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Abstract: In this work, an open-source computational–statistical platform to obtain synthetic homo-
geneous isotropic turbulent flow and passive scalar transport is presented. A parallel implementation
of the well-known pseudo-spectral method in addition to the comprehensive record of the statis-
tical and small-scale quantities of the turbulent transport are offered for executing on distributed
memory CPU-based supercomputers. The user-friendly workflow and easy-to-run design of the
developed package are disclosed through an extensive and step-by-step example. The resulting low-
and high-order statistical records vividly verify a well-established and fully developed turbulent state
as well as the seamless statistical balance of conservation laws. The post-processing tools provided in
this platform would allow the user to easily construct multiple important transport quantities from
primitive turbulent fields. The programming codes for this tool are accessible through GitHub (see
Data Availability Statement).

Keywords: turbulent transport; passive scalars; statistical analysis; pseudo-spectral method; high-
performance computing

1. Introduction

Understanding the complex and random nature of turbulent flows, mixing, and trans-
port is a vital step in predictions and the design of systems interacting with such a het-
erogeneous medium. Turbulence inherently consists of multi-scale processes that require
highly accurate measurements at the smallest scales of transport [1,2]. The direct numerical
simulation (DNS) of turbulent transport as a rigorous scientific tool is supposed to fully
resolve the smallest scales of the motion resulting from fluctuating fields in the spatial
domain while maintaining a high-order of temporal accuracy as turbulence evolves in
time [3]. Therefore, developing an open-source, sustainable, portably parallel, and inte-
grated computational–statistical framework with high-order spatial and temporal accuracy
provides a useful academic ground for a better understanding of the complex standard to
anomalous turbulent transport across a multitude of scales. Moreover, from an educational
point of view, developing such a user-friendly scientific software will essentially fill the
existing training gap in the subjective trinity, i.e., fluid mechanics, computational fluid
dynamics, and turbulent transport; hence, leading to a more cohesive ramp-up in training
the future generation of researchers in a variety of academic-to-industrial disciplines.

Among the current open-source computational frameworks, Nektar++ [4,5] (the
spectral/hp element method flow software), HERCULIS [6] and Xcompact3D [7] (the high-
order finite difference flow solvers), GRINS [8] (the adaptive mesh refinement finite element
method software), spectralDNS [9] (the spectral method computational package for DNS),
and OpenFOAM [10] are notable contributions to the DNS of turbulent transport. On the
other hand, the random nature of turbulence requires a thorough statistical analysis on
the fluctuating fields and their gradients so that one can identify when the realistic and
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fully developed turbulent state is obtained in the DNS during an ongoing simulation.
This necessitates the development of a comprehensive computational platform that in-
cludes computing and recording such statistical quantities of turbulent transport in a time
series format.

In the current work, our goal is to offer an extensible, open-source computational
platform that carries out the high-fidelity simulations of homogeneous isotropic turbulence
(HIT) for an incompressible flow, as well as the transport of a passive scalar (tempera-
ture or concentration of species) within that flow medium [11,12]. Moreover, we aim to
keep track of various statistical quantities of turbulent transport while the simulation is
running. These statistical records serve as comprehensive metrics to ensure the accuracy
and physical validity of the simulated turbulent fields over a specified time span. Here,
we numerically solve the incompressible Navier–Stokes (NS) equations in addition to
the advection–diffusion (AD) equation to sufficiently resolve the fluid velocity and pas-
sive scalar fields concurrently. The spatial homogeneity of fluctuating fields makes this
problem well-suited for the pseudo-spectral implementation of the NS and AD equations
based on the Fourier collocation discretization, as employed in our work. This computa-
tional platform is based on the programming in PYTHON and leveraging the MPI library for
parallel implementation.

The rest of this paper is organized as follows: In Section 2, we describe the details
and capabilities of the developed platform as scientific software and briefly point out
the theoretical and numerical backgrounds. Furthermore, in Section 3, we go over a
comprehensive example, illustrating the results of a fully developed turbulent flow and
passive scalar field with proper statistical testing and verification. In Section 4, we outline
the broader impacts of the current work in turbulent transport research. Finally, in Section 5,
we conclude this paper with a summary and conclusions.

2. Solver Description
2.1. Governing Equations

The incompressible HIT flow considered in the present software is governed by
NS equations

∂U
∂t

+ U ·∇U = −∇p + ν ∆U +AU; ∇ ·U = 0. (1)

In (1), U = (U1, U2, U3) and p are the instantaneous velocity and modified pressure
(pressure divided by the constant density of fluid) fields in the Cartesian coordinate system
x = (x1, x2, x3), respectively. Moreover, ν denotes the dynamic viscosity of the Newtonian
fluid, and A is a dynamically evaluated coefficient that corresponds to the artificial forcing
scheme we employed in order to obtain a statistically stationary and fully turbulent state.
From the Reynolds decomposition of the instantaneous velocity field, U(x, t) = 〈U(x, t)〉+
u(x, t), where 〈·〉 represents the ensemble-averaging operator, and u(x, t) denotes the
fluctuating part of the velocity field. In HIT, 〈U(x, t)〉 = 0; therefore, the instantaneous
velocity field equals the fluctuating part that is governed by (1). Introducing a passive
scalar Φ(x, t) transported in the considered fully developed HIT flow, the AD equation
governing the passive scalar concentration may be formulated as

∂Φ
∂t

+ u ·∇Φ = D ∆Φ, (2)

whereD denotes the diffusivity of the passive scalar. We apply the Reynolds decomposition
to the total passive scalar, Φ = 〈Φ〉 + φ, while φ denotes the fluctuating part of the
scalar concentration. Considering a uniform mean gradient for the passive scalar as
∇〈Φ〉 = (0, β, 0), where β is a constant, the AD equation in (2) may be rewritten as

∂φ

∂t
+ u ·∇φ = −β u2 +D ∆φ. (3)
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2.2. Fourier Pseudo-Spectral Method

Here, we consider spatial homogeneity for the fluctuating velocity and scalar con-
centration, which allows choosing the periodic boundary conditions for these fluctuating
fields as

u(x + L ei, t) = u(x, t), φ(x + L ei, t) = φ(x, t). (4)

In (4), ei, i=1,2,3, is the unit vector along the i-th direction in the Cartesian coordinate, and L
denotes the periodicity length, specifying the spatial domain as Ω = [0,L]3. Discretizing
Ω using a uniform three-dimensional grid returns N3 grid points with ∆x = L/N as the
grid spacing along each direction. Transforming this discretization into the spectral domain
returns a standard pseudo-spectral representation of the governing equations given in (1)
and (3). Subsequently, k = (k1, k2, k3) indicates the coordinate system in the spectral space.
By employing the Fourier collocation method, the discretized representation of k would be
ki = (−N/2 + 1, . . . , N/2), i = 1, 2, 3. Accordingly, the discrete Fourier transform of any
field variable, such as φ(x, t), is written as

φ(x, t) =
1

N3 ∑
k

φ̂k(t) eik·x, (5)

where i =
√
−1, and eik·x are the Fourier basis functions. As a result, the Fourier coefficients

associated with k are represented as φ̂k(t) = ∑x φ(x, t) e−ik·x. The standard pseudo-spectral
formulation of the NS equations based on the Fourier collocation method is obtained after
taking the Fourier transform of (1),

dûk
dt

+ (û ·∇u)k = −ik p̂k − ν|k|2ûk +Aûk; (6)

i k · ûk = 0,

By taking the divergence of momentum equation in (6) and applying the continuity, the
modified pressure is explicitly expressed in terms of the velocity field. Considering that
k · k = |k|2, one can derive that p̂k = ik · (û ·∇u)k/|k|2; hence, (6) may be reformulated as

dûk
dt

+ (û ·∇u)k = k
k · (û ·∇u)k
|k|2 − ν|k|2ûk +Aûk. (7)

Similarly, the pseudo-spectral representation of the AD equation for passive scalar (3) is
obtained as

dφ̂k
dt

+ (û ·∇φ)k = −β ûk2 −D|k|2φ̂k. (8)

We employ a fourth-order Runge–Kutta (RK4) scheme, to perform the time-stepping
procedure for both NS and AD equations. Since the nonlinear (advective) terms are
evaluated in the physical space and then transformed into the spectral space, the time-
stepping is essentially explicit.

2.3. Programming Architecture

The structure of the presented software is schematically illustrated in Figure 1. Ac-
cording to Figure 1a, the user starts from a pre-processing step, where the isotropic and
random velocity initial conditions (I.C.) are constructed based on a prescribed spectrum for
turbulent kinetic energy (TKE). The procedure is a straightforward implementation of the
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well-known work by Rogallo for generating a divergence-free isotropic velocity state [13].
According to Lamorgese et al. [14], the initial TKE spectrum is set to

E(κ, 0) =
u2

rms
kF
×
{
(κ/kF)

2, if κ ≤ kF,
(κ/kF)

−5/3, if κ > kF.
(9)

In this initialization of TKE, κ represents the wavenumber associated with spherical shells,
kF denotes the maximum wavenumber of the TKE shell that we apply artificial forcing to,
and urms specifies the initial root-mean-square (rms) intensity of velocity fluctuations. In the
construction of the velocity I.C., urms is set to unity while kF and the number of Fourier
collocation points, N, are taken as input parameters. In a UNIX/LINUX environment, these
inputs are taken as arguments in the execution command line, which are imported through
the sys library in PYTHON. Once the velocity I.C. is obtained, it is partitioned into Np slabs
according to the “slab” decomposition method. The domain decomposition and the parallel
implementation of the forward and inverse three-dimensional fast Fourier transform (FFT)
in PYTHON programming language are adopted from Mortensen and Langtangen’s work
in [9]. Here, the MPI communications depend on the mpi4py library [15–17].

(a) (b)

Figure 1. Schematic of the architecture of the software. (a) Illustrates the pseudo-spectral NS solver
to archive the fully developed turbulent state, statistical records, velocity output, and restart the
simulation from the output file. (b) Shows the pseudo-spectral NS and AD solvers to reach the fully
developed turbulent scalar state.

Having the partitioned velocity I.C. prepared in the pre-processing step, it is fed into
the main body of the software, where the initial velocity field might be magnified by a user-
defined input argument so that a target TKE level could be considered for the simulation.
Moreover, the viscosity of thefluid, ν, is also taken as another user-defined input argument.
Next, the magnified velocity field is passed into the solver, where ûk and (∇̂u)k = i k ûk
are separately transformed back into the physical space. As a result, the nonlinear term
u ·∇u is simply computed and then it is transformed into the Fourier space. The aliasing
error that appears due to this procedure is removed by phase-shifting and truncation,
according to 2

√
2N/3 as the maximum wavenumber (see [18]). Afterward, all of the terms

in Equation (7) are directly evaluated in every stage of the RK4 time integration; however,
the last term on the right-hand side of (7) is only evaluated after the final stage during
the method called artificial forcing. In artificial forcing, we manage to keep the energy
content in the low wavenumbers constant; in the spectral domain, this is associated with
the sphere of 0 < |k| ≤ kF. In this procedure, A is computed in a way that the dissipated
energy of turbulent motion is injected into the large scales. This scheme prevents the flow
from undergoing a decay process before the realistic and fully developed turbulent state
is achieved; nevertheless, the artificial forcing scheme could be turned off through a user-
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defined input argument if one seeks to obtain decaying HIT data. The forcing coefficient
could be determined either deterministically [19] or stochastically [20,21], and both of these
methods are supported in the software, as would be specified through parsing an input
argument. Moreover, regarding the stable time integration, the Courant–Friedrichs–Lewy
(CFL) number is dynamically checked through a user-defined time frequency. According
to Eswaran and Pope’s work [20], the CFL for this problem is demonstrated as

CFL :=
∆t
∆x

max(|u1|+ |u2|+ |u3|). (10)

In (10), ∆x is the uniform grid spacing in each direction and ∆t is the user-defined constant
time interval that is used in the RK4 time-stepping. In practice, CFL is required to be less
than unity to ensure stable time integration.

Since the fully developed turbulent state is characterized by the meticulous tracking of
statistical quantities of the flow, the present software provides a comprehensive framework
for computing and recording the statistical quantities of turbulent flow. Given the homo-
geneity of the fluctuating fields, spatial averaging is employed for computing these records
at user-defined time intervals. These statistical quantities are categorized into turbulent
characteristics of small-scale motion reported in Table 1, and high-order central moments
of diagonal components of the velocity gradient tensor (VGT), ∇u. For instance,

Su1,1 =

〈(∂u1

∂x1

)3
〉/〈(∂u1

∂x1

)2
〉3/2

, (11)

Ku1,1 =

〈(∂u1

∂x1

)4
〉/〈(∂u1

∂x1

)2
〉2

, (12)

where Su1,1 and Ku1,1 are the skewness factor and flatness factor (or kurtosis) associated
with the first diagonal component of VGT, u1,1 = ∂u1/∂x1, respectively. The fully turbulent
flow state would be identified when the time series of these records reach a statistically
stationary state after a long enough time integration, i.e., approximately 10 to 15 large-eddy
turnover times (see Table 1). The parallel implementation for computing and collecting
these statistical quantities and later recording them as time series is performed by utilizing
point-to-point and collective MPI directives.

Table 1. Statistical characteristics of the turbulent flow to be recorded from the NS solver as time
series within user-defined time intervals.

TKE K = 1
2 〈u · u〉

Turbulent dissipation ε = 2 ν 〈S : S〉
Kolmogorov length-scale η =

(
ν3/ε

)1/4

Taylor scale Reynolds number Reλ = λ urms/ν
Large-eddy turnover time Te = lo/urms

S = 1
2

(
∇u +∇uT), urms =

√
2K/3, λ = urms

√
15ν/ε, lo = u3

rms/ε.

Furthermore, the velocity and pressure fields might be written as output files stored
in directories named Out_∗, based on a user-defined time interval that could be used for
post-processing after the flow reaches a fully developed turbulent state. A “restart from
file” capability is also designated so that once the statistical record is written out to a file,
the latest state of the velocity field and its particular time integration information are also
written to files, which are stored in a directory named Restart. Starting a simulation from
either a prescribed I.C. or restarting it to continue an ongoing simulation that was stopped
before is specified by a user-defined input argument. The parallel I/O to store the velocity
and pressure fields is done by employing the scipy.io library by using loadmat() and
savemat() routines for each partition of the data resolved within each MPI process. These
I/O routines provide partitioned outputs in the compressed format and with the machine
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precision accuracy. This is essentially a fast and efficient I/O approach that maintains the
simplicity for users to perform any post-processing steps, such as time-averaging on the
statistically stationary turbulent data.

According to Figure 1b, once the fully turbulent velocity state is achieved, the user
may be able to use a restart or output instance as the velocity I.C. to introduce a passive
scalar transport to the simulation. The passive scalar field is added with a directional
constant mean gradient as described in (3), while the fluctuating concentration is assumed
to be zero, φ0(x) = 0. Here, the goal is to resolve the fluctuating scalar concentration field,
Equation (8), transported on the fully turbulent incompressible flow for a long enough
time span so that the fully developed and realistic turbulent state for the passive scalar
is obtained. Subsequently, a similar procedure as described in the schematic shown in
Figure 1a is followed, while the pseudo-spectral AD solver is fed by the resolved velocity
field from the NS solver. The diffusivity of the passive scalar, D, is specified by a user-
defined input argument for the Schmidt number, Sc = ν/D. Accordingly, similar to the
NS solver, the advective scalar flux, (û ·∇φ)k, is computed in the physical space by the
inverse FFT of ûk and (∇̂φ)k, followed by the forward FFT computation of u ·∇φ. A
similar dealiasing procedure, as described for the NS solver, is employed in the pseudo-
spectral AD solver, and the RK4 time integration scheme is utilized to numerically perform
explicit time-stepping.

In homogeneous scalar turbulence, the time evolution of the scalar variance 〈φ2〉 is
governed by

d
dt
〈φ2〉 =− 2 〈q〉 ·∇〈Φ〉 − 〈χ〉, (13)

where q = φ u denotes the scalar flux vector, and the turbulent scalar dissipation is defined
as χ = 2D∇φ ·∇φ [22]. According to (3), the first term on the right-hand side of (13) is
simplified to −2 β 〈φ u2〉, which denotes the scalar variance production (by the uniform
mean scalar gradient, β). The present software is capable of computing and recording a
rate of scalar variance in addition to the production and dissipation terms. This is useful
for checking if the balance on both sides of Equation (13) holds throughout a simulation
so that one ensures that the implementation of the solver works seamlessly. On the other
hand, a measure to evaluate whether the statistically stationary state for the passive scalar
is achieved is to check if −2 β 〈φ u2〉/〈χ〉 ∼ 1 throughout the simulation. Moreover,
recording the skewness and flatness factors for the components of the fluctuating scalar
gradient vector (e.g., Sφ,2 and Kφ,2 for φ,2 = ∂φ/∂x2, similar to (11) and (12) for VGT) is
another statistical indicator measure for the fully developed turbulent passive scalar state.
Therefore, in the current computational platform, the user would be able to recognize the
statistically stationary state by monitoring the explained time series data that is written out
according to the user-defined time interval as a software input.

The field data output and restart capability for the AD solver are designated using a
similar strategy to that described for the NS solver, so that the user would be able to resume
an interrupted/stopped simulation and use the output field data for desired applications
or post-processing.

In the following section, we present a comprehensive example that, step by step, walks
through the utilization of the present software.

3. An Illustrative Example

This comprehensive example mainly consists of the construction of isotropic velocity
I.C., obtaining a well-resolved fully turbulent velocity field, and simulating well-resolved
passive scalar turbulence with an imposed mean scalar gradient.

3.1. I.C. Construction and the DNS of HIT Flow

According to the descriptions in Section 2.3, the isotropic and divergence-free velocity
I.C. is constructed based on a prescribed energy spectrum given in (9). Considering the
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periodicity length L = 2π, this pre-processing step is done through serial execution
of the Gen_IC.py script, which takes the following input arguments, respectively: N
(spatial resolution along each direction), kF (forcing wavenumber), and Np (number of slab
partitions). We need to emphasize that Np must be chosen in a way that N is a multiple of
Np. The resulting velocity field is located in a directory named IC, where Np is the number
of .mat velocity files that are stored. In this example, we take N = 520, kF = 2, and Np = 40.
All the components of velocity I.C., in addition to the VGT components, have Gaussian
distribution. This velocity I.C. is passed into the NS solver written in PScHIT.py script,
which takes the following input arguments given in Table 2. Here, Output_frequency and
Stats_frequency are multiplied by the specified ∆t. Moreover, the If_Restart argument
could either be 0 or 1, where 0 indicates that it is a simulation starting from the constructed
I.C., while 1 specifies resuming a simulation from the restart files. In this example, we
performed the simulation for t/Te ∼ 15 to ensure that the fully turbulent flow state was
achieved. Figure 2a portrays the first component of the velocity field. Figure 2b shows
the radial TKE spectrum averaged over 5 large-eddy turnover times. Moreover, Figure 2c
includes the time records of the Taylor scale Reynolds number and VGT skewness factor
for diagonal components computed and recorded over 40 large-eddy turnover times. This
shows that the statistically stationary state is achieved through the long-time DNS, where
Reλ ≈ 240, Su1,1 = Su2,2 = Su3,3 ≈ −0.55, and Ku1,1 = Ku2,2 = Ku3,3 ≈ 6.8 at the fully
turbulent state. The statistical records of VGT clearly show that the resolved velocity
field is isotropic. Finally, kmaxη ≈ 1.5 ensures that the small-scale turbulent motions are
well-resolved (kmax =

√
2N/3) [23].

Table 2. Input arguments for PScHIT.py and the specified values for the example case. The order of
arguments in the execution command line are listed here.

Input Argument Value

t_end 40
Output_frequency 1000
Stats_frequency 100

TKE_magnification 6.0
ν 0.0008
kF 2

forcing_type deterministic
N 520
∆t 0.0005

If_Restart 0 or 1

3.2. DNS of Passive Scalar Transport

Similar to starting the NS solver from a prescribed velocity I.C., we take a fully turbu-
lent velocity output (velocity state at t/Te = 15 in Section 3.1) and continue the simulation
under artificial forcing, while introducing a passive scalar field where its fluctuating part
is initialized at zero. The Schmidt number, Sc, is specified by the user through an input
argument. According to the problem setting for the mean scalar gradient, we let β = 1
(mean scalar gradient along x2 direction). Therefore, for a passive scalar with Sc = 1, we
aim to obtain the fully turbulent scalar field. We need to note that the spatial resolution
required for the passive scalars with Sc ≥ 1 is defined based on ηB = η Sc−1/2 [24] and in
this example, the spatial resolution for the velocity field is sufficient for a well-resolved
passive scalar. We managed to resolve the passive scalar field for 25 large-eddy turnover
times and the rest of the simulation parameters remain the same as values reported in
Table 2. Figure 3 shows the records of scalar variance production over the dissipation rate,
−2 〈φ u2〉/〈χ〉, and the flatness factor for the scalar gradient along the direction of the mean
scalar gradient, Kφ,2 . As observed, after resolving the passive scalar field for approximately
two large-eddy turnover times, −2 〈φ u2〉/〈χ〉 ∼ 1.0; this means that the equilibrium state
for the passive scalar variance is obtained. Moreover, after approximately three large-eddy
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turnover times, the high-order statistical moments of the scalar gradient reach a statically
stationary state. For instance, Sφ,2 ≈ 1.4, and Kφ,2 ≈ 20.8 throughout the time-averaging
of these statistical moments when t/Te ≥ 5. By resolving the passive scalar field through
the AD equation, and for a long enough time after the equilibrium and stationary state,
the fully turbulent and realistic scalar field is ensured.

(a) (b)
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Figure 2. (a) Snapshot of the fully developed turbulent velocity field, u1 component. (b) Time-
averaged TKE spectrum. (c) Time series of Reλ (red dashed line), and VGT skewness factors, Su1,1 ,
Su2,2 , Su3,3 .
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Figure 3. (a) Time records of production over dissipation of scalar variance (blue dashed line), and the
flatness factor for the scalar gradient vector component along the direction of the mean scalar gradient
(green solid line). (b) Snapshot of the fully developed turbulent passive scalar field.

4. Impact and Applications

Current work offers a framework for obtaining highly accurate spatiotemporal data for
homogeneous turbulent transport with proper statistical testing of the recorded quantities.
In turbulent transport research, this provides a great source of high-fidelity data for a variety
of innovative contributions. In a large-eddy simulation (LES) of turbulence, the exact
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subgrid-scale (SGS) closure terms appearing in the filtered NS and AD equations are
computed from the filtered DNS data and they are utilized in assessing the performances
of SGS models (see, e.g., [25]). In particular, this computational–statistical framework has
been employed in the nonlocal modeling of these SGS closure terms from fractional-order
operators. For instance, Akhavan-Safaei et al. [26] utilized a rich dataset of filtered DNS
data for the SGS scalar flux to show that the dynamics of SGS transport are essentially
“nonlocal”. Later, they utilized this dataset to infer the parametric space of the fractional-
order SGS model they developed, as well to test its performance.

4.1. Fractional LES SGS Modeling for Scalar Turbulence

The filtered AD equation for the total passive scalar concentration, developed from the
filtered kinetic BTE with an α-stable Lévy distribution model, yields a fractional-order SGS
scalar flux model at the continuum level. The aforementioned filtered AD equation reads

∂Φ̃
∂t

+ Ũ ·∇Φ̃ = D ∆Φ̃ +Dα (−∆)αΦ̃, (14)

where (̃·) represents the filtering operator. Through a proper choice for the fractional
Laplacian order α, the developed model optimally works in an LES setting. Applying
the Reynolds decomposition and considering the passive scalar with an imposed uniform
mean gradient, (14) fully recovers the filtered transport equation for the transport of the
filtered scalar fluctuations, φ̃.

4.2. Nonlocal Spectral Transfer Model and Scaling Law for Scalar Turbulence

In a subsequent work by Akhavan-Safaei and Zayernouri [27], the DNS conducted
by the current framework was used to show that a revised nonlocal spectral transfer
model for passive scalars (driven by a large-scale source of anisotropy) would yield an
additional fractional-order turbulent diffusion term in the AD equation represented in
physical domain. They proposed a physically meaningful modification to the scaling of the
scalar variance cascade, given by

Eφ(k) = χ ε−1/3 k−2/3 (k2 + Cαk2α)−1/2. (15)

This generalizes the −5/3 law, which corresponds to α = 0. Modifying the present DNS
framework to accommodate this fractional-order diffusion term during the time-stepping,
they showed that their recorded time-averaged high-order statistics for the scalar gradient
were as precise as the similar computational works reported in the literature with an
extremely resolved DNS setup (see [28]). In fact, they demonstrated that their fractional-
order DNS approach provides a highly accurate resolved field while efficiently reducing
the computational cost.

In another study by Samiee et al. [29], the current DNS framework was utilized for
modeling the SGS stress term in the filtered NS equation in terms of a tempered fractional
Laplacian operator, and the DNS framework was modified for the LES tests with the
tempered fractional-order SGS model. Furthermore, Seyedi and Zayernouri [30] developed
a dynamic version of the fractional-order SGS stress model for solving the filtered NS
equation through a data-driven approach that was supported by the DNS results of the
current framework. They also tested their dynamic fractional SGS model in a modified
version of this DNS framework for LES tests. In a following study, Seyedi et al. extended
the dynamic fractional modeling methodology to predict the SGS scalar flux in large-eddy
simulations of turbulent passive scalars, and utilized this DNS framework to test their
model [31].

On the other hand, given the abundance of data and the emergence of data-driven
turbulence models [32], the current computational platform would be a reliable candi-
date to generate data for training and testing such models (see, e.g., [33–37]). Moreover,
high-Reynolds and well-examined high-fidelity turbulent transport data from the present
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DNS framework could be directly employed in studying the role of coherent turbulent
structures and their effects on turbulence statistics [38,39], investigating topological charac-
teristics of turbulent transport [40,41], and analyzing extreme events and internal intermit-
tency [42–44].

5. Summary and Conclusions

This work presented a computational platform for the DNS of homogeneous turbulent
flow and passive scalar transport. This open-source software is based on a pseudo-spectral
representation of the NS and AD equations on a triply cubic computational domain with
periodic boundary conditions for fluctuating fields. Using the Fourier collocation method,
the governing equations are discretized in space; by employing the RK4 scheme, the
time-stepping is performed. The software provides a pre-processing step to construct
homogeneous and isotropic divergence-free velocity I.C., based on a prescribed energy
spectrum, which can be decomposed into user-defined partitions. Using the artificial
forcing scheme, the dissipated energy is injected into the low wavenumbers, so that after
a long time integration, a statistically stationary state is achieved. In order to examine
and identify whether the fully developed turbulent flow is obtained, small-scale statistical
quantities of turbulence, in addition to the central moments of VGT components, are
computed and recorded. Once the realistic turbulent velocity field is obtained, the user
is able to start resolving a passive scalar that is transported with the HIT flow, while a
uniform mean scalar gradient is imposed. Resolving the scalar fluctuations for a long
enough period of time after reaching the equilibrium and stationary state provides the fully
developed turbulent scalar field. Statistical records of the scalar gradients, in addition to
records of scalar variance production and dissipation, help the user properly identify when
the fully developed scalar turbulence is achieved.
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