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1. Introduction

Real valued functions with additional constraints provide interesting consequences.
For example, a real valued function defined on Rn satisfying the inequality f (αx + (1−
α)y) ≤ α f (x) + (1− α)(y), α ∈ [0, 1], x, y ∈ Rn is called a convex function. It was in-
troduced at the start of the nineteenth century and was used very frequently in solving
real-world problems of mathematical analysis, functional analysis, optimization theory, etc.
In the subject of mathematical inequalities, convex functions are very important, they have
fascinating properties, and they provide inequalities that have direct implications to many
classical inequalities. In addition, these have been extended and generalized in many ways.
We utilized (α, h−m)− p-convex functions to establish the results of this paper.

Definition 1 ([1]). Let J ⊆ R, I ⊂ (0, ∞) be intervals such that (0, 1) ⊂ J, and let h : J → R be
a non-negative function. A function ϕ : I → R is said to be a (α, h−m)− p-convex function if

ϕ((τ$p + m(1− τ)yp)
1
p ) ≤ h(τα)ϕ($) + mh(1− τα)ϕ(y), (1)

holds for p ∈ R\{0}, provided (τ$p + m(1− τ)yp)
1
p ∈ I, τ ∈ (0, 1), (α, m) ∈ [0, 1]2.

One can easily find the consequences of inequality (1) by particular substitutions to
obtain well-known classes of functions. For example, the (s, m) convex function [2], (α, m)
convex function [3], (h− m) convex function [4], (p, h) convex function [5], etc., are all
special cases of a (α, h−m)-p convex function.

The main goal of this paper is to present certain inequalities for integral operators given
in (4) and (5). The consequences of established integral inequalities can be found for several
kinds of fractional integral operators and classes of functions linked with convex functions.

In recent past literature, several integral inequalities can be found for different kinds of
fractional integral operators. For instance, in [6–10], Hadamard-like inequalities were stud-
ied, in [11], Ostrowski-like inequalities were studied, in [12,13], Chebyshev-like inequalities
were studied, and Minkowksi-, Hardy- and Grüss-like inequalities were investigated
in [14–16].
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Next, we define the unified Mittag–Leffler function and associated integral operators
as follows:

Definition 2 ([17]). For a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn),
where ai, bi, ci ∈ C; i = 1, 2, 3, . . . , n such that <(ai),<(bi),<(ci) > 0 ∀ i. In addition, let
α, β, γ, δ, µ, ν, λ, ρ, θ, z ∈ C, min{<(α), <(β), <(γ), <(δ), <(θ)} > 0 and k ∈ (0, 1) ∪N
with k +<(ρ) < <(δ + ν + α), Im(ρ) =Im(δ + ν + α). Then, the unified Mittag–Leffler function
is defined by

Mλ,ρ,θ,k,n
α,β,γ,δ,µ,ν

(
z; a, b, c, p′

)
=

∞

∑
l=0

∏n
i=1 Bp′(bi, ai)(λ)ρl(θ)klzl

∏n
i=1 B(ci, ai)(γ)δl(µ)νlΓ(αl + β)

, (2)

where Γ is a gamma function, and (θ)lk is the Pochhammer symbol defined by (θ)kl =
Γ(θ+lk)

Γ(θ) . The
beta function is denoted by B, and Bp′ is the extension of the beta function defined as follows:

Bp′($, y) =
∫ 1

0
τ$−1(1− τ)y−1e

−p′
τ(1−τ) dτ. (3)

One can easily deduce many kinds of definitions of Mittag–Leffler functions given
in recently published papers. For example, the two-parameter Mittag–Leffler function
defined in [18], three-parameter Mittag–Leffler function defined in [19] and the extended
Mittag–Leffler function defined in [20] can be deduced from the unified Mittag–Leffler
function (2). Operators involving the unified Mittag–Leffler function are given in [21] and
are defined as follows:

Definition 3. Let φ ∈ L1[ξ1, ξ2], 0 < ξ1 < ξ2 < ∞ be a positive function and let Ψ : [ξ1, ξ2]→
R be a differentiable and strictly increasing function. In addition, let φ

$ be an increasing function on
[ξ1, ∞) and $ ∈ [ξ1, ξ2]. Then, the unified integral operator in its generalized form satisfying all
the convergence conditions stated in Definition 2 is defined by:

(
φ
ΨΥ

ω,λ,ρ,θ,k,n
ξ+1 ,α,β,γ,δ,µ,ν

Φ)($; p′)=
∫ $

ξ1

Λτ
$(Mλ,ρ,θ,k,n

α,β,γ,δ,µ,νΨ; φ)Φ(τ)d(Ψ(τ)), (4)

(
φ
ΨΥ

ω,λ,ρ,θ,k,n
ξ−2 ,α,β,γ,δ,µ,ν

Φ)($; p′) =
∫ ξ2

$
Λ

$
τ(Mλ,ρ,θ,k,n

α,β,γ,δ,µ,νΨ; φ)Φ(τ)d(Ψ(τ)), (5)

where

Λτ
$(Mλ,ρ,θ,k,n

α,β,γ,µ,ν, Ψ; φ) =
φ(Ψ($)−Ψ(τ))

Ψ($)−Ψ(τ)
Mλ,ρ,θ,k,n

α,β,γ,δ,µ,ν(ω(Ψ($)−Ψ(τ))µ; a, b, c, p′). (6)

One can note that if Ψ and φ
$ are increasing functions, then for u < τ < v, u, v ∈ [ξ1, ξ2],

the kernel Λu
τ(Mλ,ρ,θ,k,n

α,β,γ,µ,ν, Ψ; φ) satisfies the following inequality:

Λu
τ(Mλ,ρ,θ,k,n

α,β,γ,µ,ν, Ψ; φ)Ψ′(τ) ≤ Λu
v(Mλ,ρ,θ,k,n

α,β,γ,µ,ν, Ψ; φ)Ψ′(τ). (7)

There are very interesting implications of the above integral operator involving the unified
Mittag–Leffler function. Many fractional integral operators that have been defined by
various authors can be obtained by a suitable selection of parameters involved in the
kernel. For example, fractional integral operators defined in [17,20,22] can be recovered in
particular cases.

This article aims to study some properties of integral operators given in (4) and (5) for
(α, h−m)− p-convex functions. We establish the bounds of fractional integral operators
containing the unified Mittag–Leffler function by utilizing the generalized convexity. A
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Hadamard-type inequality is proved that generates plenty of such inequalities in particular
cases. The rest of the paper is organized as follows: Section 2 contains some important
inequalities for the kernels of integral operators and the (α, h−m)− p-convex function.
In Section 3, we use the inequalities of Section 2 to obtain desired bounds of the unified
integral operators. The established results are generalizations of several inequalities that
have been published in the recent past.

2. Some Preliminary Inequalities

From the inequality (7) under its predefined conditions, one can have the following
inequalities. These inequalities will be used frequently to prove the main results.

Λτ
$(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(τ) ≤ Λξ1
$ (Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(τ), τ ∈ (ξ1, $), (8)

Λ$
τ(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(τ) ≤ Λ$
ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)Ψ′(τ), τ ∈ ($, ξ2), (9)

Λξ1
$ (Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)Ψ′($) ≤ Λξ1
ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)Ψ′($), $ ∈ (ξ1, ξ2), (10)

Λ$
ξ2
(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)Ψ′($) ≤ Λξ1
ξ2
(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)Ψ′($), $ ∈ (ξ1, ξ2). (11)

An (α, h−m)− p-convex function ϕ satisfies the inequality (1). From this inequality, one
can have the following inequalities, which are also useful in proving the inequalities of the
forthcoming section

ϕ(τ
1
p ) ≤ h

(
$− τ

$− ξ1

)α

ϕ(ξ
1
p
1 ) + mh

(
1−

(
$− τ

$− ξ1

)α)
ϕ

$
1
p

m

, (12)

ϕ(τ
1
p ) ≤ h

(
τ − $

ξ2 − $

)α

ϕ(ξ
1
p
2 ) + mh

(
1−

(
τ − $

ξ2 − $

)α)
ϕ

$
1
p

m

, (13)

ϕ($
1
p ) ≤ h

(
$− ξ1

ξ2 − ξ1

)α

ϕ(ξ
1
p
2 ) + mh

(
1−

(
$− ξ1

ξ2 − ξ1

)α)
ϕ

 ξ
1
p
1

m

. (14)

3. Main Results

Theorem 1. Let ϕ ∈ L1[ξ1, ξ2] be a positive (α, h − m) − p-convex function m ∈ (0, 1],
0 < ξ1 < mξ2. In addition, let φ

$ be an increasing function on [ξ1, ξ2] and Ψ be a strictly increasing
and differentiable function on (ξ1, ξ2). Then, we have the following inequality containing the unified
Mittag–Leffler function Mλ,ρ,θ,k,n

α,β,γ,δ,µ,ν(z; a, b, c, p′) satisfying all the convergence conditions:

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

ϕ ◦ χ

)
($; p′) +

(
φ
ΛΥ

ω,λ,γ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

ϕ ◦ χ

)
($; p′)

≤ Λξ1
$ (Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)($− ξ1)

φ(ξ
1
p
1 )Nξ1

$ (rα, h; Ψ′) + mϕ

$
1
p

m

Nξ1
$ (1− rα, h; Ψ′)

 (15)

+ Λ$
ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(ξ2 − $)

(
ϕ(ξ

1
p
2 )Nξ2

$ (rα, h; Ψ′) + mϕ

$
1
p

m

Nξ2
$ (1− rα, h; Ψ′)

)
,
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while χ(τ) = τ
1
p , Nξ1

$ (rα, h; Ψ′) =
∫ 1

0 h(rα)Ψ′($ − r($ − ξ1))dr and Nξ1
$ (1 − rα, h; Ψ′) =∫ 1

0 h(1− rα)Ψ′($− r($− ξ1))dr.

Proof. Under the stated conditions, the kernel given in (6) satisfies the inequality (8). In
addition, an (α, h−m)− p-convex function satisfies the inequality (12). Ultimately, one can
have the following inequality:

∫ $

ξ1

Λτ
$(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)ϕ(τ
1
p )d(Ψ(τ)) ≤ Λξ1

$ (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)

(
ϕ(ξ

1
p
1 ) (16)

×
∫ $

ξ1

h
(

$− τ

$− ξ1

)α

d(Ψ(τ)) + mϕ

$
1
p

m

 ∫ $

ξ1

h
(

1−
(

$− τ

$− ξ1

)α)
d(Ψ(τ))

)
.

In the right-hand side, by setting r =
$− τ

$− ξ1
, while in the left-hand side of the above

inequality using Definition 3, the forthcoming inequality is yielded:(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

ϕ ◦ χ

)
($; p′) ≤ Λξ1

$ (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)($− ξ1)

(
ϕ(ξ

1
p
1 ) (17)

×
∫ 1

0
h(rα)Ψ′($− r($− ξ1))dr + mϕ

$
1
p

m

 ∫ 1

0
h(1− rα)Ψ′($− r($− ξ1))dr

)
.

Inequality (17) is further simplified as follows, which gives an upper bound of the left-sided
integral operator:(

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

ϕ ◦ χ

)
($; p′) ≤ Λξ1

$ (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)($− ξ1) (18)

×

ϕ(ξ
1
p
1 )Nξ1

$ (rα, h; Ψ′) + mϕ

$
1
p

m

Nξ1
$ (1− rα, h; Ψ′)

.

On the other hand, under stated conditions, kernel (6) also satisfies inequality (9), and ϕ
satisfies inequality (13). Therefore, the following inequality can be yielded:(

φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

ϕ ◦ χ

)
($; p′) ≤ Λ$

ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(ξ2 − $)

(
ϕ(ξ

1
p
2 ) (19)

×
∫ 1

0
h(rα)Ψ′($− r($− ξ2))dr + mϕ

$
1
p

m

 ∫ 1

0
h(1− rα)Ψ′($− r($− ξ2))dr

)
.

Inequality (19) is further simplified as follows, which gives an upper bound of the right-
sided integral operator:(

φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

ϕ ◦ χ

)
($; p′) ≤ Λ$

ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(ξ2 − $) (20)

×

ϕ(ξ
1
p
2 )Nξ2

$ (rα, h; Ψ′) + mϕ

$
1
p

m

Nξ2
$ (1− rα, h; Ψ′)

.

The required inequality (15) can be composed by adding inequalities (18) and (20).

The inequality established in the above theorem is linked with many published results.
Some of the consequences of inequality (15) are stated in the following remark.
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Remark 1. (i) The inequality stated in [23] (Corollary 3) is followed by setting p = 1 in (15).
(ii) The inequality stated in [24] (Theorem 2) is followed by setting p = 1, κ = ϑ and h(τ) = τ
in (15).

For proof of the next theorem, we need the following lemma, which can be easily proved.

Lemma 1. Let ϕ : [ξ1, ξ2]→ R, be a (α, h−m)− p-convex function, m ∈ (0, 1], 0 < ξ1 < mξ2.

If ϕ($
1
p ) = ϕ

( ξ
p
1 + ξ

p
2 − $

m

) 1
p
, then the following inequality holds:

ϕ

( ξ
p
1 + ξ

p
2

2

) 1
p
 ≤ (h

(
1
2α

)
+ mh

(
2α − 1

2α

))
ϕ($

1
p ). (21)

The upcoming theorem provides the Hadamard inequality for the (α, h − m) − p-
convex function. The special cases of this inequality are specified in the remark given after
this theorem.

Theorem 2. Under the assumptions of Theorem 1, if ϕ($
1
p ) = ϕ

( ξ
p
1 + ξ

p
2 − $

m

) 1
p
, then

we have

ϕ

( ξ
p
1 + ξ

p
2

2

) 1
p


h
(

1
2α

)
+ mh

(
2α − 1

2α

)(((φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γµ,ν,ξ−2

1
)
(ξ1; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γµ,ν,ξ+1

1
)
(ξ2; p′)

))

≤
(

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

ϕ ◦ χ

)
(ξ2; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

ϕ ◦ χ

)
(ξ1; p′) ≤ (ξ2 − ξ1) (22)

× (Λξ1
ξ2
(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ) + Λξ1
ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ))

(
ϕ(ξ

1
p
2 )Nξ1

ξ2
(rα, h; Ψ′)

+mϕ

 ξ
1
p
1

m

Nξ1
ξ2
(1− rα, h; Ψ′)

.

Proof. Under stated conditions, kernel (6) satisfies inequality (10). In addition, the
(α, h − m)-p convex function satisfies inequality (14). Ultimately, one can have the
following inequality:

∫ ξ2

ξ1

Λξ1
$ (Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)ϕ(($)
1
p )d(Ψ($)) ≤ Λξ1

ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)

(
ϕ(ξ2)

×
∫ ξ2

ξ1

h
(

$− ξ1

ξ2 − ξ1

)α

d(Ψ($)) + mϕ

 ξ
1
p
1

m

 ∫ ξ2

ξ1

h
(

1−
(

$− ξ1

ξ2 − ξ1

)α)
d(Ψ($))

)
.

In the right-hand side, by setting r =
$− ξ1

ξ2 − ξ1
, while in the left-hand side of the above

inequality using Definition 3, the next inequality is yielded
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(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

ϕ ◦ χ

)
(ξ1; p′) ≤ Λξ1

ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(ξ2 − ξ1)

(
ϕ(ξ

1
p
2 ) (23)

×
∫ 1

0
h(rα)Ψ′(ξ1 + r(ξ2 − ξ1))dr + mϕ

 ξ
1
p
1

m

 ∫ 1

0
h(1− rα)Ψ′(ξ1 + r(ξ2 − ξ1))dr

)
.

Inequality (23) is further simplified as follows, which gives an upper bound of the left-sided
integral operator:(

φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

ϕ ◦ χ

)
(ξ1; p′) ≤ Λξ1

ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(ξ2 − ξ1) (24)

×

ϕ(ξ
1
p
2 )Nξ1

ξ2
(rα, h; Ψ′) + mϕ

 ξ
1
p
1

m

Nξ1
ξ2
(1− rα, h; Ψ′)

.

Adopting the same pattern of simplification as we did for (10) and (14), the following
inequality can be observed for (11) and (14):(

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

ϕ ◦ χ

)
(ξ1; p′) ≤ Λξ1

ξ2
(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)(ξ2 − ξ1) (25)

×

ϕ(ξ
1
p
2 )Nξ1

ξ2
(rα, h; Ψ′) + mϕ

 ξ
1
p
1

m

Nξ1
ξ2
(1− rα, h; Ψ′)

.

By adding (24) and (25), the following inequality can be achieved:(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ+1

ϕ ◦ χ

)
(ξ2; p′) +

(
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ−2

ϕ ◦ χ

)
(ξ1; p′) ≤ (ξ2 − ξ1)

× ((Λξ1
ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ) + Λξ1
ξ2
(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)))

(
ϕ(ξ

1
p
2 )Nξ1

ξ2
(rα, h; Ψ′) (26)

+ mϕ

 ξ
1
p
1

m

Nξ1
ξ2
(1− rα, h; Ψ′)

)
.

Multiplying both sides of (21) by Λξ1
$ (Mλ,ρ,θ,k,n

κ,α,β,γ,δ,µ,ν, Ψ; φ)Ψ′($) and integrating over [ξ1, ξ2],
one can obtain

ϕ

( ξ
p
1 + ξ

p
2

2

) 1
p
 ∫ ξ2

ξ1

Λξ1
$ (Mλ,ρ,θ,k,n

κ,α,β,γ,δ,µ,ν, Ψ; φ)d(Ψ($))

≤
(

h
(

1
2α

)
+ mh

(
2α − 1

2α

)) ∫ ξ2

ξ1

Λξ1
$ (Mλ,ρ,θ,k,n

κ,α,β,γ,δ,µ,ν, Ψ; φ)ϕ($
1
p )d(Ψ($)).

By utilizing Definition 3 in the above inequality one can obtain the following inequality:

ϕ

( ξ
p
1 + ξ

p
2

2

) 1
p


h
(

1
2α

)
+ mh

(
2α − 1

2α

)(φ
ΛΥ

λ,ρ,θ,k,n
κ,α,β,γ,δ,µ,ν,ξ−2

1
)
(ξ1; p′) (27)

≤
(

φ
ΛΥ

λ,ρ,θ,k,n
κ,α,β,γ,δ,µ,ν,ξ−2

ϕ ◦ χ

)
(ξ1; p′).



Fractal Fract. 2023, 7, 489 7 of 11

Now, multiplying by Λ$
ξ2
(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)Ψ′($)) on both sides of (21), then integrating
over [ξ1, ξ2], we obtain

ϕ

( ξ
p
1 + ξ

p
2

2

) 1
p


h
(

1
2α

)
+ mh

(
2α − 1

2α

)(φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,α,β,γ,δ,µ,ν,ξ+1

1
)
(ξ2; p′) (28)

≤
(

φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ+1

ϕ ◦ χ

)
(ξ2; p′).

The required inequality (22) can be composed from inequalities (26)–(28).

Remark 2. (i) The inequality stated in [23] (Corollary 3) is followed by setting p = 1 in (22).
(ii) The inequality stated in [24] (Theorem 1) is followed by setting p = 1, κ = ϑ and h(τ) = τ
in (22).

Theorem 3. If (α, h − m) − p-convexity of ϕ is replaced with (α, h − m) − p-convexity of
|ϕ′|, along with same assumptions as in Theorem 1, the following inequality holds for unified
integral operators:∣∣∣(φ

ΛΥ
ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

(ϕ ∗Λ) ◦ χ
)
($; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
µ,η,l,ξ−2

(ϕ ∗Λ) ◦ χ
)
($; p′)

∣∣∣
≤ Λξ1

$ (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)($− ξ1)

(
|ϕ′(ξ

1
p
1 )|N

ξ1
$ (rα, h; Ψ′) + m

∣∣∣∣∣ϕ′
(

$
1
p

m

)∣∣∣∣∣Nξ1
$ (1− rα, h; Ψ′)

)
(29)

+ Λ$
ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(ξ2 − $)

(
|ϕ′(ξ

1
p
2 )|N

ξ2
$ (rα, h; Ψ′) + m

∣∣∣∣∣ϕ′
(

$
1
p

m

)∣∣∣∣∣Nξ2
$ (1− rα, h; Ψ′)

)
.

where(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

(ϕ ∗Λ) ◦ χ

)
($; p′) :=

∫ $

ξ1

Λτ
$(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν,, Ψ; φ)ϕ′
(
(τ)

1
p

)
d(Ψ(τ)),

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

(ϕ ∗Λ) ◦ χ

)
($; p′) :=

∫ ξ2

$
Λ$

τ(Mλ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,, Ψ; φ)ϕ′

(
(τ)

1
p

)
d(Ψ(τ)).

Proof. Since |ϕ′| is a (α, h−m)− p-convex function, one can have

|ϕ′
(

τ
1
p

)
| ≤ h

(
$− τ

$− ξ1

)α

|ϕ′(ξ
1
p
1 )|+ mh

(
1−

(
$− τ

$− ξ1

)α)∣∣∣∣∣∣ϕ′
$

1
p

m

∣∣∣∣∣∣. (30)

Inequality (30) can takes the following form:

−

h
(

$− τ

$− ξ1

)α

|ϕ′(ξ
1
p
1 )|+ mh

(
1−

(
$− τ

$− ξ1

)α)∣∣∣∣∣∣ϕ′
$

1
p

m

∣∣∣∣∣∣
 ≤ ϕ′

(
(τ)

1
p

)
(31)

≤

h
(

$− τ

$− ξ1

)α

|ϕ′(ξ
1
p
1 )|+ mh

(
1−

(
$− τ

$− ξ1

)α)∣∣∣∣∣∣ϕ′
$

1
p

m

∣∣∣∣∣∣
.

From inequality (31), we have

ϕ′
(
(τ)

1
p

)
≤ h

(
$− τ

$− ξ1

)α

|ϕ′(ξ
1
p
1 )|+ mh

(
1−

(
$− τ

$− ξ1

)α)∣∣∣∣∣∣ϕ′
$

1
p

m

∣∣∣∣∣∣. (32)



Fractal Fract. 2023, 7, 489 8 of 11

Multiplying (8) with (32) and integrating over [ξ1, $], we obtain:

∫ $

ξ1

Λτ
$(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)ϕ′
(
(τ)

1
p

)
d(Ψ(τ)) ≤ Λξ1

$ (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)

(
|ϕ′(ξ

1
p
1 )|

×
∫ $

ξ1

h
(

$− τ

$− ξ1

)α

d(Ψ(τ)) + m

∣∣∣∣∣∣ϕ′
$

1
p

m

∣∣∣∣∣∣
∫ $

ξ1

h
(

1−
(

$− τ

$− ξ1

)α)
d(Ψ(τ))

)
.

which gives(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

(ϕ ∗Λ) ◦ χ

)
($; p′) ≤ Λξ1

$ (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)($− ξ1) (33)

×

|ϕ′(ξ 1
p
1 )|N

ξ1
$ (rα, h; Ψ′) + m

∣∣∣∣∣∣ϕ′
$

1
p

m

∣∣∣∣∣∣Nξ1
$ (1− rα, h; Ψ′)

.

Using the other inequality of (31) and doing so the same way as adopted for the right-hand
inequality, one can obtain(

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

(ϕ ∗Λ) ◦ χ

)
($; p′) ≥ −Λξ1

$ (Mλ,ρ,θ,k,n
κ,β,γ,δ,µ,ν, Ψ; φ)($− ξ1) (34)

×

|ϕ′(ξ 1
p
1 )|N

ξ1
$ (rα, h; Ψ′) + m

∣∣∣∣∣∣ϕ′
$

1
p

m

∣∣∣∣∣∣Nξ1
$ (1− rα, h; Ψ′)

.

From (33) and (34), the following inequality is observed:∣∣∣∣(φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

(ϕ ∗Λ) ◦ χ

)
($; p′)

∣∣∣∣ ≤ Λξ1
$ (Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν, Ψ; φ)($− ξ1) (35)

×

|ϕ′(ξ 1
p
1 )|N

ξ1
$ (rα, h; Ψ′) + m

∣∣∣∣∣∣ϕ′
$

1
p

m

∣∣∣∣∣∣Nξ1
$ (1− rα, h; Ψ′)

.

By applying the (α, h−m)− p-convexity of |ϕ′|, one can obtain

|ϕ′
(
(τ)

1
p

)
| ≤ h

(
τ − $

ξ2 − $

)α

|ϕ′(ξ
1
p
2 )|+ mh

(
1−

(
τ − $

ξ2 − $

)α)∣∣∣∣∣∣ϕ′
$

1
p

m

∣∣∣∣∣∣. (36)

Now, on the same lines as for (8) and (30), from (9) and (36), one can have the following
inequality:∣∣∣∣(φ

ΛΥ
ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ−2

(ϕ ∗Λ) ◦ χ

)
($; p′)

∣∣∣∣ ≤ Λ$
ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν, Ψ; φ)(ξ2 − $) (37)

×

|ϕ′(ξ 1
p
2 )|N

ξ2
$ (rα, h; Ψ′) + m

∣∣∣∣∣∣ϕ′
$

1
p

m

∣∣∣∣∣∣Nξ2
$ (1− rα, h; Ψ′)

.

The required inequality (29) can be composed by adding inequalities (35) and (37).

Remark 3. (i) The inequality stated in [23] (Corollary 3) is followed by setting p = 1 in (22).
(ii) The inequality stated in [24] (Theorem 3) is followed by setting p = 1, κ = ϑ and h(τ) = τ
in (22).
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4. Hadamard-Type Inequalities

In this section, we give some Hadamard-type inequalities for (h, m) − p-convex
functions, (α, m)− p-convex functions and (α, h)− p-convex functions. First, for α = 1,
(22) gives the result for (h, m)− p-convex functions as follows:

Theorem 4. Under the assumptions of Theorem 2, the following inequality holds:

ϕ

( ξ
p
1 + ξ

p
2

2

) 1
p


h
(

1
2

)
(1 + m)

((
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

1
)
(ξ1; p′) +

(
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

1
)
(ξ2; p′)

)

≤
(

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

ϕ

)
(ξ2; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

ϕ

)
(ξ1; p′)

≤ (ξ2 − ξ1)(Λ
ξ1
ξ2
(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν,, Ψ; φ) + Λξ1
ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν,, Ψ; φ))

×

ϕ(ξ
1
p
2 )Nξ1

ξ2
(r, h; Ψ′) + mϕ

 ξ
1
p
1

m

Nξ1
ξ2
(1− r, h; Ψ′)

.

For m = 1, (22) gives the result for (α, h)− p-convex functions as follows:

Theorem 5. Under the assumption of Theorem 2, the following inequality holds:

ϕ

( ξ
p
1 + ξ

p
2

2

) 1
p


h
(

1
2α

)
+ h
(

2α − 1
2α

)((φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

1
)
(ξ1; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

1
)
(ξ2; p′)

)

≤
(

φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

ϕ

)
(ξ2; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

ϕ

)
(ξ1; p′)

≤ (ξ2 − ξ1)(Λ
ξ1
ξ2
(Mλ,ρ,θ,k,n

κ,β,γ,δ,µ,ν,, Ψ; φ) + Λξ1
ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν,, Ψ; φ))

×
(

ϕ(ξ
1
p
2 )Nξ1

ξ2
(rα, h; Ψ′) + ϕ

(
ξ

1
p
1

)
Nξ1

ξ2
(1− rα, h; Ψ′)

)
.

For h(τ) = τ, (22) gives the result for (α, m)− p-convex functions as follows:

Theorem 6. Under the assumption of Theorem 2, the following inequality holds:

2α ϕ

( ξ
p
1 + ξ

p
2

2

) 1
p


(1 + m(2α − 1))

((
φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

1
)
(ξ1; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

1
)
(ξ2; p′)

)
≤
(

φ
ΛΥ

ω,λ,ρ,θ,k,n
ϑ,β,γ,δ,µ,ν,ξ−2

ϕ

)
(ξ1; p′) +

(
φ
ΛΥ

ω,λ,ρ,θ,k,n
κ,β,γ,δ,µ,ν,ξ+1

ϕ

)
(ξ2; p′)

≤ (Λξ1
ξ2
(Mλ,ρ,θ,k,n

ϑ,β,γ,δ,µ,ν,, Ψ; φ))

((
ϕ(ξ2)Ψ(ξ2)−mϕ

(
ξ1

m

)
Ψ(ξ1)

)
− Γ(α + 1)
(ξ2 − ξ1)α

(
ϕ(ξ2)−mϕ

(
ξ1

m

))
α Iξ−2

Ψ(ξ1)

)
.

5. Conclusions

We obtained the bounds of fractional integral operators containing the unified Mittag–
Leffler function via (α, h − m) − p-convex functions. The established results are gener-
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alizations of many integral inequalities that have been published in the recent past in
articles [23,24] (see Remarks 1–3 and Section 4). The results of this paper are applicable
for a wide range of classes of functions linked with (α, h − m) − p-convex functions in
particular cases.
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