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Abstract: A light ray in space is characterized by two vectors: (i) a transverse spatial vector associated
with the point where the ray intersects a given spherical cap; (ii) an angular-frequency vector which
defines the ray direction of propagation. Given a light ray propagating from a spherical emitter to
a spherical receiver, a linear equation is established that links its representative vectors on the emitter
and on the receiver. The link is expressed by means of a matrix which is not homogeneous, since it
involves both spatial and angular variables (having distinct physical dimensions). Indeed, the matrix
becomes a homogeneous rotation matrix after scaling the previous variables with appropriate dimen-
sional coefficients. When applied to diffraction, in the framework of a scalar theory, the scaling operation
results directly in introducing fractional-order Fourier transformations as mathematical expressions
of Fresnel diffraction phenomena. Linking angular-frequency vectors and spatial frequencies results
in an interpretation of the notion of a spherical angular spectrum. Accordance of both homogeneous
and non-homogeneous ray matrices with the Huygens—Fresnel principle is examined. The proposed
ray-matrix representation of diffraction is also applied to coherent imaging through a lens.

Keywords: coherent imaging; diffraction; fractional-order Fourier transformation; Huygens—Fresnel
principle; ray matrices; spherical angular spectrum

1. Introduction

The link between fractional-order Fourier transformations and Fresnel diffraction has
been the subject of many articles since 1993 [1,2]. More generally, fractional-order Fourier
transformations have been associated with various propagation issues in optics [3-5]. Those
works fall into a subclass of Fourier optics, which we call fractional Fourier optics [2,4].
Among the various methods of fractional Fourier optics, some use matrix representations of
light propagation (ABCD matrices) for diffraction as well as for imaging through lenses [6].
They deal with ray vectors and square matrices, which are non-homogeneous matrices in
the sense that they involve spatial variables as well as angular ones (matrix elements have
distinct physical dimensions).

A way of introducing fractional-order Fourier transformations in optics is through
Wigner distributions associated with optical fields, which are phase—space representations
including both field amplitudes and their spectra (Fourier transforms) [7]. In such a case, the
temptation is high to describe the effect of propagation or imaging as a geometrical isometry,
e.g., a rotation. It should be clear that this may be done only on a homogeneous space, that
is, after having defined an appropriate dimensional scaling of spatial and angular variables,
so that reduced variables are dimensionless or have a common physical dimension.

In the present article we use ray vectors and matrices and look for conditions to
transform them into homogeneous vectors and matrices. Since we are trying to represent
diffraction phenomena, we shall consider coherent fields and, according to a scalar theory
of diffraction, quadratic-phase factors have to be taken into account; the ray-matrix method
we introduce is adapted to spherical emitters and receivers, a way of managing with those
quadratic-phase factors [2].
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We shall show that looking for transfer ray matrices being rotation matrices directly
leads us to represent Fresnel diffraction phenomena by fractional-order Fourier transforma-
tions, in accordance with previous works [2]. We shall then interpret how the proposed
ray-matrix method is in accordance with the Huygens—Fresnel principle.

The notion of a spherical angular spectrum [8] has been introduced as a generalization
of the usual “planar” angular spectrum [9]. We shall show that a spherical angular spectrum
can be simply interpreted in terms of the proposed ray-matrix theory. We shall eventually
apply ray matrices to geometrical coherent imaging.

2. Space and Angular Variables and Their Transfers

According to a scalar theory of diffraction, the transfer of the optical-field amplitude
from a usually plane emitter to a receiver at a given distance involves quadratic phase
factors [2,9]. These factors can be handled by using spherical emitters or receivers, that is,
spherical caps on which field amplitudes are considered [2,10,11]. We begin by adapting
to spherical caps a light-ray representation that is currently used in paraxial geometrical
optics, in which a light ray is represented by a transverse vector and by the angle made by
the ray with the optical axis. Since emitters and receivers are spherical caps, calculi will be
developed up to second order in the function of transverse and angular variables.

2.1. Angular Frequency and Light-Ray Representation

Let A be a spherical cap, whose vertex is (2 and center of curvature is C (Figure 1).
The radius of curvature of A is R4 = QC (an algebraic measure). Let P be a point on .A
and let p be the orthogonal projection of P on the plane P tangent to A at (2. We choose
Cartesian coordinates x, y on P, so that p is perfectly defined by the two-dimensional vector

Sp=r=(xp,yp).

Figure 1. Coordinates on a spherical cap .A. A point P on A is defined by the coordinates x, y of p on
the plane P, tangent to A at its vertex (2.

Numbers x, and y, are the coordinates of p and we say that r is the spatial variable
associated with p. Given A, coordinates x, and y, can also be used as coordinates of P
on the sphere; in the following, indices will be dropped. (The former analysis holds true
because the spherical cap A is less than half a sphere. In fact in the following, A will be
close enough to P so that second-order approximations are legitimate.)

Let z be the axis along light propagation and let ey, e, and e; be unit vectors along x, y
and z, forming a direct basis (ex X e, = e;). Let e, be the unit vector, normal to A at P, so
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that the Euclidean scalar product e, - e is positive. We introduce the following unit vectors

eyXen e, X ey

1 Tlen X ex]]

o= 4 1
£ Tley X el @

such that ez, e, e, form a direct basis (e; X e; = e,). We remark that e; and ey, lie in the
plane 7, tangent to A at P (Figure 2a).

Figure 2. (a) Definition of a direct basis at point P; (b) Direction cosines of a unit vector e;,.

Let us consider a light ray passing through P and let e, be the unit vector along the
direction of propagation of the ray (Figure 2b). We define the direction cosines of e, with
respect to eg, e, and ey, by

¢ =costlz, 1n=costy, (=cosby, 2)

where ¢ is the angle between ez and ey, etc. (Figure 2b). Since ey, is a unit vector, we have
&%+ 5%+ % =1, so that e, is perfectly defined by ¢ and 77 (because we impose > 0, for
waves propagating along positive z).

We call angular-frequency vector the two-dimensional vector @ defined by

@ =(Z1). ®)

The vector @ is the projection of e, on the plane tangent to A at P (Figure 3). It is an
element of R? and has no physical dimension.

Figure 3. Given a ray along the unit vector e, the corresponding angular-frequency vector @ is the
projection of e, on the plane tangent to A at P.

A light ray coming from A is perfectly defined by the ordered pair (r, @), so that we
shall say “the ray (r, ®)”.
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2.2. Ray Transfer

Let B be a spherical receiver at a distance D from A (D = Q(2/, where ()’ is the vertex
of B). The radius of curvature of B is Rg. A ray (r, @) issued from P on A intersects 53 at
P!, where the ray is defined by (¥, @'); our first task is to find the link between (r, @) and
(v/, @), that is, between (x,y,&,7) and (x', v/, &, 1").

We are looking for relations of the form x' = x'(x,y,&,7) (x’ is a function of x, y, {
and 1), & = ¢'(x,y,&,1), etc. and restrict ourselves to second-order approximations with
respect to transverse variables, in accordance with the use of spherical caps, which are
second approximations of emitters and receivers. We neglect terms whose order s are
greater than or equal to 3. For example x’ is written as

/

X' = ag+ax+biy+cié+dig+ u2x2 + bzyZ +exxy + 0262 + d2172
+f2ln + goxC + hoxny + koyl + moyn . 4)

Now we remark that if we rotate A and B (Figure 4) by an angle 7t around the z axis,
we change r into its opposite —r, and the same for @, v’ and @'. Thus x, y,  and 7 are
changed into their opposites, as well as x’. Consequently 4y and the second-order terms
in Equation (4) must vanish so that, within a second-order approximation, x’ is a linear
function of x, y, ¢ and 7, that is,

X' =ax + by + & +diy. (5)

Figure 4. Elements for ray transfer from P (on the emitter .4) to P’ (on the receiver B). In all figures,
arrows and straight lines drawn in red represent light rays.

The same can be done with 1/, &’ and #’, so that the relation between (r, ®) and (+/, ')
is linear. We adopt a matrix form and write

/

X a1 412 413 414 X
Y _ |91 a4 43 dxu | |Y 6)
g’ az1 az; 4z a3 || ¢
7' a41 A4 043 044 Ui

The coefficients 4;; can be determined by examining special cases, as follows.

i We first assume that r = 0 (Figure 5). Then ¥ = D® (second-order approximation
in ¢ and 7), thatis (x/,y') = (D¢, Dy), and we conclude by a13 = ay, = D, and
a1y = a3 = 0.

ii ~ We then assume that e, is in the x—z plane (Figure 5): e, = uyxey + use,, with
12 4+ u,2 = 1. For r = 0, we have (ez ey, en) = (ex, ey, ez), so that

® = (uy,0). @)



Fractal Fract. 2023, 7, 505

5of 27

Figure 5. A ray corresponding to r = 0. The distance from A to B is taken from vertex to vertex:
D = Q0.

iii

iv

We introduce the angle 6’ (Figure 5) and we obtain

/ . / . / /
ey = excost —e;sinb’, ey = ey, e, = exsinf’ +e;cost’,

and
@' = (uycos® —u;sind’,0).

In the limits of a second-order approximation, we have

D DZ 2
sinf = — ux/ cos@ =1— ux2 ,
Rp 2Rp
and then .
Uy cosb —uysinf = gux,
Rp
so that D+R D+R
B B
@0 =0 = 1o = 212 0).
B B
We conclude by a34 = 0, and
2 D+ Rp
33 = Ry

The same reasoning in the y—z plane leads to a43 = 0 and

D+ Rp
agy — RB .

We now assume r # 0 and @ = 0. Figure 6 shows that

Ri—D Ry—D
(x/,y/) — 1‘/ — RA r = RA (x,y) ,

and we conclude by a15 = a7 = 0 and

Rp—D
ajp = axp = Ry

®)

©)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Finally, by choosing e, in the x-z plane, we have u = u ey + e, and we introduce ¢’

(Figure 6) so that
/ /2

r
sinf = ——, cosf =1— ——.
Rp 2Rg?

(17)
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Figure 6. A ray corresponding to @ = 0: the unit vector e, is orthogonal to A.

We have
@' = (uycos® —u;sind’,0). (18)

We also have u, = r/Ry4, so that

r RA*D _DfRA+RBr

;o g T _ T RATRB
Uy cost —u,sinf R4 + Rp r RARp , (19)
and D—Ry+R R Rg—D
/ Y Y — A B _ A~ R’Rp— ) 2
(@,0) R =g (®0) (20)
We conclude by a3, = 0 and
Rq4—Rg—D
= 21
a3 RaR; (21)
The same reasoning in the y—z leads to a4 = 0 and
_R4—Rp—-D
A4 = W (22)
All the a;;’s have been determined.
In conclusion, Equation (6) is explicitly written
Rq—D
- 0 D 0
Ra
x' 0 Ra-D 0 D x
! RA
y1_ y
, Rpo—Rg—D 0 D + Rp 0
T RaRp Rp T
0 Rq4—Rg—D 0 D +Rp
RaRp Rp
With (r, ®) = (x,y,&,7), a more concise form of Equation (23) is
R4 —
A—D D
v R4 ,
= , (24)
P’ ]
Ro—Rg—D D+Rp
RaRp Rp

Since the result is obtained for every point (x, y) and every direction (¢, #7), we eventually
point out that Equations (23) and (24) hold for skew rays as well as for meridional rays.
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3. Rotations in a Reduced Phase Space
3.1. Defining Reduced Variables and an Angle of Rotation

The previous matrices—Equations (23) and (24)—are not homogeneous, because r and
v’ are spatial vectors (their components are homogeneous to lengths) while @ and @’ are
physically dimensionless. We would like to express Equation (24) as

'\ [ cosa sina)(p
(q)’) a (— sina coszx) (4)) ’ (25)

where p, ¢, p’ and ¢’ are reduced variables that are dimensionless (from a physical point of
view) and which replace r, @, r and P (Mathematically, they are two-dimensional vectors,
elements of R?.)

The square matrix in Equation (25) is a rotation matrix of angle —a. We choose
a rotation angle equal to —a to match a with the forthcoming fractional parameter «
associated with a diffraction phenomenon. The value of the fractional parameter (« or —«)
is related to the definition of two-dimensional fractional-order Fourier transformations,
according to Equation (48).

To express the matrix in Equation (24) as that in Equation (25), we set p = Ar, p’ = A'Y,
¢ = B® and ¢’ = B'®, where A, A’, B and B’ are positive real numbers. We should then have

A Rq—D
WCOSD‘_T’ (26)
A . Ry—Rg—D
all =4 5 = 27
B sinw RaR; , (27)
B
Wsina:D, (28)
D+ Rp
ﬁcosa: Rp (29)

Before calculating A, A’, B and B’, we define a. Thus we introduce

(R4 —D)(D + Rg)

= , 30
| = B —R, 7 Ry) (30)
and assume | > 0, so that we can choose «, with —71 < a < 71, such that
Ry—D)(D+R
cot? x = (Ra )(D + Rp) =7. (31)

D(D — R4 + Rp)

(If ] < 0, the parameter « becomes a complex number [2]).

To complete the definition of #, we note that, according to Equation (28), the sign of
« should be that of D and, according to Equations (26) and (28), the sign of cot « should
be the sign of (R4 — D)DR4. Thus, in addition to Equation (31), we choose « such that
—n < a < 1, and impose aD > 0 and

R4D
Ro-D

cota > 0. (32)

On the other hand, we note that according to Equations (28) and (29) the sign of cot«
should also be the sign of (Rg + D) DRgp. To avoid inconsistency between Equations (26)—(29)
and the previous definition of , we have to prove that (R4 — D)DR4 and (Rg + D)DRp
have the same sign. Actually, this is a consequence of the assumption | > 0. For a proof,
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we start with the identity D(D — R4 — Rp) = RoRp — (R4 — D)(D + Rp) and deduce,
for ] >0,

RARp 1
=1+->1. 33
(R4 —D)(D + Rp) J (33)
We then obtain
RARpD?

(Ra—D)(D+Ry) ~ " o
and we conclude that R4D(R4 — D) and RgD(D + Rp) have the same sign. The definition
of « is consistent with Equations (26)—(29).

So far A, A/, B and B’ are defined up to a multiplicative factor. We may choose
additional conditions to define them more accurately: to make the link with diffraction,
according to what has been done in a previous article [12], we shall impose

1
p'¢:XT"p/ (35)

and 1
p’-gb':Xr'-(D’. (36)

Under those conditions, we eventually deduce from Equations (26)—(29)

4 1 (Rg—D)(D—Ru+Rp)

= , 37
A2R 42 D(D + Rp) 57
2
Bt Rg D(D + Rp) , (38)
A2 (R4 —D)(D—Ra+Rp)
u_ 1 (D+Rp)(D—Ra+Rp) (39)
A2Rp? D(R4 — D) ’
A2 (D + Rp)(D — Ra + Rp)
(Proofs are given in Appendix A).
3.2. Interpreting Rotations in the Reduced Phase Space
We remark that Equation (23) can also be written
Ro—D
D 0 0
Ry
X Rp4—Rg—D D+ Rp 0 0 X
1 RARp Rp
AR o B
Ro—D
! D
1 0 0 R, 1
0 0 Ro—Rgp—D D+Rp
RARp Rp
or equivalently, with reduced variables,
0% cosa  sina 0 0 Ox
/ .
¢f _ sina Cosa 0 .0 Px , (42)
Py 0 0 cosa  sina Py

¢y 0 0 —sina cosa/ \¢y
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where p = (Px/Py) and ¢ = (¢x, 4’y>-
Equation (42) shows that in the reduced phase-space the transfer from ray (r, @) to ray

(v', @) is represented by a four-dimensional rotation that splits into two rotations of angle
—uw, each rotation operating in a two-dimensional subspace of the reduced phase space [12].
From a physical point of view, matrices in Equation (42) are dimensionless.

4. Link with Diffraction and Fractional Fourier Optics
4.1. General Transfer by Diffraction (Fresnel Phenomenon)

According to a scalar theory of diffraction, the field transfer from A to B is expressed
as [2,10,11]

o[ T (L 12 (27
X/Rzexp{ )\(D R{q)r}exp(ADr r)UA(r)dr, (43)

where Uy is the field amplitude on A, Up the field amplitude on B and dr = dxdy.
(A phase factor equal to exp(—2irrD/A) has been omitted.)

We replace r and #’ by reduced variables p and p’, as defined in Section 3.1, and we
use reduced field amplitudes defined by

Valo) = /| 25| ua(§). @
Va(p') = \RiiDD‘ U (f;) . (45)

Then Equation (43) becomes (the proof is given in Appendix B):

i . . 2irt
Va(p') = e exp(—imp? cota) /RZ exp(—imp® cotw) exp(sm[x o - p) Valp)dp, (46)

thatis

Ve (p') = e FulVal(p"), (47)

where F, denotes the fractional Fourier transformation of order &, defined, for a two-
dimensional function f, by [13,14]

s a—in

sin «

. . 2irt
exp(—imp'? cota) /}RZ exp(—imp® cota) exp(m o - p> flp)dp. (48)

Equation (47) is usually deduced in the framework of fractional Fourier optics [2], by
choosing appropriate reduced variables and reduced field amplitudes. Reduced variables
have been introduced here with the help of ray matrices by looking for homogeneous
matrices. In other words, the basic equation that expresses diffraction in the framework of
fractional Fourier optics has been established from the analysis of ray transfers from an
emitter to a receiver and considering homogeneous ray matrices.

Equation (43) generally corresponds to a Fresnel-diffraction phenomenon [2]. Fraun-
hofer diffraction constitutes a special case and is the subject of the next section.

Remark 1. The integral in Equation (48) is a Lebesgue integral and the standard Fourier transfor-
mation F is obtained for x = 7t/2. If g(p) = exp(—irp® cota)f(p), then |g(p)| = |f(p)| and
| Falf](p")| is proportional to | F[g](p'/ sina)|, so that F is defined in the same conditions as F
and for the same classes of functions. In particular the fractional-order Fourier transformation can
be extended to every tempered distribution T, according to (Fu[T], ¢) = (T, Fi[@]), where ¢ is
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a rapidly decreasing test function. The space of tempered distributions is large enough to represent
physical fields encountered in the electromagnetic theory of light, such as field amplitudes U4, etc.,
of the present article.

4.2. Fraunhofer Diffraction

Fraunhofer diffraction [2] occurs when R4 = D = —Rp (Figure 7). Then Equation (43)
takes the form

. i,
Ug(r') = D e exp<)\Dr r> Uy (r)dr, (49)
and involves a (standard) Fourier transform, that is
Up(r) = —— T T (50)
BT AD TA\AD )
Ra Rr

Q
0

A F
Figure 7. Fraunhofer diffraction. The spherical cap F is the Fourier sphere of A: its radius R is

Ry = CO = —R,.

The spherical cap B is called the Fourier sphere of A and will be denoted . Spherical
caps A and F are (symmetrical) confocal spheres: the vertex of the one is the curvature
center of the other (Rp = —R ). We write

U(/)_Lﬁ L/ _;ﬁ r (51)
)= 4\AD ) ~ AR, “A\AR, )

If f denotes the function defined by f(r) = f(—r), from Equation (51) we deduce (F is
a spatial frequency):

Up(F) = iARAUA(ARAF) = iAR4U4(—ARAF), (52)
and then )
1 ~ r
Uy(r) = AR Ur (ARJ , (53)

which shows that A is the Fourier sphere of F (reciprocity property of Fourier spheres).

According to Equation (31) we have cota = 0 and for positive D we obtain &« = 77/2:
Equation (47) involves a (standard) Fourier transformation, as expected. To deal with
reduced variables, we proceed as follows. We consider first that R4 = —Rp # —D
(Rr = Rp), so that according to Equations (37) and (39) we have

b _2Ra—D 4 _ 2Ra—D

s Sl =4 54
A2R 42D A2Rp2D )

When D tends to R4 we obtain then that p tends to r/+/AR 4 and p’ tends to #' / /AR 4.
Hence, reduced variables are perfectly defined.
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Thus, for D > 0, Fraunhofer diffraction is decribed by a rotation of angle —a« = —7/2.
If D < 0, we obtain @« = —7/2; we have thus a virtual Fraunhofer diffraction, described by
a rotation of angle —a = 77/2.

5. Link with the Spherical Angular Spectrum
5.1. The Notion of Spherical Angular Spectrum

The notion of a spherical angular spectrum is a generalization of the planar angular
spectrum to spherical caps [8]. We shall provide an interpretation of the spherical angular
spectrum by linking it with the previous analysis.

We begin by associating a light ray and a point on an emitter with a spatial frequency.
Let A be a spherical emitter (or receiver) on which the field amplitude is

Uy (r) = Uy exp(—2intFy - 1), (55)

where U is a dimensional constant. The vector Fy is a spatial frequency.
According to Equation (51) the field amplitude on F (the Fourier sphere of A) is

i

Up(r') = D

/
5(/\’[) - FO> —iAD é(r' — ADFy), (56)

where § denotes the (two-dimensional) Dirac distribution. We conclude that the wave
emitted by A converges at the point P’ of F, such that ¥ = ADF (Figure 8).

Let P be a point on A. The ray PP’ is defined by (r, ®y). Since D = R4 (Fourier
sphere), Equation (24) gives P’ as corresponding to ¥ = D®y, so that

& = AFy. (57)

A F

Figure 8. If the field amplitude on A takes the form exp(—2inFy - r), the wave issued from A
converges at point ¥/ = ADF( on F (the Fourier sphere of .A), where D = R4 = folel

Equation (57) leads us to introduce the notion of a spherical angular spectrum as
follows. Let U4 be the field amplitude on A. The Fourier transform of U4 (also called the
spectrum of Uy ) is U4 (F). By changing F into @ = AF, we obtain the so-called spherical
angular spectrum of U 4, denoted S 4 and such that

1 ~ /D 1 2irr
Sa(P) = 2 Uy ()\) = P/IR@ exp(/\di-r) Uy(r)dr, (58)

where the factor 1/A? has been introduced for the sake of homogeneity (that is, S 4 has the
(physical) dimension of Uy,).

If A becomes a plane, S4 is the usual angular spectrum (up to a factor 1/A2?) [9].
According to classical Fourier optics, a plane wave is associated with each spatial frequency
of the wave emitted by a planar object. The emitted wave is decomposed on a family of
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plane waves. Each plane wave propagates along a direction whose direction cosines are
given by (cos fly,cos ) = @ = AF. The vector @ is a constant.

The spherical angular spectrum is defined on a spherical emitter (or receiver). A spher-
ical wave is associated with each spatial frequency on the spherical emitter, so that the
emitted wave is decomposed on a family of spherical waves. Every spherical wave is
weighted by an appropriate coefficient which is equal to the value of the angular spectrum
for the associated spatial frequency. The law @ = AF still holds for spherical emitters (or
receivers). However, on the basis of the analysis of Section 2, given a ray propagating
along the unit vector e, and issued from a given point on an emitter, the angular frequency
@ should be interpreted as the projection of e, on the plane tangent to the emitter at the
previous point.

5.2. Propagation of the Spherical Angular Spectrum

The transfer of the spherical angular spectrum from an emitter A (radius Ry) to
a receiver B (radius Rp) at a distance D is given by [8]

iRARp ox <—i7TRB(RA - D) q§/2>
AMD — Ry + Rp) AMD — R4 + Rp)

—iT[RA(RB+D) ) ZiﬂRARB ’
X/RZeXP</\(D—RA+RB)¢) exp A(D—RA—i—RB)(p D|Sp(P)dD.

Sp(@') = (59)

If we make the following changes

D — R4+ Rp
D —_—, 60
RAR; (60)
D —Rp+Rp
Ry — ——M@M@8, 61
A R.D (61)
D—R4+ Rp
Rp 3 ———, 62
B RyD (62)

in Equation (43) and replace r by @ and ' by @', we obtain Equation (59).
We use reduced (vectorial) variables ¢ and ¢, as defined in Section 3.1, and reduced
spherical angular spectra T4 and Tg defined by

Rpo—D

Ta(gp) = ‘ QAD ‘SA@), (63)
R D !

a(e) =[S (%), (64)

so that the propagation of the spherical angular spectrum from A to B is expressed as
Tp(¢') = e FulTal(¢"). (65)

The proof of Equation (65) is given in Appendix C.

Equation (65) can also be obtained in the framework of fractional Fourier optics [12]. It
has been deduced here from the previous analysis, based on ray transfers and homogeneous
matrices. Moreover, Equation (65) is similar to Equation (47), so that the spherical angular
spectrum propagation is accomplished by a fractional Fourier transformation of order «, as
well as the field-amplitude propagation [8].
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6. Accordance with the Huygens—Fresnel Principle
6.1. Expression with Non-Homogeneous Variables

In the framework of a scalar diffraction theory, the Huygens-Fresnel principle states
that the (electric) field-amplitude transfer from an emitter A to a receiver B can be split
into the transfer from A to C, followed by the transfer from C to B, where C is an arbitrary
surface located between .A and 3. We show in this section that the previous analysis, based
on light rays and ray matrices, is in accordance with the principle.

We use the previous notations and variables: r on A and #' on B, and we introduce
an intermediate spherical cap C whose radius is R¢ (Figure 9). A light ray on C is defined
by (s, ¥). Let D; be the distance from A to C and D; the distance from C to B, so that the
distance from A to B is D = D + D,. For the sake of convenience we assume C to be
located between A and B, but the analysis holds true for every C; C might be a virtual
emitter or receiver.

The spherical segment C is thought of as a receiver in the transfer from A4 to C and as
an emitter in the transfer from C to B. It should be clear that the same pair (s, ¥), taken on
C, can be used for describing both transfers.

Figure 9. According to the Huygens principle, the transfer from A to B can split into the transfers
from A to C and from C to B.

The transfer from A to C is described by

Ra—Dq

s Ra o r
(+)- () &
D1 —Rp+Rc Di+Rc
—RaRc Rc
and the transfer from C to B by
Rc—D, D,
v Rc s
(#)- (+) <67>
D, —Rc+Rg Dy+Rp
—RpRc Rp

The combination of Equations (66) and (67) directly results in

Rc—D; R4 — Dy

D, — D,
’ Rc Ry »

Dy, —Rc+Rp Do+ Rp D1 —Ra+Rc Di+Rc

—RgRc Rp —RaRc R¢

R4 — D1 —D

A 1 > Dy + D,
R4 ,
- o) (68)

Di+Dy—Rps+Rg D1+ Dy+Rp

—R4Rjg Rp
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and, since D = D; + D;, Equation (68) is Equation (24) once more.

6.2. Expression with Homogeneous Variables

We examine now the accordance of the previous homogeneous ray-matrix represen-
tation with the Huygens—Fresnel principle. We have to compose two rotations whose
angles are —aq and —wy, and the result should be a rotation whose angle is —« = —a1 — ap.
Nevertheless, the composition of the associated matrices physically makes sense only if
reduced variables on C are the same for both transfers. The problem has already been
analyzed [12] and the result is as follows: the composition makes sense if, and only if, the
radius of C is R¢ such that

D1(D2 + Rp)(Ra — D) + Do (D + Rp)(Ra — D)

Re = D1(Ra — D) + Da2(D + Rp) ‘ (©9)

Given an emitter A and a receiver B, the result holds under rather strong conditions:
(a) the field transfer from A to B is of real order; (b) intermediate caps (such as C above)
belong to a family of spherical caps, whose curvature radii take only specific values,
according to Equation (69). Such a result is actually close to the historical way in which
Huygens conceived light propagation. Every point of an emitter emits ‘wavelets’ in the
form of spherical lightwaves and the disturbance at a later instant is found on a wavefront,
which is the envelope of the wavelets. Each point of the wavefront, in turn, re-emits
wavelets whose envelope at a later instant provides the wavefront where the disturbance
can be found. In this description of light propagation, an intermediate surface between an
emitter and a receiver may not be an arbitrary cap, for the field on it has to correspond to
an actual wavefront. Given a distance from the emitter, only one cap is then admissible
and, in the metaxial theory, this cap is approximated as a sphere; its radius is given by
Equation (69).

Such a situation corresponds to Gaussian beams [2]. A Gaussian beam can be seen as
a sequence of spherical wavefronts WV, on which the electric-field amplitude is represented
by a Gaussian function (or more generally an Hermite—Gauss function). The field transfer
from Wy, to Wi, (a1 < ap) can be seen as the composition of two field transfers from My,
to My, and from M, to M,,, where M, is an intermediate wavefront, belonging to the
previous family of wavefronts that constitute the Gaussian beam.

7. Coherent Imaging

Let S be a centered system that forms the image A’ of an arbitrary spherical cap A.
A ray issued from a point M on A is transformed into a ray on A’ and the issue is to
establish the relationship between the two rays. We consider geometrical images in the
meaning that we do not take into account diffraction by limited apertures of lenses (or
refracting spherical caps, or mirrors).

We first examine image formation by a refracting sphere before we generalize to an
arbitrary centered system.

7.1. Imaging by a Refracting Spherical Cap

We consider a refracting spherical cap D (radius Rp) separating two homogeneous
and isotropic media with refractive indices n and n’. We proceed in several steps that are
as follows.

7.1.1. Matrix form of Snell’s Law (Refraction) [12]

A light ray (r, @) is incident on D at point M (coordinates r), see Figure 10. The
refracted ray is written (', @) and, since it passes through M, we have ¥’ = r. If e, denotes
the unit vector normal to D at M, the incident angle 6 is the angle taken from e, to e,, and
the refracted angle ¢’ is the angle from e, to e],, where e, is along the incident ray and e;,
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along the refracted ray (see Section 2). Since ||@|| = |sin 6|, from the second part of Snell’s
law (nsin® = n’ sin '), we obtain

n||@]] = n'||@']]. (70)

Figure 10. Snell’s refraction law. The incident ray (r, @) is refracted as ray (r, @'). Right: diagram in
the plane of incidence; C is the curvature center of the spherical cap D; incident and refracted angles
are taken from the normal at M towards the rays.

We assume @ # 0. According to the first part of Snell’s law, the incident and the
refracted rays are in the plane of incidence, so that ey, e, and e, are coplanar (Figure 10,
right). Then @ and @', which are along the respective projections of e, and e), on the plane
tangent to D at M, are colinear, and since 6 and 6’ have the same sign, we obtain

ne =n'd, (71)

which constitutes a vectorial form of Snell’s law and which holds also for @ = 0.
Finally, the matrix form of Snell’s law is

1

0
(@)=, »] () &

nl

and holds for meridional as well as for skew rays (as encountered when the refracting
surface has a rotational symmetry).

7.1.2. Ray Transfer by a Refracting Spherical Cap

Let A be an emitter at a distance d from D, in the object space; and let B be a receiver
at a distance d’ from D, in the image space (we choose notations that are currently used
in geometrical optics: d = OQ4 and d’ = OQjp, see Figure 11; the diffraction distance to
be taken into account for the transfer from A to D is D = —d). A ray (r, @) on A becomes
(s,¥) on D, then (s/,¥') = (s, ¥’) after refraction and eventually (¥, ®') on B. We use
Equations (24) and (72) to obtain

Rp —d' Rpo+d

d’ 1 —d

/ Rp Ra ,
Ql = n Q 7 (73)
d —Rp+Rg d +Rp 0 p d+Rp,—Rp Rp-—d
—RpRp Rp RaRp Rp

from which we shall deduce the following results.
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Figure 11. General transfer from A to B with refraction on D.

7.1.3. Conjugation Formula and Lateral Magnification

The receiver B becomes the image A" of A if every ray passing through r passes
through r’ after having crossed the refracting surface, that is, if ¥’ does not depend on &.
According to Equation (73), this happens if

RD—d, E/RD_d

—d d = 74
RD * n’ RD 0, ( )
that is , ,
n n n —n
= 7
i~ d Rp (75)

Equation (75) is a conjugation law of the refracting spherical cap.
From Equations (73) and (75) we deduce, in case of imaging,

d /n 1 n dd’  ndd nd’
S Ry (L I L | 7
’ [+RD( )+RA< " RD+n’RD>]r wd ' (76)

The imaging lateral magnification is my = nd'/n’d, a classical result of geometrical
optics. (Subscript “v” indicates that my is the magnification between vertices of A and A’.)
We deduce that Equation (73) can be written as

(;> - (Z; a22> (é) 77)

where 451 and ay, remain to be determined.

7.1.4. Determination of ap

From Equations (73) and (75) we deduce

d —Rp+Rp +£(d/+RB)(RD—d)
RDRB n' RDRB

1 , n,, n., n n

= Kok, |44~ dRp — dd’ + 5 Rp+Rp(d+—Rp— —d)]|
d n 1

= E:Wmiv' (78)

azzzd

7.1.5. Conjugation of Curvature Centers (Double-Conjugation Law [2,10,11])

The spherical receiver A’ is the coherent geometrical image of the spherical emitter A
if the field amplitude on A’ is equal to the field amplitude on A to within a scaling factor
which is equal to the lateral magnification factor. As a consequence, the phase is preserved
in the imaging process: if M and N are two points on the spherical cap .4, the images of
which are M’ and N’ on A’, the phase difference between vibrations at M" and N’ is equal
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to the phase difference between vibrations at M and N. The field amplitude on A’ is related
to the field amplitude on A by

, 1 v

i) = o s (). 79

where my is the lateral magnification at vertices: if (2 is the vertex of A (with d = 00)

and (' the vertex of A’ (with d’ = O(), points (2 and ' are conjugates, and d and d’ are

linked by Equation (75). The factor 1/m, before U 4 is necessary to express that the power of

the whole object is also the power of the whole image: [p2 [Ua/(¥)|?dr' = [2 [Ua(r)[? dr.
Let F be the Fourier sphere of A, so that

i~ s

From Equation (79) we deduce

U (F) = my Uy (myF), (81)

and if 7’ denotes the Fourier sphere of 4" we have

, i o~ s’ imy -~ [ mys AR 4 ARy s!
1 = — ’ = = —_— -_— | . 2
Up(s) = 37z, Ua ()UR A,) VR 4 UA(/\’RA/> "R,y T\ R, ) ®2)

Equation (82) has the form Up/(s') = (1/m)Up(s'/m), that is, the form of Equation (79):
we conclude that the field amplitude on F is the coherent image of the field amplitude on
F, which means that the spherical cap F’ is the coherent image of F. The vertices of F
and F’, say C and C/, are conjugates. Since C is also the curvature center of A and C’ the
curvature center of A’, we conclude that the spherical cap A’ is the coherent image of the
spherical cap A if, and only if,

e The vertex of A’ is the paraxial image of the vertex of A;
e The curvature center of A’ is the paraxial image of the curvature center of A.

That constitutes the “double-conjugation law” of geometrical coherent imaging for
a refracting spherical cap (a refracting plane constitutes a particular case: the curvature
radius is infinite). The law also holds for mirrors and can be generalized to every centered
system made up of refracting spheres and mirrors [2,10,11,15].

In Appendix B, we provide a pure geometrical proof of the conjugation of curvature
centers for imaging by a refracting spherical cap (another geometrical proof has been given
in a recent article [15]).

7.1.6. Determination of a1

We consider a ray (r, @) on A, such that @ = 0. Then the ray passes through C (the
curvature center of A) and its image ray (+/, ') should pass through C’, the center of A’,
so that @ = 0. Since the results holds true for every r, we must have a5, = 0. (We provide
an analytic checking of this result in Appendix E.)

Finally, we arrive at

My 0
v r
(@)=, 1] )
0
My 1

We remark that
nr-®=n'r.o, (84)



Fractal Fract. 2023, 7, 505

18 of 27

and, since nA = n’A’, from @ = AF we deduce
r-F=7+.F. (85)

7.1.7. Radius Magnification

Let A’ (vertex (2, center C’, radius R 4» = (2'C’) be the coherent image of A (vertex (2,
center C, radius Ry = QC) through a refracting spherical cap D (vertex O, radius Rp). Let us
denote § = OC = d + Ry and g = OC’ = d’ + Ry Since C and C’ are conjugates, we have

n n—n
—=—4 , 86
9 q Rp (8)

and the corresponding lateral magnification is

_nq
Me = n'q : (87)

From Equation (82) we also deduce

)\/RA/ 1 n RA’
= = = , 88
T myAR,  my 1 Ry (88)
and then R
’ n
my = RIZ = ; My M, (89)

where m; is called the radius magnification [2,10,11].
The radius magnification law can also be deduced from vertex and center conjugation
formulas, as shown in Appendix F.

7.2. Generalization to Centered Systems

A centered system S is the succession of refracting spherical caps D;, i = 1, ..., I, where D;
separates two media with respectives indices 1, 1 and n;. We denote nyp = nand n; = n’. Let
Ay be an object (optically located in the medium of index 1) and A; (vertex (2;, center C;) be
the intermediate image, that is, the image of A;_; through D;. We denote A" = A, the final
image (optically located in the medium of index n’). We apply the double-conjugation law:

e Since (); is the paraxial image of (2; _; through D;, we obtain that 2" = (2; is the

paraxial image of (29 = (2 through S;

e Since C; is the paraxial image of C;_; through D;, we obtain that C' = Cj is the paraxial

image of Cy = C through S.

We conclude that the double-conjugation law applies to S.

Aray (r, @) = (r9, Do), issued from Ay, becomes (r;, @;) on A;, after refraction on D;.
The final ray, on A’ is (¥/, @) = (r], @1).

For every i we have r; = m;r;_1, so that

/
v=rp=Mmrp_] = mpmp_qrp_p = = Mpmp_q - Mrg = myr, (90)

i=I
where my, = H m; is the lateral magnification for the conjugation of (2 and (2’. We also have
i=1
n n mn nyp nj

Z = . . 91
n  n onp nyi_1 n ©1)
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Equation (83) leads us to write

m; 0 My 0

r r =1 T r
<¢’>_<¢11>_E o Lnia (@00)_ o L1 (@) 2

m; n; my n’

because all previous square matrices are diagonal. Equation (92) is the generalization of
Equation (83) to a centered system made up of refracting spherical caps. It can be proved
to hold also for catadioptric systems.

The radius magnification law is

Ry R Ry Ri.i Ry Ry HEbom n'
= = — = — — — ... = = = - . L= , 93
i Ra Ro Ri-1R2 Ri Ry j7mia Mt Mlei = 5y v e ®3)
and takes the same form as Equation (89).
7.3. Homogeneous Matrix Representation
Since Fy is the identity operator (Fy[f] = f, for every function f) and since

Frlfl(p") = f(—p’), the imaging should be expressed by a fractional Fourier transform
whose order is 0 or equal to 7. That holds true for both reduced spatial variable p and
angular frequency ¢, because the field transfer and the angular-spectrum transfer are both
expressed by fractional Fourier transforms of equal orders. The homogeneous ray matrix
associated with imaging thus results to be such that

&)=+ D) e

In Appendix G, we prove that this is the case.

Remark 2. Square matrices in Equation (92) are homogenous since my, and refractive indices n
and n' are pure numbers. However, column vectors are not homogeneous. In Equation (94) all
matrices are homogeneous.

Remark 3 (Reduced form of Snell’s law). Snell’s law of refraction is expressed by Equation (72),
which may be seen as an imaging between ray (v, @) and ray (¥', ®"), with ¥ = r, so that the
lateral magnification is my = 1. Then we have ¢' = ¢, which constitutes the reduced form of
Snell’s law.

8. Conclusions

Fractional Fourier optics is based on the representation of a Fresnel diffraction phe-
nomenon by a fractional-order Fourier transformation. The transformation associated with
a given diffraction phenomenon has been deduced here from a matrix representation of
ray transfer from a spherical emitter to a spherical receiver by looking for homogeneous
transfer matrices. When the field transfer is expressed by a real-order transformation,
the ray matrix is a four-dimensional rotation matrix that splits into two rotations oper-
ating on two-dimensional subspaces of the reduced phase space. The analysis can be
extended to complex orders; the previous rotation matrices become then two-dimensional
hyperbolic-rotation matrices [12].
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Appendix A. Proof of Equations (37)-(40)
From Equation (31) we deduce

1 RuRp

=1+cotPa = , Al
sin? & D(D —Ra+Rp) (AD
and
1 1+4cot?a RARp (A2)
cosa  cot?a  (R4—D)(Rg+D)’
We then obtain
A> 1 (Ra—D)> Rp(Ra-D) (A3)
A% cos?a R, Ra(Rp+D)’
A:: 1 (D—RA+RB)2:D—RA+RB (Ad)
B sin?a R4%Rp? RaRgD
B> D> DRuRp (A5)
A? " sinfx D—Rp+Rp’
B> 1 (Rg+D)*  Ru(Rp+D) (A6)
B?  cos2a Rz  Rp(Ra—D)’

From Equations (35) and (36) we deduce AB = 1/A = A’B’. Equations (A3) and (A4)
then lead to

4_ 4npe Re(Ra—D) D—Ra+Rp 1 (Ra—D)(D—Ra+Rp)
A*=A"B = 5 , (A7)
RA(RB-l-D) RARgD /\ZRA D(RB+D)
which is Equation (37). Equations (38)—(40) are deduced in a similar way:.
Appendix B. Proof of Equation (46)
Changing variables in Equation (43) are as follows.
(i) We begin with
r-r _ p-p
= 0 A
AD  ADAA'’ (A8)
with ( 2
1 D—R4s+Rp
AAN = : A9
We have
1 (R4 —D)(Rg + D) RARg
=1+coPa=1 = , A10
snZa Tt = Y S 5T R, ¥Ry D(D—R,+Rp) (A10)
and, since « has the sign of D, we obtain
r-r _p-p
= (A11)

(ii) Then we consider

B 2
1(1_1)’2—1“ D (A12)
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We have ( . ( \( )
1 (Ra—D)21 _(Ra—D)(Rg+D)
M DR, AT D(D—Rs+Rp) oL (A13)
and, eventually, since the sign of cot is the sign of R4D(R4 — D),
1/1 1\,
A(D_RA>r = p“cota. (A14)
(iii) We have
1/1 1\, 1Rg+Dp?
A<D+RA>r ~ A DRy A7 (AL5)
and then ( 2 ( \( )
1 (Rg+D)? 1 R4 —D)(Rg+D )
il I = . Al
A2 DR, AR D(D_Ra+Rp) ¢ (A16)
Since the sign of cotu is the sign of RgD(D + Rp), we obtain
11 1\ n_  »
/\<D+R3>r =p“cotu. (A17)
(iv) Since both r and p are two-dimensional vectors, we have
dr 1 dp
AD ~ AD A% (A19)
We have
y2p2a2— D? (Ra—D)(D—Ry+Rg) _ D(D—Rs+Rp) Ra—D Rp
RAZ D(RB+D) RARB Rg+ D RA
Rg(R4—D) . 5
—————sin“«. A19
Ra(Rp + D) (A19)

We note that (Rg/R4)(R4 — D)/ (R + D) > 0,because R4D(R4 — D) and RgD(D +
Rp) have the same sign. Since « has the sign of D, we obtain

dr 1 [Ru(Rz+D)
AD ~ sina \| Ry(Rs = D) %" (A20)

Making the changes of the above four items leads to writing Equation (43) in the form
of Equation (46).

Appendix C. Proof of Equation (65)

We use reduced angular frequencies and reduced angular spectra to write Equation (59) as
a fractional Fourier transform of order «. Reduced angular frequencies are ¢ = B® and
¢’ = B’ @', where B and B’ are positive, and given by Equations (38) and (40). Reduced
angular spectra are T4 and T, given by Equations (63) and (64).

i) We begin with the exponential depending on @ - ®&’. We have
@) g p p g

RaRp / RaRp ¢-¢
D-P = A21
)\(D—RA—FRB) /\(D—RA+RB) BB’ ( )
with . 5
R4% R
(BB')* = —4_B D (A22)

A (D—Ra+Rp)2’
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Since R4RpD (D — R4 + Rp) is positive according to Equation (A10), we have

R4 R D
BB/)2 = “AB . A2
(BB) =732 (D—RatRy) (A23)

Then, according to Equation (A10) once more,

2
RARp L RaRy -1 (A24)
MD—Ra+Rp)] (BB)2 D(D—Ra+Rp) sinta

Since R4RgD(D — R, + Rp) is positive and since « (and sin «) has the sign of D, we
conclude that RARg(D — R4 + Rp) and then R4Rp(D — R4 + Rp)BB’ also have the sign
of «, so that eventually

RaRp / 1 /
d.P = .o . A2
A(D —Ra + Rp) sinw ¢ ¢ (A25)

(ii) Factor in ®2. We have

2
RA(RB+D) @2: RA(RB+D) ﬂ/ (A26)
A(D —Rs + Rp) A(D — R4 + Rp) B2

and then )
Ra(Ry+D) 1> 1 _(RA-D)D+Rp) _ A2
/\(D—RA+RB) B4 D(D—RA+RB)

Since R4RpD(D — R4 + Rp) is positive (see above), we conclude that R4 (D — R4 + Rp)
and RgD have the same sign. On the other hand, RgD(Rp + D) has the sign of cotu (as
shown in Section 3.1). We conclude that R4 (Rp + D)(D — R4 + Rp) and cota have the
same sign, and we may write

RA(Rp+D) 1 _
AD—R,+Rp) B2 Ot (A28)

so that
R4(Rp+ D)

2 _ 2
A(D—RA—i—RB)(D = ¢“cotu, (A29)

(iii) Factor in ®'>. We have

Rg(R4—D) Rg(R4—D) ¢
"% = v A30
/\(D—RA—‘,-RB) /\(D—RA+RB) B’2 ( )
and then )
Rp(Ra — D) 1 _(Ra-D)D+Rp) _ o (A31)

AMD—Rs+Rp)| B* D(D—Ry+Rp)
As above, we show that Rg(R4 — D)(D — R4 + Rp) and cota have the same sign,
and we eventually obtain

Rg(R4 — D)
A(D — R4 + Rp)

% = ¢'* cota. (A32)

(iv) Differential term. Since both @ and ¢ are two-dimensional variables, we have

RARp RaRp 1
do = — d¢. A33
A(D — R4 + Rp) A(D — R4 + Rp) B2 ¢ ( )
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Then

RARp 1 R3(Ra — D) _Rp(Ry—D) 1 (A34)
AMD—Rs+Rp)| B+ D(Rp+D)(D—Rs+Rg) Ra(Rp+D) sina’

Since R4Rp(D — R4 + Rp) has the sign of « (see item (i) above), and since R4 (R4 — D)
and Rg(Rp + D) have the same sign, we conclude

RARp dd — Rp(R4 —D) d¢

. A
/\(D—RA+RB) RA(RB+D) sinw (A35)

(v) The previous changes of variables lead us to write Equation (59) in the form

exp(—imr¢* cota)

(P/ i RB(RA — D)
B sina \| R4(Rp+ D)

X /IE.{Z exp(—im¢? cota) exp(w) Sa (g) d¢, (A36)

sin &

thatis
- F2l(9)
' exp(—ing’ cota) /R exp(—ing? cota)
ofZ52) [

sina
2ing - ¢’
sinu

sin «

o exp(—imj)’2 cotu) /]Rz exp(—ing? cota) exp( > Ta(p)de
= & Fu[Tal(9") . (A37)

Appendix D. An Alternative Proof of the Conjugation of Curvature Centers

Let A’ (center C’) be the coherent image of A (center C) through the refracting spherical
cap D (Figure Al). Let M and N be two points on A and let M" and N’ be their images on A’.

Figure Al. If A’ (center C') is the coherent image of A (center C), then C’ is necessarily the image of C.

According to Fermat'’s principle, the optical path from M to M’ is a constant for every
light ray passing through M and M’, and we can speak of the optical path [MM’]. (That
is rigorous if M and M’ are stigmatic points, and holds up to second order in case of
approximate stigmatism.) The same holds for the optical path [NN'].

Since A’ is the coherent image of .4, the phase difference between vibrations at M’ and
N'is equal to the phase difference between vibrations at M and N. If N tends to M, then
[NN'] tends to [MM'] and by continuity we otain [NN'] = [MM'] for every pair (M, N),
where M and N belong to A.
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We then consider the optical path [MCM’], which intersects D at L, and the optical
path [NCN’], which intersects D at K. We have

[MLM'] = [MCLM'] = [MM'] = [NN'] = [NCKN’] = [NKN']. (A38)

Since C is the center of curvature of A and C’ the center of curvature of A’, we have
[CM] = [CN] and [M'C’] = [N'C’] so that, by Equation (A38), we obtain

[CLC'] = [CM] + [MLM'] + [M'C'] = [CN] 4 [NKN'] + [N'C'] = [CKC'].  (A39)

When M and N describe A, points K and L describe D, and we have [CLC'] = [CKC'],
which means that, whatever L, the optical path [CLC'] is constant, so that C’ is the image of
C: curvature centers of A and A’ are conjugates. The proof is complete.

Appendix E. Checking a1 =0

We refer to notations of Section 7.1.2. If C is the center of .A, we denote ¢ = OC = d + Ry
and, if C’ is the center of B, we denote g/ = OC’' = d’ + Rp.
According to Equation (73) we have

Ro+d d —Rp+Rp n d +Rp N

1= "Ry RsRp W RaRgRp @ TRA—RD) = SRy (A40)
where
N = —I’Z/(RA + d)(d/ —Rp+Rp) + I’Z(d/ +Rp)(d+ R4 —Rp). (A41)
We have
n n n-—n
N = —n'q(q" = Rp) +nq'(g— Rp) = qq'Rp <, - == ) : (A42)
9 q Rp

If C’ is the paraxial image of C, the conjugation formula gives (n'/q’) = (n/q) + [(n’ —
n)/Rp| and 9 = 0, so that eventually ay; = 0.

Appendix F. An Alternative Proof of the Radius Magnification Law

In this appendix, we directly deduce the radius magnification law (refracting sphere)
from conjugation formulae for vertices and curvature centers. We use notations of
Sections 7.1.3 and 7.1.7. Since 2 and (2’ are conjugates, and since C and C’ are also conju-
gates, we have
/

nWoon_ n—-mn_n n

d d Rp 4 gq°

(A43)

The lateral magnification between 2 and (' is m, = nd’'/n’d, and the lateral magnifi-
cation between C and C' is m. = nq' /n'q.
The radius magnification is

R
=2 Ad4
My Ry’ ( )
and we deduce from Equation (A43)
] 1 g /
My = q—d _— d n—mvmc. (A45)

qg—d n’qd:n

Appendix G. Homogeneous Imaging Matrix

Let D (vertex O, radius Rp) be a refracting spherical cap, separating two media of
refractive indices n and n’ (corresponding wavelengths are A and A/, and nA = n')).
Let A (vertex 2, center C, radius R4 = QC) be a spherical emitter in the object space
and let A’ (vertex (', center C/, radius Ry = (2'C’) be its coherent image through the
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refracting surface D. We use notations of Sections 7.1.3 and 7.1.7: d = OQ), d' = OV,
q=0C=d+Ry,q =0C" =d" +Ry.

(i) Composition of transformations. From Equation (A43) we deduce

/ !/
, n'dRp / n'qRp
— = A4
nRp +d(n’ —n)’ 1 nRp +q(n' —n)’ (A46)
and then
Rp — d nRD(RD — d) Rp — l]l - HRD(RD — q) (A47)

~ nRp+q(n' —n)’

We choose coordinates r on A, s on D and ' on A’. According to Equation (39), since
the diffraction distance is D = —d, the transfer from A to D is expressed by choosing the
following reduced space variable on D

1/4 1/4

(Rp —d)(d+ R4 — Rp) s, (A48)

/\2R2Dd(RA +4d)

(Rp —d)(q —Rp)
A2R%dgq

and, according to Equation (37), the reduced variable on D corresponding to the transfer
from D to A’ (the diffraction distance is D = d’) is

1/4 1/4

(Rp —d')(¢" = Rp)
NZRZDd’q’

(A49)

;| (Rp—d')(d —Rp+Ry)
AR A (d + R )

By Equations (A46) and (A47) we conclude that o = ¢’
The angular frequencies on D are ¥ and ¥/, with n¥ = n’¥’ (Snell’s law). The
corresponding reduced angular frequencies are

- RyA(R4 +d) ] 1/4Y B R%dgq 1/411' (450)
| A*(Rp —d)(d+Ra—Rp) | A2(Rp —d)(q — Rp) '
r_ Rpd'(d" + Ryr) _ 1/411” _ Rbd'q' 1/49?/ (A51)
Y= | A2Rp — &)@ —Rp + Ra) | A?(Rp —d")(q' — Rp) '

and, since n¥ = n’'¥’, by Equations (A46) and (A47), we obtain: ¢ = ¢'.
The ray transfer from A to D takes the form

c\ [ cosa sina I
(‘I’) B (— sin & cosa) <¢) ’ (A52)

and the ray transfer from D to A’

p'\ _ [ cosa’ sina’\ [0’
0)- (= =)

Since ¢’/ = ¢ and ¢’ = 9, the composition of the two above ray matrices makes sense
and takes the form

'\ _ [ cosa’ sina’\ [ cosa sina) [p
¢')  \—sina’ cosa’ )\ —sina cosa)\¢
cos(a+a')  sin(a+a)

N (— sin(a +a') cos(a+ oc’)) <f;) : (A54)
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Equation (A54) expresses the ray transfer from an arbitrary emitter A in the object
space to an arbitrary receiver A’ in the image space.
(ii) Imaging. The spherical cap A’ is the coherent image of A is a« +a' = 0 [7].
According to Equation (37) we have (with g = d 4+ R4)
1/4
(Ra+d)(d—Rp+Ry)
A2R%d(Rp —d)

1/4
q(q = Rp)
Ry 0

According to Equation (39) we have (with g’ = d’ + R 4/)

1/4 1/4
! __ (d/ + RA/)(d/ B RD + RA/> r/ — q/(q/ B RD) r/ (A56)
/\’zRi/d’(RD —d’) A’zRE‘,d’(RD —d’) ’
We use Equations (A46) and (A47) and write
2
d*R? (”/>
7/ ~Ro) _ q(q—Rp) [Rp+dn' —mP _qq—Rp) * “P\@
d/(RD —d') d(RD —d) [nRD+q(n’—n)]2 d(RD —d) - n' 2
#1(5)
quZ q— RD
We use the radius magnification law between A and A’
Ry ndq
my = R, = qu (A58)
and obtain . o
1 q(g—Rp) n"d" 1 g(q—Rp) (A59)

A2R%, d'(Rp —d')  n*d™* A2R% d(Rp —d)’

Finally, since ¥’ = myr (m, is the lateral magnification at vertices between A and A’),
we obtain

pr= g T = +p. (A60)

According to Equation (92), we have n'my® = n®, and @ and @' are colinear.
Then ¢ and ¢’ are colinear. Since ¥’ = myr, we also have n'r’ -+ @ = nr. @, and from
Equations (35) and (36) we deduce n’Ap’ - ¢' = nAp - ¢. From n’A’ = nA and from
p' = +p, and since ¢’ and ¢ are colinear, we conclude that ¢’ = +¢. (More precisely, we
have ¢' = ¢, if p' = p,and ¢' = —¢,if p' = —p.)
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