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1. Introduction

All everyday human activities give rise to signals that carry a certain type of informa-
tion about the systems that generated them. These signals are bounded functions that are
collected to be studied, transmitted and manipulated in order to extract the information
they carry. Discrete-Time Signal Processing (DTSP), also called Digital Signal Processing,
is a set of mathematical and engineering techniques that allow the processing (collection,
study, analysis, synthesis, transformation, storage, etc.) of signals performed mainly on
digital devices.

Combining ideas, theories, algorithms and technologies from different quadrants,
the DTSP has not stopped continuously evolving and increasing its already vast field of
applications. This evolution was motivated by the enormous progress of digital technolo-
gies that allow the construction of processors, in general, more reliable and robust than
analog ones and, above all, more flexible. The on-chip implementation of specialized
processors (e.g., FFT) has facilitated the application of mathematical techniques that would
be difficult (or impossible) to perform analogically. The DTSP plays an important role
in communication systems where its mission is to handle signals, both at transmission
and reception, in order to achieve an efficient and reliable flow of information between
source and receiver. However, it is not only in communication systems that we find DTSP
applications. In fact, its field of action has widened and includes areas such as speech,
radar and sonar, seismology, bio-medicine, economics, astronomy, etc. In mathematics, it
has been very useful in the study of functions and in solving differential equations. The
well-known Newton series is very famous.

Mathematically, the DTSP relied on several important tools such as real and complex
analysis, difference equations, discrete-time Fourier and Z transforms, algebra, etc. It bene-
fited from the enormous development of signal theory in the 2nd half of the 20th century
when signal processing techniques reached a sufficiently high degree of development.
However, its origins are much earlier.

In general, we can “date” the beginning of the study of signals to the discovery of
periodic phenomena that led to the introduction of the notions of year, week, day, hour,
etc. With an equal degree of importance, we can consider the theory and representation
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of music made by the Pythagoreans as the first spectral analysis. It is important to note
that they actually made a discrete time-frequency formulation. More recently, we refer
to the discovery and study of the spectrum of sunlight by Newton (1666) and the works
of mathematicians such as Euler, Gauss (who devised the first algorithm for the fast
Fourier transform in 1805), Fourier (who created the basis for spectral analysis), Sturm
and Liouville. These works had direct implications on the way of studying signals in the
frequency domain, which did not cease to evolve and gain importance from the 1940s
thanks to the works of the theoretical field of stochastic processes (Wiener and Kolmogorov):
correlation, adapted filter, Wiener filter, etc. [1,2], which are notions that would become the
basis of modern developments in spectral analysis (Tukey, Parzen, Akaike, Papoulis, and
Burg). It was also Tukey who, with Cooley, rediscovered the algorithm that allowed the
implementation of the FFT in 1965, which was a milestone in signal analysis.

The difference equations, taking the form of the ARMA (autoregressive-moving av-
erage) model, had a rapid increase in importance due to the works of Box, Jenkins, Op-
penheim, Kailath, Kalman, Robinson, Rabiner, and many others in the 1980s of the 20th
century [3–8]. We can place here the real beginning and affirmation of DTSP. Nevertheless,
the discovery of computers was perhaps the biggest impulse given to the DTSP by the
possibility of discrete implementation of processor devices, which was previously made
exclusively with analog technology and to perform simulations that allow to predict, with
great accuracy, the behavior of a given system. This led to an autonomization of the theory
of “Discrete Signals and Systems” that became an independent branch, leading to alter-
native technological solutions based on digital design and realization devices [3,4,8–15].
Although the main developments were based on difference equations, the true origins were
not forgotten and motivated some attempts to model and identify systems based on the
delta difference [16–20].

The emergence of fractional tools has opened new doors to the modeling and esti-
mation of everyday systems that were known to be best described by fractional systems.
However, this does not mean that there was a coherent theory of fractional systems in
discrete time. Probably the first attempt was made in [21], but the systems described are
not really fractional, although they use fractional delays. In the last 20 years, many texts
have been published on fractional differences and derivatives in discrete time, leading to
different views of what fractional systems in discrete time are and how they are charac-
terized [22–28]. The purpose of this paper is exactly to describe the mathematical basis
underlying the main formulations. We introduce differences through a system approach to
highlight the fact that the required definition must be valid for any function regardless of its
support. This allows for a broader scope. On the other hand, it is important to make a clear
distinction between time flow from left to right (causal case) or the other way around (anti-
causal). Under normal conditions, they should not be mixed. To this end, we define “time
sequence” as an alternative to “time scale”, avoiding the confusion that the latter might
introduce. We will proceed with the definitions of nabla (causal) and delta (anti-causal)
differences and enumerate their main properties. We proceed with the introduction of other
formulations, such as discrete-time, bilateral, tempered differences, and the completely
new bilinear differences. These differences are “invariant under translations”. We propose
new “scale-invariant differences” that are connected to Hadamard derivatives. For all the
presented differences, ARMA-type difference equations are proposed.

Given the importance of discrete signals inherent in this work, we review the classical
sampling theorem valid for the case of shift-invariant systems [14,29–32] and another
one suitable for scale-invariant systems, but they different from similar studies in the
literature [33,34].

The paper is outlined as follows. In Section 2, we present several mathematical tools
useful in the paper and clarify some notions. The sampling theorems are introduced here.
Section 3 is used to make a historical overview of the difference evolutions, both continuous
and discrete-time. The different approaches are described. The problems created by some
definitions are criticized in Section 4. The main contributions in this paper are presented
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in Section 5 where several shift-invariant differencers and accumulators, say: nabla, delta,
two-sided, tempered, and bilinear, are introduced. For all the definitions, continuous-time
and discrete-time versions are presented. The scale-invariant differences are introduced
and studied in Section 6. All the described differences are suitable for defining ARMA-type
linear systems. This is exemplified in Section 7. Finally, we present a brief discusion.

2. Preliminaries
2.1. Glossary and Assumptions

In the evolution of the DTSP, several notions have been introduced without retaining
a clear meaning. In fractional calculus, there is considerable confusion in the terminology
adopted having, in some cases, the same name for different operators. Here, we try to
clarify the meaning of some terms in order to avoid confusion. Therefore, we start with
some fundamental terms. Later, we will introduce others, which are needed in the rest of
the document [35].

• Anti-causal [36]
An anti-causal system is causal under reverse time flow. A system is anti-causal if the
output at any instant depends only on values of the input and/or output at the present
and future time instants. The delta derivative is an example of an anti-causal system.

• Anti-difference
The operator that is simultaneously the left and right inverse of the difference will be
called anti-difference.

• Backward
Reverse time flow—from future to past.

• Causal operator or system [37–39]
A system is causal if the output at any instant depends only on the values of the input
and/or output at the present and past instants. The nabla derivative is an example of
a causal system.

• Forward
Normal time flow—from past to future.

• Fractional
Fractional will have the meaning of a non-integer real number.

• Scale-invariant system
A system is scale-invariant if a stretching or shrinking in the input produces the same
stretching/shrinking in the output. It is described by the Mellin convolution [33,40]

y(τ) = x(τ) ? g(τ) =
∫ ∞

0
x
(

τ

η

)
g(η)

dη

η
.

• Signal
Bounded function that conveys some kind of information.

• Shift-invariant system
A system is shift-invariant if a delay or lead in the input produces the same delay/lead
in the output. It is described by the usual convolution [37]

y(t) = x(t) ∗ g(t) =
∫ +∞

−∞
x(t− η)g(η)dη.

• System [37,38]
Any operator that transforms signals into signals. We will often use the terms system
and operator interchangeably.

2.2. Some Mathematical Tools

Traditionally, the delta symbol is used for the so-called “forward difference” and it
comes from a long time ago [41], while nabla is attached to the “backward difference” [42],
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in contradiction with the time flow. However, they are generalized for any order through
the same way: the binomial theorem [43]. Let α ∈ R−Z−. Then,

(1− z)α =
∞

∑
k=0

(−1)k
(

α

k

)
zk, |z| < 1. (1)

We can extend it for negative integer values of α through the Pochhammer symbol.
The binomial coefficients (

α

β

)
=

Γ(α + 1)
Γ(α− β + 1)Γ(β + 1)

assume a central role in the theory we will develop in the following. They enjoy interesting
properties [36,44]:

• ∣∣∣∣(α

β

)∣∣∣∣ ≤ A
βα+1 , for β→ ∞,

with A > 0.
• (

α

n

)
=

Γ(α + 1)
Γ(α− n + 1)n!

= (−1)n (−α)n

n!
, n ∈ N,

where (a)n is the Pochhammer symbol for the rising factorial

(a)n =
n−1

∏
k=0

(a + k) =
Γ(a + n)

Γ(a)
, with (a)0 = 1,

generalized as

(a)β =
Γ(a + β)

Γ(a)
, with (a)0 = 1.

• (
α

n

)
= (−1)n

(
n− α− 1

n

)
.

• (
α + n

n

)
=

(
α + n

α

)
.

•
∞

∑
m=0

(
α

m

)(
β

n−m

)
=

(
α + β

n

)
.

• The falling factorial is represented by [42]

(a)(n) =
n−1

∏
k=0

(a− k) =
Γ(a + 1)

Γ(a + 1− n)
, with (a)0 = 1,

so that (
α

n

)
=

(α)(n)

n!
, n ∈ N,

and
(a)(n) = (−1)n(−a)n.

It is generalized by

(a)(β) =
Γ(a + 1)

Γ(a + 1− β)
, with (a)0 = 1,
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and
(a)(β) = (a− β + 1)β.

The (bilateral) Laplace transform (LT) is given [45]:

L[h(t)] = H(s) =
∞∫
−∞

h(t)e−st dt, s ∈ C, (2)

that is assumed to converge in some non-void region (region of convergence—ROC) which
may degenerate into the imaginary axis, givig rise to the Fourier transform (with s = iω.)
We define the inverse LT by the Bromwich integral

h(t) = L−1F(s) =
1

2πi

a+i∞∫
a−i∞

H(s)est ds, t ∈ R, (3)

where a ∈ R is called abscissa of convergence. Frequently, we denote by γ the integration path.
In a similar way, we define the Mellin transform (MT) by [40]

M[h(t)] = H(v) =
∞∫

0

h(t)t−v−1 dt, v ∈ C, (4)

with an inverse similar to (3)

h(t) =M−1H(v) =
1

2πi

∫
γ

H(v)tv dv, t ∈ R+. (5)

For the discrete-time case, we define the Z transform [14,36] by

Z [ f (n)] = F(z) =
+∞

∑
n=−∞

f (n)z−n, z ∈ C, (6)

with the inverse given by the Cauchy integral

f (n) =
1

2π i

∮
c

F(z)zn−1dz, (7)

where c is the unit circle. With the change of variable z = eiω , −π < ω ≤ π, we obtain the
discrete-time Fourier transform.

2.3. On Time Sequences

A powerful approach to the continuous/discrete unification and generalization was
introduced by Aulbach and Hilger through the calculus on time scales [46,47]. These are
non-empty closed subsets T of the set R of real numbers. Let t be the current instant.
Using the language of the time-scale calculus, the previous next instant is denoted by ρ(t).
Similarly, the next following point on the time scale T is denoted by σ(t). One has

ρ(t) = t− ν(t), σ(t) = t + µ(t),

where ν(t) and µ(t) are called the graininess functions. These functions can be used to
construct any time sequences. However, we will not continue this way.

Remark 1. The designation “time scale” is misleading, since the word “scale” is associated to a
notion of stretching or shrinking, frequently having a relation to a speed or a rate. For example,
consider a function f (t) defined on R and a parameter a > 0, which allow us to define a new
function g(t) = f (at). We modified the way that the flux of information is delivered. An interesting
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example is given by the classic turntables where we are able to switch from a rotation speed to another
one. This parameter is usually called scale. Therefore, we propose here the use of the designation
time sequence.

In this work, we will consider time sequences T defined by a set of discrete instants tn,
n ∈ Z, and by the corresponding graininess functions. We define a direct graininess [48,49]

tn = tn−1 + νn, n ∈ Z,

and reverse graininess
tn = tn+1 − µn, n ∈ Z,

where we avoid representing any reference instant t0. These definitions of “irregular”
sequences are suitable for dealing with some of the most interesting time sequences we
find in practice. However, we have some difficulties in doing some kind of manipulations
that are also very common. Let us consider a time sequence defined on R and unbounded
when t→ ±∞. For example, a time sequence defined by

tn = nT + τn, n ∈ Z, T > 0, |τn| <
T
2

,

which we can call an “almost linear sequence” [50]. However, in the most interesting
engineering applications, we consider regular (uniform) sequences

T = hZ = {. . . ,−3h,−2h,−h, 0, h, 2h, 3h, . . . },

with h ∈ R+.

Remark 2. We can consider a slided time sequence by a given value, a + hZ, a < h, but this
corresponds to introducing another parameter that we cannot determine due to the relativistic
character of any time sequence. In other words, we need another time sequence not depending on a
to fix it. However, this may be an acceptable procedure for studying continuous-time functions.

Now, consider a power transformation of a time sequence:

θ = qt.

We generate a new (scale)–sequence which is in R+. In particular, we will obtain sequences
such as

θn = θn, n ∈ Z, θ > 0,

or
θn = θn−1 · τn, n ∈ Z, τn > 0.

We will use these sequences when dealing with scale-invariant differences.

2.4. On the Sampling

Let f (t), t ∈ R be a continuous-time bounded function. The discrete-time function
obtained from f (t) by retaining the values at a set of pre-specified instants is the sampled
function, f (tn), n ∈ Z. The procedure for obtaining such a function is called ideal sampling.
From an operator (system) point of view, this is obtained with the help of the comb
distribution. Although we can consider irregular combs, we will not do it here [50]. We
intend to use uniform time sequences that lead us to the usual comb. This is a periodic
repetition of the Dirac delta function [51–54]. Here, we state it in the following format.

c(t) =
+∞

∑
n=−∞

δ(
t
T
− n), (8)
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where T is the sampling interval. The Fourier transform (FT) of this function is also a
periodic comb.

FT

[
+∞

∑
n=−∞

δ(t− nT)

]
=

2π

T

+∞

∑
m=−∞

δ(ω−m
2π

T
). (9)

The comb is called the ideal sampler because, when multiplying a given function, x(t), by a
comb, c(t), it retains the samples of the original function, giving rise to a modulated comb:

xs(t) = x(t) · c(t) =
+∞

∑
n=−∞

x(t)δ(
t
T
− n) = T

+∞

∑
n=−∞

x(nT)δ(t− nT). (10)

If x(t) has a jump at t = n0T, we use the half sum of the lateral limits x(n0T) = x(n0T+)+x(n0T−)
2 ,

which is in agreement with the inverse Laplace and Fourier integrals. Let X(s) be the LT of
x(t). Then, the LT of xs(t) is given by [28]

Xs(s) = FT[x(t) · c(t)] =
+∞

∑
m=−∞

X(s− im
2π

T
), (11)

stating the well-known phenomenon: sampling in a given domain implies a repetition in
the transform domain, meaning that the sampling operation produces a repetition of the
transform in parallel to the real axis in strips of width 2π

T . We observe here the reason for
including T in (11): the term corresponding to m = 0 is X(s). The study we performed was
based on the Laplace transform, but it can be performed also with the Fourier transform.

The choice of T depends on the objectives of the work at hand. In general, we can
choose any value except if we have in mind the recovery of X(s) from Xs(s). In such
a case, we can impose that X(s) and Xs(s) have the same poles in the strip defined by
|Im(s)| < π

T . However, the most known approach is the Whittaker–Kotel’nikov–Shannon
sampling theorem [12,14,29–32]

Theorem 1. If a function is bandlimited to [−π
T , π

T ], it is completely determined by giving its
ordinates at a series of points spaced T seconds apart [29–31]:

f (t) =
∞

∑
k=−∞

f (kT) sinc(
t
T
− k), (12)

where

sinc(t) =
sin(πt)

πt
,

with sinc(0) = 1 being the so-called sinc function that is the impulse response of the ideal lowpass
filter [14].

Consider the instant a + nT, n ∈ Z, γ = a/T < 1 and denote f (nT) by fn. We obtain

f (a + nT) =
∞

∑
k=−∞

f (kT) sinc(
a
T
+ n− k)

and

fn+γ =
∞

∑
k=−∞

f (kT) sinc(γ + n− k),

that states what we can call fractional translation, which allows expressing unknown
intermediate values in terms of the uniformly spaced samples. The reverse can also be
performed [21].

The Whittaker–Kotel’nikov–Shannon sampling theorem is based on the usual Fourier
transform that has a relation with the shift-invariant systems, since it is defined in terms
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of the eigenfunctions of such systems: the exponentials. To obtain a similar theorem for
scale-invariant systems, we start from the Fourier–Mellin transform that we define by:

F(iν) =
∫ ∞

0
f (τ)τ−iν−1dτ, (13)

with inverse
f (τ) =

1
2π

∫ ∞

−∞
F(iν)τiνdν, (14)

obtained from (4) and (5) by letting v = iν.
Let Q ∈ R+. As above, consider a bandlimited scale function as the one verifying

F(iν) = 0, |ν| > π

Q
,

that has an associated Fourier series

F(iν) =
∞

∑
k=−∞

Fke−ikQν,

with

Fk =
Q
2π

∫ π
Q

− π
Q

F(iu)eikQudu = Q f (ekQ), k ∈ Z.

We have successively

f (τ) =
1

2π

∫ π
Q

− π
Q

∞

∑
k=−∞

Fke−ikQντiνdν,

=
∞

∑
k=−∞

Fk
1

2π

∫ π
Q

− π
Q

eiν(ln(τ)−kQ)τiνdν,

=
∞

∑
k=−∞

Fk

sin
[

π
Q (ln(τ)− kQ)

]
π(ln(τ)− kQ)

,

=
∞

∑
k=−∞

Fk

sin
[
π
(

ln(τ)
Q − k

)]
Qπ( ln(τ)

Q − k)
.

Therefore, the scale-invariant sampling theorem reads

Theorem 2. Let f (τ), τ ∈ R+ be a bandlimited scale function. It is completely determined by
giving its ordinates at a series of exponentialy spaced points

f (τ) =
∞

∑
k=−∞

f (ekQ) sinc
(

ln(τ)
Q
− k
)

. (15)

From this and through a comparison with Theorem 1, we conclude that the scale-
invariant comb is given by:

s(τ) =
∞

∑
k=−∞

δ

(
ln(τ)

Q
− k
)

, (16)

that represents a sequence of impulses located at the points in the set Q : τ = ekQ, k ∈ Z.
These results, slightly different from similar results existing in the literature [33,34], will be
used later in the corresponding difference definitions.

These two sampling theorems require that the functions have Fourier transforms with
bounded support. However, this may not happen in practice, originating what is known
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by “aliasing”, and several procedures exist to alleviate its effect [14,29–31]. If we do not
want to recover the continuous-time function, the sampling theorems give us a chance to
reduce the losses in the continuous-to-discrete conversion.

Remark 3. Traditionally, we simplify the notation by writing fn = f (nT) and
fn+γ = f ((n + γ)T). We will adopt this procedure. For the case stated in (15), we set q = eQ and
fqn = f (enQ).

3. Historical Overview
3.1. Euler Procedure

Newton and Leibniz introduced their (different) approaches to infinitesimal calculus in
the 17th century. Leibniz’s approach was based on generalizations of sums and differences.
In particular, his definition of derivative was formulated in terms of limits of increments

f ′(t) =
d f
dt

= lim
h→0

f (t)− f (t− h)
h

f ′(t) =
d f
dt

= lim
h→0

f (t + h)− f (t)
h

. (17)

Euler (1768) took these formulae, removed the limit operation and used the “incremen-
tal quotients” as approximations of the derivative in solving differential equations on a
set, T, of pre-defined values of t, T = tn, n = 0, 1, 2, · · · . With this procedure, he was
led to discrete functions, f (tn). It was the birth of the “difference equations”, and the
procedure is the currently known Euler method. So, the difference equations gained the
protagonism that belonged to the differential equations. This procedure originated the
“numerical analysis” in mathematics and, in the 20th century, the discrete-time signal
processing [13–15,36,37,55,56] that is a well established scientific area being responsible for
important realizations in our daily life.

The former procedure, retaining the incremental ratio, was not completely aban-
doned; it continued being important as an intermediate step to obtain difference equations
[14], and it was used in some applications [17,18]. The modern approach to differential
discrete equations dates back to Hilger’s works on looking for a continuous/discrete
unification [46,47,57].

To give a more precise idea and clarify the nomenclature, consider the differential equation

d f (t)
dt

+ a f (t) =
dg(t)

dt
+ bg(t),

where f (t) and g(t) are real functions of real variables and a, b ∈ R. Using the first incre-
mental ratio

∇ f (t) =
f (t)− f (t− h)

h
, (18)

in the equation, we obtain

∇ f (t) + a f (t) = ∇g(t) + bg(t), (19)

that leads to
(1 + ah) f (t)− f (t− h) = (1 + bh)g(t)− g(t− h), (20)

that is a difference equation. Note that only present and past values are involved: it
represents a causal system. With a similar procedure for the other derivative

∆ f (t) =
f (t + h)− f (t)

h
, (21)

we obtain
∆ f (t) + a f (t) = ∆g(t) + bg(t), (22)
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that gives
f (t + h)− (1 + ah) f (t) = g(t + h)− (1 + ah)g(t), (23)

that is again a difference equation but involving only present and future values: anti-causal.
If we sample the function at a given discrete time grid T : tn, n ∈ Z, (19) and (22)

become discrete-time differential equations, while (20) and (23) transform into discrete-time
difference equations.

3.2. Differences and Fractional Calculus

A fractional difference was introduced for the first time in 1832 by Liouville [58,59]
who used it for defining a fractional derivative. His first formula, derived directly to be a
generalization of the delta derivative, assumed the form:

∆̄α
L f (t) = h−α

∞

∑
k=0

(−1)k
(

α

k

)
f (t + (α− k)h). (24)

This formula constituted a second step into defining fractional-order derivatives. However,
Liouville recognized that such a formula was not exactly what he was looking for and
introduced also another one, much more interesting, that we can write as

∇α f (t) = h−α
∞

∑
k=0

(−1)k
(

α

k

)
f (t− kh). (25)

He observed that if f (t) = est, t ∈ R, the summation was convergent if Re(s) > 0. This
formula was the base of the fractional derivative definition used by Grünwald [60] and
Letnikov [61,62]. It is important to note that the Liouville definition was assumed to be valid
for functions of exponential type and defined on R or C, while Grünwald and Letnikov
worked on [t0, t] ∈ R.

In the study of operators based on his operational methods, Heaviside obtained
the same result and made a study of the binomial series which he generalized [43,63,64].
This approach was retaken later by E. Post (1930) [65] and by P. Butzer and U. Westphal
(1974) [66]. In addition, in 1974, J. Diaz and T. Osier obtained a particular case of (24) with
h = 1 [67]. In a later section, we will perform the analysis of such a definition.

It is important to highlight that while searching for a definition convergent for Re(s) < 0,
Liouville arrived at the delta-type difference

∆α
L f (t) = (−h)−α

∞

∑
k=0

(−1)k
(

α

k

)
f (t + kh). (26)

However, this route to fractional calculus never gained the favor of the vast majority of
researchers, so it was basically considered as an approximation and used in numerical
methods. Very interesting are the integral representations for (25) and (26) [25,67] and the
two-sided differences [68,69]. The approach and applications introduced by V. Tarasov are
also very important [23,24].

Due to its (bad) influence, we are going to study the “difference” (24) that states the
first attempt Liouville made to define a fractional derivative using an infinite summation.
It seems that in an independent way, Diaz and Osler proposed as a delta difference the
expression [67]

∆α
D+O f (t) =

∞

∑
k=0

(−1)k
(

α

k

)
f (t + α− k). (27)

As it is easy to observe, this formula, while agreeing with the requests in the positive integer
order, fails in the fractional order, since it uses simultaneously past and future values. This
fact has implications in the discrete-time differences deduced from it.
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To make a fair analysis, let us apply the LT to (24). We obtain

F∆α
D+O

(s) = eαs
∞

∑
k=0

(−1)k
(

α

k

)
e−ksF(s). (28)

The series converges only for Re(s) > 0, which implies causality, contrarily to what we
were expecting, since the delta difference should be anti-causal. Therefore, the formula (24)
does not make sense, and not good consequences should be expected from it.

3.3. Discrete-Time Differences

A less likely appearance of a discrete difference happened in a different context, the
summation of series using Cesàro’s method [43,70,71], where S. Chapman introduced a
fractional delta discrete difference as being given by

∆α
Cvn = lim

p→∞

p−n+1

∑
k=0

(−1)k
(

α

k

)
vn+k, n ∈ N, (29)

that was considered by G. Isaacs as an alternative to Diaz and Osler’s approach, which
was mainly due to the validity of the associativity of orders [72]. However, in 1962, Isaacs
proposed another formulation reading

∆N
I vn =

∞

∑
k=n

(
k− n− N − 1

k− n

)
vk, n ∈ N. (30)

It is important to highlight that Isaacs’ formulae express anti-causal differences as we
should expect. Among several interesting results, he presented what can be considered a
discrete Leibniz rule

∆N
I (vnwn) =

∞

∑
k=N

(
N
k

)
∆k

I vn∆N−k
I wn+k.

Meanwhile, discrete signal (time-series) analysis, which has benefited from major
developments since World War II, received a spectacular boost with the publication of the
landmark book Time Series Analysis: Forecasting and Control by George E. P. Box and Gwilym
M. Jenkins [4]. Here, the authors presented a coherent and mathematically well-founded
study of the ARMA models and their evolution, the Autoregressive-Moving Integrated
Average models (ARIMA) [10,73]. The “integrated” factor pointed already to what was
going to happen next: the insertion of a “fractionally integrated” term, leading to the
ARFIMA models [74–80]. To the formalization of this new model, the concept of fractional
differencing was introduced through (1) [74,75]

(1− z−1)α =
∞

∑
k=0

(−1)k
(

α

k

)
z−k =

∞

∑
k=0

(−α)k
k!

z−k,

for |z| > 1, meaning that

∇αvn =
∞

∑
k=0

(−α)k
k!

vn−k, n ∈ Z, (31)

that corresponds to make h = 1 in the nabla (Liouville–)Grünwald–Letnikov difference.
These two formulae were also introduced earlier by Cargo and Shisha in the study of the
zeros of polynomials [81]. The fractionally differenced and integrated models have gained
roots and continue being used today [10,15,82]. In engineering, namely in signal processing,
a fractional generalization of the ARMA model has been proposed [25,27].
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A brief glance at (31) may give us an impression of repulsion due to the summation
to infinity. However, such an impression is incorrect, because if the function is null for
n < n0 ∈ Z, the summation becomes finite. For example, if vn = 0, n < 0,

∇αvn =
n

∑
k=0

(−1)k (−α)n

n!
vn−k, n ∈ N. (32)

However, H. Gray and N. Zhang did not notice this fact and, in 1988, proposed an alterna-
tive through a new definition of the fractional difference. They had in mind to preserve
many properties of fractional derivative definitions, namely the exponent law and the
important Leibniz rule. To obtain it, they started from the summation formula that they
repeated using the Cauchy procedure to obtained the n-fold summation

∇−N f (t) =
1

Γ(N)

t

∑
k=k0

(t− k + 1)N−1 f (k).

This definition can be extended to N ∈ Z−0 . It is important to refer that such a formula was
already known from the theory of Z transform [9], since it corresponds to the inverse of a
multiple pole at the point z = 1 in the complex plane (discrete integrator or accumulator).
Gray and Zhang were led to the following definition:

Let α ∈ R and f (t) are defined over the set T = k0 − N, k0 − N + 1, · · · , 0, 1, · · · , t ∈ Z.
The α-order summation over T0 = k0, k0 + 1, · · · , t ∈ Z is defined by

∇−α f (t) =
∇N

Γ(α + N)

t

∑
k=k0

(t− k + 1)N+α−1 f (k), (33)

where N = max 0, N0 ∈ Z such that 0 < α + N < 1. The α-order derivative is defined by
the substitution −α→ α. This definition is coherent with the usual integer-order difference.
It is interesting to note that the above definition mimics the Riemann–Liouville definition
of fractional derivative [36,44,83]. It can be shown that, setting N − 1 < α ≤ N ∈ Z+

0 ,
we obtain

∇α f (t) =
∇N

Γ(N − α)

t

∑
k=k0

(t− k + 1)N−α−1 f (k)

=
∇N

Γ(N − α)

t−k0

∑
k=0

(k + 1)N−α−1 f (t− k).

(34)

Consider the N = 0 case and note that

(k + 1)−α−1 =
Γ(−α + k)
Γ(k + 1)

= (−1)k
(

α

k

)
meaning that (33) coincides with (26), provided that we remove the constraint on the
domain of f (t) and let it be defined over Z. On the other hand, we can prove that if N > 0,

∇N
(

α

k

)
=

(
α + N

k

)
.

In such a case, we can write, for any α

∇α f (t) =
∇N

Γ(N − α)

∞

∑
k=0

(k + 1)−α−1 f (t− k)

=
∞

∑
k=0

(−1)k
(

α

k

)
f (t− k).

(35)
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This last expression coincides with (26) when h = 1. We can conclude that the work of H.
Gray and N. Zhang shows a different but equivalent to Liouville’s and Chapman’s way
to introduce fractional differences. They presented the causal (nabla) version, but it is not
very difficult to obtain the corresponding anti-causal (delta). It is important to remark that
they introduced, for the first time, the discrete-time Riemann–Liouville-type difference.
The Caputo-type difference was introduced later for both nabla and delta cases [84–86].
Meanwhile, K. Miller and B. Ross [87] presented an approach to delta difference that we
will consider next. After these publications, it seems there existed a time gap of almost
11 years without any novelty on the subject excepting the revision of the difference concepts
having in consideration the notions and unification introduced by Hilger [46,47] and the
discrete-time approximations to continuous-time derivatives by I. Podlubny [88]. In [57],
Bohner and Peterson revised the concepts of differences and derivatives in terms of the
notion of time scale.

4. A Critical View of Some Aspects Related to Differences
4.1. A “Fractional Delta Difference” that Is Not a Delta Difference

Concerning the fractional difference, only in 2007, F. Atici and P. Eloe returned to the
subject by considering the delta difference first [89,90] and the nabla later [91]. Although
they introduce a similar formulation to Gray and Zhang’s, it seems they were unaware of it,
at least initially. They intended to follow closely the continuous-time fractional derivative
definitions. The starting point was the definition of Miller and Ross, which [87] they
recovered [89,90]. However, this definition was based off the continuous-time difference
of Diaz and Osler that we studied above. These works were followed by many others in
the last 15 years. This had, as a consequence, a parallel introduction of several similar but
different formalizations, even from the same author, of both nabla and delta differences,
as the Riemann–Liouville-like and Caputo-like formulations, their compositions, and
difference equations [22,84,85,89,90,92–103].

As referred, the approach of Atici and Eloe started by using the definition of Miller
and Ross for the fractional discrete delta sum given by

(
∆−α

a f
)
(t) =

1
Γ(α)

t−α

∑
u=a

(t− σ(u))(α−1) f (u) (36)

where α > 0, σ(t) = t + 1, and t = a + α + k, k = 0, 1, 2, · · · , N − 1. The function f (t) was
defined in Ta = a, a + 1, a + 2, · · ·. As shown by D. Mozyrska [99], it can assume the form

∆−α f (t) =
k

∑
m=0

(
k−m + α− 1

k−m

)
f (a + m) (37)

For the nabla difference, again in disagreement with Gray and Zhang, they proposed
[90,91,104]

∇−α f (t) =
1

Γ(α)

t

∑
u=a

Γ(t− u + α− 1)
Γ(t− u)

f (u)

As above, set u = a + m and t = a + 1 + k to obtain

∇−α f (t) =
1

Γ(α)

k

∑
n=0

Γ(k−m + α− 1)
Γ(k−m + 1)

f (a + m) =
1

Γ(α)

k

∑
n=0

Γ(n + α− 1)
Γ(n + 1)

f (a + k−m).

For other versions, see [84,92,95,98,104,105].

Remark 4. Strangely, the domain of the above delta sum is not Ta but Ta+α. This means that
the value at a given instant depends on past values, which is a causal behavior contrary to what
we where expecting, since it is assumed to be a delta difference, which is anti-causal. In addition,
most applications to engineering, economics, or statistics involve discrete-time systems where
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all the components, expressed in terms of sums and differences, are defined on the same time
sequence. However, a lot of people accepted the formulation of Miller and Ross as correct for
the delta difference with corresponding results. In fact, similar situations are repeated in other
formulations [84,92,95,98,104,106]. This has a very important consequence: it is impossible to
define ARMA-type equations using these differences.

Example 1. To have an idea of the incorrectness of the delta difference definition, assume that a = 0
and f (t) = e−t, t ∈ Z. Let us compute three cases:

1. Order 1 difference
∆ f (t) = e−t−1 − e−t = (e−1 − 1)e−t.

For a given t, the difference depends on the present and future values.
2. Order −1 difference

∆−1 f (t) = −e−t − e−t−1 − e−t−2 · · · = −e−t
∞

∑
n=0

e−n = (e−1 − 1)−1e−t.

Again, for a given t, the −1-order difference (sum) depends on the present and future values.
3. Order −1/2 difference

with t = 1/2 + k, we have

∆−1/2 f (t) =
k

∑
m=0

(
k−m− 1/2

k−m

)
e−m

= e−k
k

∑
m=0

(
n− 1/2

n

)
en

= e−t+1/2
k

∑
m=0

(−1)m
(
−1/2

m

)
em

= e−(t+1/2) + 1/2e−(t−1/2) − 1
8

e−(t−3/2) · · ·

Contrarily to the above examples, the −1/2-order derivative depends on one future value
and infinite past values. Therefore, an operator that we were expected to be anti-causal is
essentially causal.

4.2. One for All or One for Each

In some discrete-time formulations, as well as in the usual continuous-time fractional
calculus, it is current to attach to a given difference/derivative definition the support
of the function at hand. This means that for any function, there is a particular differ-
ence/derivative definition. It is a one to one case. This was the procedure used by Gray
and Zhang. However, it creates difficulties, since we cannot add functions and differ-
ences/derivatives with different durations. This is strange because it is assumed that the
differences/derivatives are linear operators.

Alternatively, we can define general differences/derivatives over the whole possible
domain (R or Z) and only particularize at the moment of the computation. To understand
the situation, consider two functions

f (n) =


0 n > a
n a ≤ n ≤ b
0 n > b.

g(n) = n, a ≤ n ≤ b.

At first glance, it looks like they are the same. However, they express different situations:
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1. f (n) expresses a situation where there is a past and a future. It is like some system
that exists, is in stand-by first, acts for some time, and returns to the previous state. It
is the situation corresponding to many physical, biological, and social systems.

2. g(n), on the contrary, has no past and will have no future: something is born, lives for
some time and disappears.

Assume that we want to define and compute a Z transform of such functions. In the
first, we use the usual definition

F(z) =
∞

∑
n=−∞

f (n)z−n, (38)

that gives

F(z) =
b

∑
n=a

nz−n.

On the other hand, for g(n), we have to make a new definition

aGb(z) =
b

∑
n=a

nz−n, (39)

valid only for all the functions defined in the interval a ≤ n ≤ b. However, F(z) and aGb(z)
are complex variable functions analytic in the same region and to which corresponds the
same inversion integral that leads to the same inverse. In fact, the Cauchy integral

h(n) =
1

2πi

∮
c

H(z)zn−1dz

defines a function h(n) on Z. This is interesting: the inverse transform imposes an extrapo-
lation of g(t) so that its domain is Z, although its support is a ≤ n ≤ b. This means that
we should use (38) as a definition of Z transform and consider functions of the type f (n),
even if its support is finite. Therefore, we do not need to specify the support in defining
differences, derivatives, and transforms.

4.3. The Riemann–Liouvile and Caputo-like Procedures

In many works and due to the influence of traditional fractional calculus, it has
become commonplace to use Riemann–Liouvile and Caputo-type procedures. These,
instead of doing a direct difference computation, use a convolution between an integer-
order difference and a fractional sum. However, while being mathematically correct, it is
not a suitable way of doing computations, since

1. We are increasing unnecessarily the number of operations; this is very important in
computational implementations, because we are increasing the numerical error [14,107];

2. We throw most of the computational burden on negative-order binomial coefficients
that behave asymptotically like 1

n−α+1 , so decreasing very slowly or even increasing.

In continuous fractional calculus, the Riemann–Liouville integral becomes singular
when the order is positive (derivative case), as Liouville recognized in his first paper [108],
having proposed both procedures that transfer the singular behavior to the derivative of
integer order. However, such a difficulty does not appear in discrete-time formulations,
since the computational burden falls heavily on the binomial coefficients, directly or other-
wise, which can be computed through the Pochhammer symbol that is always non-singular.
Therefore, there is neither particular reason nor advantage in using those procedures.
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5. Shift-Invariant Differencers and Accumulators
5.1. Causal

Consider two bounded piecewise continuous functions f (t), g(t), t ∈ R with
f (−∞) = g(−∞) = 0. For simplicity, assume they are of exponential order so that we
assure they have Laplace transforms, F(s), G(s), s ∈ C, analytic over suitable ROC.

Definition 1. Let us define a nabla or causal differencer as a linear system whose output, at a given
instant, is the difference between the input at that instant and at a previous one:

g(t) = f (t)− f (t− h), (40)

where h > 0 is the delay.

The output will be called nabla difference and represented by ∇ f (t). From this defini-
tion, we can draw some conclusions:

1. It is a moving-average system, which is sometimes called a “feedforward” system;
2. Its impulse response is given by:

φ(t) = δ(t)− δ(t− h),

so that
g(t) = φ(t) ∗ f (t),

implying that
G(s) = (1− e−sh)F(s). (41)

3. The transfer function is
H(s) = 1− e−sh, (42)

having C as the ROC.
4. We can associate in series as many systems as we can in such a way that the output of

the (n− 1)-th system is the input of the next one, n-th

fn(t) = gn−1(t), g0(t) = f (t)

and
gn(t) = fn(t)− fn(t− h) = gn−1(t)− gn−1(t− h).

The transfer function of the association is given by

G(s) =
[
1− e−sh

]n
F(s),

that inverted gives the n-th order nabla difference

∇n f (t) =
n

∑
k=0

(−1)k
(

n
k

)
f (t− kh). (43)

Now, let us return back to (40) and invert the role of the functions: assume that the input is
g(t) and the output is f (t) (feedback system)

f (t) = f (t− h) + g(t)

that can be reused to give:

f (t) = g(t) + g(t− h) + f (t− 2h) = g(t) + g(t− h) + g(t− 2h) + f (t− 3h) = · · ·
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It is not hard to see that

f (t) = ∇−1g(t) =
∞

∑
n=0

g(t− nh), (44)

with LT

F(s) = G(s)
∞

∑
n=0

e−nsh =
[
1− e−sh

]−1
G(s), Re(s) > 0. (45)

Relation (44) shows why this operator is called an accumulator or sum. The series associa-
tion of n equal accumulators gives the n-th order nabla sum:

∇−ng(t) =
∞

∑
k=0

(−1)k
(
−n
k

)
g(t− kh). (46)

Definition 2. This result together with (43) suggests that the α-order nabla differencer/accumulator
be given by

∇α f (t) =
∞

∑
k=0

(−1)k
(

α

k

)
f (t− kh), (47)

where α is any real number.

The corresponding LT is

L[∇α f (t)] =
[
1− e−sh

]α
F(s), Re(s) > 0. (48)

Therefore, there are some facts that we must emphasize:

1. A difference/sum is the output of a system: differencer/accumulator;
2. The system structure is independent of the inputs;
3. If the order is not a positive integer, even if the input function has finite support, the

output has infinite support; in particular, if f (t) has support [a, b] ⊂ R, g(t) is not
identically null above any real value: the support is [a, ∞]. This is a very important
fact that is frequently forgotten or dismissed.

4. If the input is a right-hand function, so is the output; in particular, if f (t) = 0, t < 0,
then ∇α f (t) = 0, for negative t and for t ≥ 0, we have

∇α f (t) =
n

∑
k=0

(−1)k
(

α

k

)
f (t− kh), (49)

where n = bt/hc is the the great integer such that n ≤ t/h.
5. The ROC of the transfer function is defined by Re(s) > 0, as expected, since we are

dealing with a causal system.

5.2. Anti-Causal

Consider the conditions of the previous subsection, but now with with f (∞) = g(∞) = 0.

Definition 3. We define delta or anti-causal differencer as a linear system whose output, at a given
instant, is the difference between the input at that instant and at a future one:

g(t) = f (t)− f (t + h), (50)

where h > 0 is the lead.

The output will be called the delta difference and represented by ∆ f (t). Note that
it is the symmetric of the current definition (21). Traditionally, the symmetric of (50) is
considered: g(t) = f (t + h)− f (t). To simplify and highlight the similarity to the nabla
difference, we found it preferable to omit the – sign.
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From this definition and the previous results, we conclude that:

1. It is also a moving-average system;
2. The LT gives

G(s) = (1− e+sh)F(s). (51)

3. The transfer function is
H(s) = 1− e+sh, (52)

having C as ROC.
4. The association in a series of n systems as above has a transfer function given by

G(s) =
[
1− esh

]n
F(s),

that inverted gives the n-th-order delta difference

∆n f (t) =
n

∑
k=0

(−1)k
(

n
k

)
f (t + kh). (53)

5. In a similar way, the delta accumulator is

∆−1g(t) =
∞

∑
n=0

g(t + nh). (54)

The series association of n accumulators is expressed by

∇−ng(t) =
∞

∑
k=0

(−1)k
(
−n
k

)
g(t− kh) (55)

and has LT
L
[
∆−ng(t)

]
=
[
1− esh

]−n
G(s), Re(s) < 0. (56)

Definition 4. This result, together with (43), suggests that the α-order delta differencer/accumulator
be defined by

∆α f (t) =
∞

∑
k=0

(−1)k
(

α

k

)
f (t + kh), (57)

where α is any real number.

The corresponding LT is

L[∆α f (t)] =
[
1− esh

]α
F(s), Re(s) < 0. (58)

This and the nabla differences have similar characteristics. Therefore, and in particular, we
can say relatively to the delta difference:

1. If the order is not a positive integer, even if the input function has finite support, the
output has infinite support; in particular, if f (t) has support [a, b] ⊂ R, g(t) is not
identically null below any real value; the support is [−∞, b].

2. If the input is a left-hand function, so is the output; in particular, if f (t) = 0, t > 0,
then ∆α f (t) = 0, for positive t and for t ≤ 0, we have

∆α f (t) =
n

∑
k=0

(−1)k
(

α

k

)
f (kh− |t|), (59)

where n = b−t/hc is the the great integer such that n ≤ −t/h.
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3. The ROC of the transfer function is defined by Re(s) < 0, as expected, since we are
dealing with an anti-causal system.

4. We can account for the (−) sign we removed above by inserting the factor (−1)α into (57).

5.3. Properties

The nabla and delta differencers have similar properties that we will describe for the
first. The most important are [25]

• Additivity and commutativity of the orders
∇α
[
∇β f (t)

]
= ∇β[∇α f (t)] = ∇α+β f (t).

• Neutral element
This comes from the last property by putting β = −α, ∇α[∇−α f (t)] = ∇0 f (t) = f (t).
This is very important because it states the existence of the inverse, which is in
coherence with the previous sub-sections.

• Inverse element
From the last result, we conclude that there is always an inverse element: for every
α-order difference, there is always a −α-order difference given by the same formula.

• Associativity of the orders

∇γ
[
∇α∇β

]
f (t) = ∇γ+α+β f (t) = ∇α+β+γ f (t) = ∇α

[
∇β+γ

]
f (t).

It is a consequence of the additivity.
• Derivative of the product

∇α[ f (t)g(t)] =
∞

∑
m=0

(
α

m

)
∇m f (t)∇α−ng(t−mh). (60)

The delta case is slightly different as expected

∆α[ f (t)g(t)] =
∞

∑
m=0

(
α

m

)
∆m f (t)∆α−mg(t + mh).

5.4. Discrete-Time Differences

In the Introduction, we mentioned the importance of discrete-time signals. In Section 2.4,
we showed how to obtain them by sampling continuous-time signals. However, we must
highlight an important fact: discrete-time signals exist by themselves, without there needing
to be a continuous-time signal from which they resulted. There are many signals that are
inherently discrete. This means that in each case, there is necessarily a clock that defines the
time sequence in which we work. Therefore, the delay/lead, h, must be equal or a multiple
of the sampling interval used to obtain the discrete-time formulation for differences. For
simplicity, we choose the sampling interval equal to h so that T = {t = nh, n ∈ Z}, giving

∇α fk =
∞

∑
n=0

(−α)n

n!
fk−n, k ∈ Z, (61)

and

∆α fk =
∞

∑
n=0

(−α)n

n!
fk+n. k ∈ Z, (62)

that can assume different forms:

∇α fk =
k

∑
n=−∞

(−α)k−n
(k− n)!

fn, k ∈ Z (63)

and

∆α fk =
∞

∑
n=k

(−α)n−k
(n− k)!

fn, k ∈ Z. (64)



Fractal Fract. 2023, 7, 502 20 of 32

As it is obvious, the Formulae (61)–(64) express input/output relations that are discrete-time
convolutions between the input fn and the binomial coefficients (impulse responses) to pro-
duce the outputs that are the differences. Such relations are mediated by the called impulse
responses that are the outputs, hn, when the input is the Kroneckker delta defined by

δn =

{
1 n = 0
0 n 6= 0.

In passing, we define the discrete-time step by

εn =

{
1 n ≥ 0
0 n < 0.

Therefore, the impulse responses of the nabla and delta differences are, respectively,

hn =
(−α)n

n!
εn

and

gn =
(−α)−n

(−n)!
ε−n,

where n ∈ Z, which is in agreement with the causality. It is important to remark that

1. Both responses have finite duration if α ∈ N, and the systems are called FIRs (finite
impulse systems) [14].

2. If α /∈ N, both responses extend to infinite, and the corresponding systems are IIR
(infinite impulse response).

3. If fk = 0, k < 0, then ∇α fk = 0, for negative k, and for k ≥ 0, we have

∇α fk =
k

∑
n=0

(−α)n

n!
fk−n, k ∈ Z (65)

or,

∇α fk =
k

∑
n=0

(−α)k−n
(k− n)!

fn, k ∈ Z. (66)

4. Similarly, if fk = 0, k > 0, then ∆α fk = 0 for positive k and we obtain for k ≤ 0

∆α fk =
|k|

∑
n=0

(−α)n

n!
fn−|k|. k ∈ Z (67)

or

∆α fk =
|k|

∑
n=0

(−α)n−k
(n− k)!

fn, k ∈ Z. (68)

5. It is a simple task to obtain formulae for functions with other supports.
6. The Z transforms of the above discrete-time differences can be obtained from the

corresponding LT by setting z = esh. For example, the Z transform of the nabla
difference (61) is

Z [∇α fk] = (1− z−1)αF(z), (69)

in the suitable ROC in the region defined by |z| > 1.
7. If, in any particular application, a time sequence with the form T = a + nh, ; n ∈ Z,

a ∈ R is used, we can make a substitution f (a + nh) for f (nh).
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5.5. Two-Sided Differences

There is another differencer, two-sided (bilateral), which is given by

Θ1
0 f (t) = f (t + h/2)− f (t− h/2), (70)

that originates two bilateral fractional differences, but we will not study both here [68,69,109].
We can easily obtain one of them by combining a delta with a nabla difference.

Definition 5. Let t = kh, k ∈ Z. We define a bilateral differencer through

Θβ
θ fk = ∇a∆b fk =

+∞

∑
n=−∞

(−1)nΓ(β + 1)

Γ
(

β+θ
2 − n + 1

)
Γ
(

β−θ
2 + n + 1

) fk−n, (71)

with β = a + b (difference order) and θ = a− b (asymmetry parameter).

For β ∈ Z−, we obtain singular cases that were treated in [69]. Suitable choices of
these paramters allow us to recover the above introduced differences:

• With θ = β, we obtain (47);
• Similarly, with θ = −β and variable change, we obtain (57);

Some particular cases of (71) are very interesting:

1. Riesz-type difference, θ = 0,

Θβ
0 fk =

+∞

∑
n=−∞

(−1)nΓ(β + 1)

Γ( β
2 − n + 1)Γ( β

2 + n + 1)
fk−n. (72)

2. Feller-type difference, θ = ±1,

Θβ
1 fk =

+∞

∑
n=−∞

(−1)nΓ(β + 1)

Γ( β+1
2 − n + 1)Γ( β−1

2 + n + 1)
fk−n. (73)

3. Two-sided discrete Hilbert transform, β = 0,

Θ0
θ fk =

+∞

∑
n=−∞

(−1)n · 1

Γ
(

θ
2 − n + 1

)
Γ
(
−θ
2 + n + 1

) fk−n. (74)

With θ = 1, we obtain the usual discrete-time formulation of the Hilbert transform [14].

Remark 5. It must be noticed that in the general case stated in (71), the difference Θβ
θ fk does not

have Z transform, since the ROC degenerates in the unit circle (z = eiω), meaning that it has
discrete-time Fourier transform, F(eiω) [68,109]:

F
[
Θβ

θ fk

]
= |2 sin(ω/2)|βe−i ωθei sgn(ω)θπ/2F(eiω), |ω| < π, (75)

where sgn(.) is the signum function.

5.6. The Tempered Differences

We introduced above the three standard definitions for the differences of order one
(40), (50) and (70). With a slight modification, we obtain their tempered versions. We only
need to make adaptations of the results described in [110]. The concept of a tempered
fractional difference was introduced, for the first time, by Sabzikar et al. [111], starting from
the Grünwald–Letnikov derivative. Their results are similar to those that we are going
to present.
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Definition 6. Let λ ∈ R. We can define three tempered differences (TDs):

• Nabla TD

∇λ, f f (t) = f (t)− e−λh f (t− h), (76)

that has LT
L[∇λ f (t)] =

[
1− e−λhe−sh

]
F(s), (77)

for any s ∈ C.
• Delta TD

∆λ f (t) = f (t)− eλh f (t + h). (78)

Its LT is valid for any s ∈ C and given by

L[∆λ f (t)] =
[
1− eλhesh

]
F(s), (79)

As above, we removed a (−) sign.
• Two-sided TD

Θθ,λ f (t) =
[

eλ h
2 f (t +

h
2
)− e−λ h

2 f (t− h
2
).
]

(80)

It is straightforward to invert the relations (76) and (78), and so, we obtain the first-
order anti-differences

∇−1
λ f (t) =

∞

∑
n=0

e−nλh f (t− nh) (81)

and

∆−1
λ f (t) =

∞

∑
n=0

enλh f (t + nh) (82)

that can be generalized for any real order.

Definition 7. For α ∈ R, we can write [110]

∇α
λ f (t) =

∞

∑
n=0

(−α)n

n!
e−nλh f (t− nh), (83)

and

∆α
λ f (t) =

∞

∑
n=0

(−α)n

n!
enλh f (t + nh). (84)

Definition 8. To obtain the discrete-time versions, we set t = nh and µ = eλh so that we can
write [110]

∇α
λ fk =

∞

∑
n=0

(−α)n

n!
µ−n fk−n, (85)

and

∆α
λ fk =

∞

∑
n=0

(−α)n

n!
µn fk+n, (86)

valid for any α ∈ R.

The bilateral tempered fractional differences are somehow more involved. They can
be obtained from the results introduced in [112]. We will not do it here.
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5.7. Bilinear Differences

One of the most interesting methods of obtaining discrete-time systems from continuous-time
templates is through the conformal transformations, so that we pass from the LT context,
(s), to the one of Z transform, (z) [28]. The traditional procedures can be described by

s = 1− z−1,

for the nabla case and
s = z− 1,

for the delta case. Basically, z−1 and z correspond to delay and lead, respectively. This proce-
dure is equivalent to the one described in Section 5.4. It has a great drawback: the imaginary
axis in the s plane is transformed into the Hilger circles |z− 1| = 1 and |z + 1| = 1 [25]. This
fact brings some inconvenience [28].

Another alternative to obtain continuous to discrete conversion is through the bilinear
(Tustin) transformation [28,113]

s =
2
h

1− z−1

1 + z−1 ,

which leads to discrete-time formulations similar to the GL-like above obtained. In [114],
new discrete-time fractional derivatives based on the bilinear transformation were in-
troduced and studied. In agreemennt with such a theory, we propose new differences
here.

Definition 9. Let us define a bilinear nabla differencer as a linear system whose output, at a given
instant, is given by

g(t) + g(t− h) = f (t)− f (t− h) (87)

and the bilinear delta differencer by

g(t) + g(t + h) = f (t)− f (t + h). (88)

In terms of the LT, we can write, respectively,

G(s) =
1− e−sh

1 + e−sh F(s) (89)

and

G(s) =
1− esh

1 + esh F(s). (90)

It is obvious that we can formulate symmetric bilinear differences from the LT

G(s) =
esh/2 − e−sh/2

esh/2 + e−sh/2 F(s). (91)

To avoid any repetition of concepts, we will consider the nabla case only. The above
formulae suggest immediately how we make a continuous-to-discrete conversion by using
the substitution esh → z.

Definition 10. We define the bilinear nabla fractional difference through

Z [∇α
b fk] =

[
1− z−1

1 + z−1

]α

F(z), |z| > 1. (92)

Attending to the results in [114], we can write

∇α
b fn =

∞

∑
k=0

ψα
k fn−k, n ∈ Z, (93)



Fractal Fract. 2023, 7, 502 24 of 32

where [114]

ψα
k =

k

∑
m=0

(−α)m

m!
(−1)k−m(α)k−m

(k−m)!
, k ∈ Z+

0 (94)

In particular, for α = ±1, we have

• ψ1
k =


0 k < 0
1 k = 0
2(−1)k k > 0

• ψ−1
k =


0 k < 0
1 k = 0
2 k > 0

Although these new differences seem to be rather involved, they are easily implemented
with the help of the fast Fourier transform (FFT) [114].

We can also obtain two-sided bilinear differences, but the procedure is rather involved
and not very useful. However, the frequency domain representation is easily obtained
from (91).

6. Scale-Invariant Differences

In previous sections, we dealt preferably with the shift-invariant differences. Here, we
will consider others that have deep relations with the scale-invariant derivatives [40].

Consider two bounded piecewise continuous functions f (t), g(t), t ∈ R+ with
f (0), g(0) = 0. For simplicity, assume they are of polynomial order, so that we assure
they have Mellin transforms, F(v), G(v), v ∈ C, analytic over suitable ROC.

Definition 11. Let q > 1. We define a stretching differencer as a linear system whose output, at a
given scale, is the difference between the input at different scales:

g(τ) = f (τ)− f (τq−1), τ ∈ R+, (95)

where q is the scale constant.

The output will be called the stretching difference and represented by C f (t). Letting
q < 1, we obtain the shrinking difference, B f (t). Therefore, their properties are similar. We
will study the first only, because the other is easy to obtain. From this definition, we can
draw some conclusions:

1. Its impulse response is given by:

φ(τ) = δ(τ − 1)− δ(τ/q− 1),

so that
g(τ) = φ(τ) ? f (τ),

implying that
G(v) = (1− q−v)F(v). (96)

2. The transfer function is
H(v) = 1− q−v, (97)

having C as the ROC.
3. As in the shift-invariant case, if associated in series n systems, the resulting system

defines the n-th order stretching difference that has a transfer function given by

H(v) =
[
1− q−v]n,
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from which we obtain the n-th order stretching difference

Cn f (τ) =
n

∑
k=0

(−1)k
(

n
k

)
f (τq−k). (98)

Now, let us return back to (40) and invert the role of the functions: assume that the input is
g(τ) and the output is f (τ)

f (τ) = f (τq−1) + g(τ),

that can be reused to give:

f (τ) = g(τ) + g(τq−1) + f (τq−2) = g(τ) + g(τq−1) + g(τq−2) + f (τq−3 = · · ·

It is not hard to see that

f (τ) = C−1g(τ) =
∞

∑
n=0

g(τq−n), (99)

with MT

F(v) = G(v)
∞

∑
n=0

q−nv =
[
1− q−v]−1G(s), for Re(v) > 0. (100)

Relation (99) shows why this operator is again an accumulator. The series association of n
equal accumulators gives the n-th order stretching sum:

C−n g(τ) =
∞

∑
k=0

(−1)k
(
−n
k

)
g(τq−k). (101)

Definition 12. This result together with (98) suggests that the α-order stretching differencer/
accumulator must be given by

Cα f (τ) =
∞

∑
k=0

(−1)k
(

α

k

)
f (τq−k), (102)

where α is any real number.

As we observe, this difference uses an exponential domain in agreement with our
considerations above (Section 2.3). The corresponding MT is

M[Cα f (τ)] =
[
1− q−v]αF(v), for Re(v) > 0. (103)

Therefore, the shrinking difference is defined by

Bα f (τ) =
∞

∑
k=0

(−1)k
(

α

k

)
f (τqk), (104)

having MT
M[Bα f (τ)] = [1− qv]αF(v), for Re(v) < 0. (105)

Remark 6. The relations (100) and (105) show that there is a scale-invariant system that produces
the difference as an output.

To obtain the discrete-scale versions, we only need to make a sampling in agreement
with Theorem 2. Let τ = qn. For the stretching difference, we obtain

Cα fqn =
∞

∑
k=0

(−1)k
(

α

k

)
fqn−k , (106)
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while for the shrinking one, it is

Bα fqn =
∞

∑
k=0

(−1)k
(

α

k

)
fqn+k . (107)

As we can see, they are formally similar to the nabla and delta differences; they
only differ in the sampling sequence used: linear or exponential. Thus, from a purely
discrete point of view, we have no way of making any distinction between linearly or
exponentially sampled functions. This means that if we want to define stretching and
shrinking differences in discrete time, we have to break the continuous connection: we have
to work exclusively with the sequences defined in Z. So, having a sequence fn, n ∈ Z, we
wonder how to define stretched and shrunk sequences so that we can introduce differences.
In [115], ways to produce stretched and shrunk sequences were presented. In principle, we
could use them to define differences, but this procedure has difficulties, since the operations
of stretching and shrinking involve all knowledge of the underlying sequence, and the
scale transformation system is two-sided.

However, we can use the traditional “decimation” operation used in signal processing
to define a stretching difference [5,8,14].

Definition 13. Let N be a positive integer (decimation parameter). We define a stretching difference through

CN fn = fn − fNn. (108)

We can show immediately that if M is a positive integer, then

CM
N fn =

M

∑
m=0

(−1)m
(

M
m

)
fNmn. (109)

If fn = na, n ∈ N, a ∈ R, then

CM
N na =

M

∑
m=0

(−1)m
(

M
m

)
Namna = [1− Na]Mna. (110)

Proceeding as above, we obtain

C−M
N fn =

M

∑
m=0

(M)m

m!
fNmn, (111)

that allows us to write

CM
N na =

M

∑
m=0

(−1)m (M)m

m!
Namna = [1− Na]−Mna. (112)

Definition 14. These relations suggest we write

Cα
N fn =

∞

∑
m=0

(−α)m

m!
fNmn, (113)

so that

Cα
N na =

∞

∑
m=0

(−α)m

m!
Namna = [1− Na]αna. (114)

This last relation seems to point to a definition of a “discrete Mellin transform”, as

F(v) =
∞

∑
k=1

fkkv, v ∈ C,
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which is different from other proposed in the past [33,34]. We do not go further in this way.
The properties of the stretching discrete difference just proposed are readily deduced

from the results in Section 5.3. From such a definition, the reason for not defining a
shrinking difference is evident.

7. The ARMA-Type Difference Linear Systems

Definition 15. We define an ARMA-type difference linear system through the following
equation [25,28]

N

∑
k=0

akDαk y(t) =
M

∑
k=0

bkDβk x(t), (115)

where ak and bk (k = 0, 1, · · · ,) with aN = 1 are real numbers. The operator D is any difference
defined previously. The orders N and M are any positive integers. The positive real numbers αk and
βk with k = 0, 1, · · · , form strictly increasing sequences.

The most interesting systems are those with commensurate orders:

N

∑
k=0

akDkαy(t) =
M

∑
k=0

bkDkαx(t). (116)

In the shift-invariant cases, the exponentials are the eigenfunctions and the eigenvalues are
the transfer functions [27,36,116]. In the scale-invariant system, such a role is played by the
powers [40]. The corresponding (Laplace, Z, Mellin) transforms give the impulse response or
Green function of the system.

Example 2. Consider the ARMA(1,1) system:

∇αy(t) + ay(t) = b1∇αx(t) + b0x(t)

and let x(t) = est, t ∈ R. The output will be y(t) = H(s)est, t ∈ R, c ∈ C, with

H(s) =
b1(1− e−sh)α + b0

(1− e−sh)α + a
, Re(s) > 0.

The impulse response is not easily obtained. From

H(s) =
b1(1− e−sh)α + b0 + b1a− b1a

(1− e−sh)α + a

= b1 +
b0 − b1a

(1− e−sh)α + a
= b1 + (b0 − b1a)

∞

∑
m=0

am(1− e−sh)−(m+1)α,

= b1 + (b0 − b1a)
∞

∑
m=0

am
∞

∑
k=0

((m + 1)α)k
k!

e−ksh.

we get

h(t) = b1δ(t) + (b0 − b1a)
∞

∑
m=0

am
∞

∑
k=0

((m + 1)α)k
k!

δ(t− kh).

The output for any x(t) is given by the usual convolution

y(t) = b1x(t) + (b0 − b1a)
∞

∑
m=0

am
∞

∑
k=0

((m + 1)α)k
k!

x(t− kh).

In the discrete-time case, we set t = nh, n ∈ Z to give

∇αyn + ayn = b1∇αxn + b0xn.
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If the input is the exponential zn, n ∈ Z, z ∈ C, the output is yn = H(z)zn, n ∈ Z, z ∈ C, where

H(z) =
b1(1− z−1)α + b0

(1− z−1)α + a
, |z| > 1.

We can obtain the Z transform inverse of this function approximately through the FFT. However,
proceeding as above, we obtain

hn = b1δn + (b0 − b1a)
∞

∑
m=0

am
∞

∑
k=0

((m + 1)α)k
k!

δn−k.

As in the continuous-time case, the output corresponding to a given input is obtained through the
discrete convolution

yn = b1xn + (b0 − b1a)
∞

∑
m=0

am
∞

∑
k=0

((m + 1)α)k
k!

xn−k.

Example 3. Consider the scale-invariant AR(1) difference system defined by the equation

B1/2
3 yn = B1/2

3 xn − xn

and let xn = n−2, n ∈ Z−0 .
Accordingly to what we wrote in the last section, the solution is, for n ∈ N,

yn = xn −
∞

∑
m=0

(1/2)m

m!
x3mn.

So,

yn = n−2 −
∞

∑
m=0

(1/2)m

m!
3−2mn−2 = n−2

[
1− (1− 1/9)−1/2

]
=

2
√

2− 3
2
√

2
n−2.

8. Which Difference?

We described the most interesting differences. We ask ourselves which one should
be used in a particular application. In some uses, there is doubt. For example, in most
engineering applications, such as digital signal processing, which is the basis of many
electrical, mechanical, or biomedical systems, the nabla derivative is the appropriate one.
In fact, these systems are causal.The bilinear nabla systems are similar, but they have one
important advantage: they are suitable for frequency domain implementations with the
fast Fourier transform. The reduction in the number of operations should be a goal in
applications. If the independent variable is not time, but any other, such as space, the delta
or bilateral derivative can also be used. Although often employed, the delta difference is not
suitable for most applications; its anti-causal characteristic gives rise to unstable systems.

In dealing with stochastic processes, such as the fractional Brownian motion or other
generalized discrete fractional processes, the nabla or the two-sided can be used [117–119].

The integer-order differences and systems are characterized by having short memory
and an exponentially decreasing impulse response, which is unsuitable for many applica-
tions. On the other hand, the fractional systems have long memory, since they have power
decrease impulse responses, which brings too big of an influence of the past into the present.
The tempered systems offer an intermediate solution. In engineering, the frequency domain
analysis helps in deciding which system is more suitable. This fact makes the area of filter
design one of the most important in applications.

The scale-invariant differences and systems, considered separately from the shift-
invariant analogues, only recently were introduced. The corresponding discrete versions
were proposed above for the first time. Therefore, there are no prescribed applications.
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9. Discussion

Differences are basic building blocks for defining derivatives, but they can be used
in many applications to solve differential equations and model many systems. In most
situations, shift-invariant differences are used, although scale-invariant versions are also
useful. Here, they have been studied separately. General continuous-time cases have been
introduced, although the main interest has been placed on the discrete versions.

When looking for a discrete-time equivalent to continuous-time differential systems,
there is a difference system that works as an intermediate [28]. Normally, such a system is
not used for anything else. Discrete differences and systems are fundamental in compu-
tational applications that are the primary means for practical implementations. For this
reason, when introducing differences, we adopted a system point of view to emphasize that
differences are outputs of linear systems, which implies that they are defined independently
of the inputs, notably their duration. Moreover, outputs are generally of infinite duration,
even if the input support is finite. In addition to the classic differences, we introduce new
ones such as bilateral and tempered differences.

The option by system approach for introducing differences allowed us to define
ARMA-type linear systems, enlarging the classic procedure used in time-series analysis
and processing which supported many important applications in engineering, economics,
statistics, and so on. It is important to remark that many interesting functions we find in
applications are acquired under a discrete-time form without having any analytical formula.
This implies that we have to deal with functions (signals) defined in the set of integers.
Anyway, implicit in any application, there is a time sequence imposed by an underlying
clock which imposes a working domain that we cannot change. This aspect was frequently
dismissed in the past, which is a fact that led to some “abnormalities” such as the loss of
(anti-)causality. This happened, for example, with the assumed “delta difference” that is
not really a delta difference, since it should be anti-causal, but it is bilateral. This fact is
expected to make a review of some associated concepts and tools.

The theory we have just described leaves open issues that deserve consideration in fu-
ture research. In fact, we have not considered the modeling/identification problems [16–20].
To do so, the frequency-domain approach will certainly be a safe way forward. This can be
applied by adapting and extending the studies in [25,114] by defining suitable transforms.
It is important to highlight the fact that such transforms use the eigenfunctions of the
differences as kernels. Another open issue is the interaction between the ARMA difference
systems above introduced and the stochastic processes, as referred above. This will imply
the search for estimation methods that may involve spectral estimation.
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