, 0.5, β = 0.9

(c) α = 0.5, β = 0.9 (d) α = 1, β = 0, and α = 0.7, 0.5, β = 0.9

Figure 2. (a–c) identify the 3D profile of Equation (40) (d) denotes the 2D plot for various values of α

at x = 1, and each solution curve is completely distinct from every other one.

6. Conclusions

In this study, we examined the Kraenkel–Manna–Merle system with an M-truncated
derivative (KMMS-MTD) (1), which is used in ferromagnetic materials. We acquired
the exact solutions for the KMMS-MTD with and without damping terms by using the
F -expansion approach. This approach is efficient and applicable to several initial and
boundary value problems. We extended some previous results, such as those stated
in [28]. Since Equation (1) is so important for describing magnetic field propagation in a
ferromagnet with zero conductivity, the obtained solutions are critical in comprehending a
broad variety of fascinating and difficult physical phenomena. Moreover, the MATLAB
package was used to show the impact of the M-truncated derivative on the exact solution
to the KMMS-MTD (1). We deduced that as the order of the derivatives rose, the surface
moved to the right. In future work, we can consider Equation (1) with a stochastic term.
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