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Abstract: In this study, we consider fractional-in-time Venttsel’ problems in fractal domains of the
Koch type. Well-posedness and regularity results are given. In view of numerical approximation, we
consider the associated approximating pre-fractal problems. Our main result is the convergence of
the solutions of such problems towards the solution of the fractional-in-time Venttsel’ problem in the
corresponding fractal domain. This is achieved via the convergence (in the Mosco–Kuwae–Shioya
sense) of the approximating energy forms in varying Hilbert spaces.
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1. Introduction

The aim of this paper was to study the asymptotic behavior of the solution of time-
fractional Venttsel’ problems (Ph) in Koch-type pre-fractal domains Ωh, and to prove that
the limit is the solution of the corresponding problem (P) in the Koch domain Ω. Beyond
the interest in itself, this result is a preliminary step towards the numerical approximation
of problem (P), following the approach of [1].

Fractal geometries are good models for irregular media, and many diffusion phenom-
ena take place across irregular layers. This motivates the study of fractional heat diffusion
across irregular boundaries.

From the mathematical point of view, the problem can be viewed as the coupling of an
evolution equation in the bulk and an evolution equation on the boundary. These problems
are also known as boundary value problems (BVPs) with dynamical boundary conditions.
In the present setting, the resulting boundary condition is of the second order, which is, in
some sense, unusual for BVPs involving second order operators.

We formally state the model problem (P) as:

(P)


∂α

t u(t, P)− ∆u(t, P) = f (t, P) in (0, T)×Ω,

∂α
t u(t, P)− ∆Ku(t, P) + b(P)u(t, P) + ∂u(t,P)

∂n = f (t, P) in (0, T)× K,

u(0, P) = ϕ(P) in Ω,

where Ω ⊂ R2 is the two-dimensional open bounded domain with boundary K = ∂Ω, the
Koch snowflake (see Section 2.1), 0 < α ≤ 1, ∂α

t is the fractional Caputo time derivative
(see Section 2.5 for the definition), ∆K is the Laplace operator defined on the fractal K (see
(8) in Section 3.1), b is a continuous strictly positive function on Ω, ∂u

∂n denotes the normal
derivative across K, f and ϕ are given data in suitable functional spaces (see Section 4).
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For h ∈ N, we denote by Ωh ⊂ R2 the pre-fractal domain with boundary ∂Ωh = Kh,
where Kh is the polygonal curve approximating K at the h-th step (see Section 2.1).

We consider the problems (Ph) defined on Ωh. For every h ∈ N, we formally present
problem (Ph) as:

(Ph)


∂α

t uh(t, P)− ∆uh(t, P) = fh(t, P) in (0, T)×Ωh,

δh∂α
t uh(t, P)− ∆Kh uh(t, P) + δhb(P)uh(t, P) + ∂uh(t,P)

∂nh
= δh fh(t, P) in (0, T)× Kh,

uh(0, P) = ϕh(P) in Ωh,

where ∆Kh is the piecewise tangential Laplacian defined on Kh (see Section 3.2), ∂uh
∂nh

is the
normal derivative across Kh and fh(t, P) and ϕh(P) are given data in suitable functional
spaces. The positive constant δh has a key role in the asymptotic behavior as h→ +∞ (see
Section 5). The choice of this constant allows us to overcome the difficulties arising from the
jump of dimension in the asymptotic analysis from the pre-fractal case to the fractal one.

We remark that Venttsel’ problems in fractal domains, and their approximations, were
first studied in [2], see also [3–5]. These problems were later generalized to the case of
quasi-linear and/or fractional-in-space operators, as, for example, in [6,7].

The literature on Venttsel’ problems in smooth domains is huge, starting from the
pioneering work of Venttsel’ in 1959 [8], wherein he introduced a new class of boundary
conditions for elliptic operators given by second order integro-differential equations (see
also [9–13]). We refer the reader to the introduction of [2] for the physical motivations, and
also [14].

As to the literature on time-fractional problems, the existing literature is wide. Among
others, we refer to [15–20], and the references therein, and to [21] for time-fractional Venttsel’
problems in Lipschitz domains. For time-fractional equations in fractal domains, we refer
to, for example, [22,23].

Our goal is to prove well-posedness results for problems (P) and (Ph) and to prove
that the “fractal” solution of problem (P) can be approximated by the sequence {uh} of the
“smoother” solutions of problems (Ph).

More precisely, in Section 4.1 we introduce abstract Cauchy problems (P) and (Ph)
and we prove that problem (P) is the “strong formulation” of problem (P) (see Theorem 3)
and that, for every h ∈ N, problem (Ph) is the “strong formulation” of problem (Ph) (see
Theorem 4). Existence and uniqueness results of the “strong solution” are obtained by the
well-posedness results for fractional-in-time Cauchy problems [21].

We emphasize that the natural functional framework for studying problems (Ph) is
that of the varying spaces L2(Ωh, mh) (see Section 5.1).

The asymptotic analysis of the solutions of problems (Ph) is performed by using the
Mosco–Kuwae–Shioya (M-K-S) convergence. In [2], it was proved that the energy forms
E(h), associated to problems (Ph), converge in the M–K–S sense to the fractal energy form
E, associated to problem (P). This implies the convergence of associated semigroups and
resolvents and it turns out to be crucial for the proof of Theorem 6.

The plan of the paper is the following.
In Section 2, we recall the geometry, the functional setting, and the definition of

convergence of varying Hilbert spaces, as well as the definition of the fractional Caputo
time derivative.

In Section 3, we introduce the energy forms E and E(h), see (11) and (17), respectively,
and the associated resolvents and semigroups.

In Section 4, we study the existence and uniqueness of the solutions of the evolu-
tion problems (P) and (Ph). Moreover, we give the strong formulations of problems (P)
and (Ph).

In Section 5, we state the convergence of the energy forms and of the Hilbert spaces
and in Theorem 6 we prove the convergence of the pre-fractal solutions to the fractal
solution in a suitable weak sense.
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2. Preliminaries
2.1. Geometry

In this paper, we denote points in R2 by P = (x1, x2), the Euclidean distance by
|P− P0| and the Euclidean ball by B(P0, r) = {P ∈ R2 : |P− P0| < r} for P0 ∈ R2 and
r > 0. The Koch snowflake K [24] is the union of three com-planar Koch curves K1, K2 and
K3, see Figure 1.

Figure 1. The Koch snowflake K.

The Hausdorff dimension of the Koch snowflake is d f =
ln 4
ln 3 .

The natural finite Borel measure µ, supported on K, is defined as

µ := µ1 + µ2 + µ3, (1)

where µi denotes the normalized d f -dimensional Hausdorff measure, restricted to Ki,
i = 1, 2, 3.

We denote by

Kh+1 =
3⋃

i=1

K(h+1)
i (2)

the closed polygonal curve approximating K at the (h + 1)-th step. We denote by K(h+1)
i

the pre-fractal (polygonal) curve approximating Ki.
The measure µ enjoys the following property: there exist two positive constants c1, c2

such that
c1rd f ≤ µ(B(P, r) ∩ K) ≤ c2rd f ∀ P ∈ K. (3)

Since µ is supported on K, in (3) we replace µ(B(P, r) ∩ K) with µ(B(P, r)).
Let Ω denote the two-dimensional open bounded domain with boundary K and, for

every h ∈ N, let Ωh be the pre-fractal polygonal domains approximating Ω at the n-th step,

and let Kh = ∂Ωh be the pre-fractal curves. We denote by M and by
◦

M any segment of
Kh and the related open segment, respectively. We note that the sequence {Ωh}h∈N is an
invading sequence of sets exhausting Ω.

2.2. Sobolev Spaces

Throughout the paper, C denotes possibly different positive constants. The depen-
dence of such constants on some parameters is given in parentheses.

Let G (resp. S) be an open (resp. a closed) set of RN . For p ≥ 1, we denote the Lebesgue
space with respect to the Lebesgue measure dLN by Lp(G) and the Lebesgue space on
∂G with respect to an invariant Hausdorff measure µ supported on ∂G by Lp(∂G, µ). For
s ∈ R+, we denote the usual (possibly fractional) Sobolev spaces by Hs(G) [25]. We denote
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the space of infinitely differentiable functions with compact support on G by D(G) and the
space of continuous functions on S by C(S).

In the following, we make use of trace spaces on boundaries of polygonal domains of
R2. For more details, we refer the reader to [26].

By H1(Kh) we denote the set

{v ∈ C(Kh) : u| ◦
M
∈ H1(

◦
M)},

with the norm
‖u‖2

H1(Kh)
= ‖u‖2

L2(Kh)
+ ‖∇u‖2

L2(Kh)
.

By Hs(Kh), for 0 < s ≤ 1, we denote the Sobolev space on Kh, defined by local
Lipschitz charts as in [25]. We point out that for s = 1 the two definitions coincide with
equivalent norms.

By |A| we denote the Lebesgue measure of a measurable subset A ⊂ RN . For f in
Hs(G), the trace operator γ0 is defined as

γ0 f (P) := lim
r→0

1
|B(P, r) ∩ G|

∫
B(P,r)∩G

f (Q)dLN(Q) (4)

at every point P ∈ G where the limit exists. The limit (4) exists at quasi every P ∈ G with
respect to the (s, 2)-capacity (see [27], Definition 2.2.4 and Theorem 6.2.1 page 159). In the
following, we sometimes omit the trace symbol, leaving the interpretation to the reader.

We now recall the results of Theorem 2.24 in [26], referring to [28] for a more general
discussion.

Proposition 1. Let Ωh and Kh be as above and let 1
2 < s < 3

2 . Then Hs− 1
2 (Kh) is the trace space

to Kh of Hs(Ωh) in the following sense:

(i) γ0 is a linear and continuous operator from Hs(Ωh) to Hs− 1
2 (Kh);

(ii) there exists a linear and continuous operator Ext from Hs− 1
2 (Kh) to Hs(Ωh) such that

γ0 ◦ Ext is the identity operator in Hs− 1
2 (Kh).

In the sequel we denote by the symbol f |Kh the trace γ0 f to Kh.

2.3. Besov Spaces

We start by giving the definition of d-set.

Definition 1. Let S ⊂ RN be closed and non-empty. S is a d-set, for 0 < d ≤ N, if there exists
a Borel measure µ̃, with supp µ̃ = S and two constants c1 = c1(S) > 0 and c2 = c2(S) > 0,
such that

c1rd ≤ µ̃(B(P, r)) ≤ c2rd ∀ P ∈ S , 0 < r ≤ 1. (5)

Such a measure µ̃ is called a d-measure on S .

The following result follows from [24].

Proposition 2. Let d = d f . Then the measure µ defined in (3) is a d-measure, and, hence, the Koch
snowflake K is a d-set.

We recall the definition of Besov spaces specialized to our case. For generalities on
Besov spaces, we refer the reader to [29,30].
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Definition 2. Let S be a d-set in RN and 0 < γ < 1. We say that f ∈ B2,2
γ (S) if

‖ f ‖2
B2,2

γ (S) := ‖ f ‖2
L2(S ,µ̃) +

∫∫
|P−P′ |<3−n

| f (P)− f (P′)|2
|P− P′|d+2γ

dµ̃(P)dµ̃(P′) < ∞.

We now state the trace theorem specialized to our case.

Proposition 3. B2,2
d f
2

(K) is the trace space to K of H1(Ω) in the following sense:

(i) γ0 is a linear and continuous operator from H1(Ω) to B2,2
d f
2

(K);

(ii) there exists a linear and continuous operator Ext from B2,2
d f
2

(K) to H1(Ω) such that γ0 ◦ Ext

is the identity operator in B2,2
d f
2

(K).

For the proof, we refer to Theorem 1 of Chapter VII in [29], and see also [30]. The
symbol f |K denotes the trace γ0 f to K.

As to the dual of Besov spaces on K, we refer to [31], where it is shown that they
coincide with a subspace of Schwartz distributionsD′(R2), supported on K. For a complete
discussion and description of duals of Besov spaces on d-sets, see [31].

2.4. Convergence of Hilbert Spaces

In this subsection, we recall the definition of convergence of varying real and separable
Hilbert spaces (for definitions and proofs, see [32,33]).

Definition 3. A sequence of Hilbert spaces {Hh}h∈N converges to a Hilbert space H if there exists
a dense subspace C ⊂ H and a sequence {Zh}h∈N of linear operators Zh : C ⊂ H → Hh, such that

lim
h→∞
‖Zhu‖Hh

= ‖u‖H for any u ∈ C.

In the following, we assume that {Hh}h∈N, H and {Zh}h∈N are as in Definition 3. Let
H = {∪hHh} ∪ H. We recall the definition of strong convergence inH.

Definition 4 (Strong convergence inH). A sequence of vectors {uh}h∈N strongly converges to
u inH if uh ∈ Hh, u ∈ H and there exists a sequence {ũm}m∈N ∈ C tending to u in H, such that

lim
m→∞

lim
h→∞
‖Zhũm − uh‖Hh

= 0.

We recall the definition of strong convergence inH.

Definition 5 (Weak convergence inH). A sequence of vectors {uh}h∈N weakly converges to u
inH if uh ∈ Hh, u ∈ H and

(uh, vh)Hh → (u, v)H

for every sequence {vh}h∈N strongly tending to v inH.

We point out that the strong convergence implies the weak convergence [33].

Lemma 1. Let {uh}h∈N be a sequence weakly converging to u inH. Then

sup
h
‖uh‖Hh

< ∞, ‖u‖H ≤ lim
h→∞
‖uh‖Hh

.

Moreover, uh → u strongly if, and only if, ‖u‖H = lim
h→∞
‖uh‖Hh .
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We recall some useful properties of the strong convergence of a sequence of vectors
{uh}h∈N inH.

Lemma 2. Let u ∈ H and let {uh}h∈N be a sequence of vectors uh ∈ Hh. Then, {uh}h∈N strongly
converges to u inH if, and only if,

(uh, vh)Hh → (u, v)H

for every sequence {vh}h∈N with vh ∈ Hh weakly converging to a vector v inH.

Lemma 3. A sequence of vectors {uh}h∈N with uh ∈ Hh strongly converges to a vector u inH if,
and only if,

‖uh‖Hh
→ ‖u‖H and

(uh, Zh(ϕ))Hh → (u, ϕ)H for every ϕ ∈ C.

Lemma 4. Let {uh}h∈N be a sequence with uh ∈ Hh. If ‖uh‖Hh is uniformly bounded, then there
exists a subsequence of {uh}h∈N, which weakly converges inH.

Lemma 5. For every u ∈ H there exists a sequence {uh}h∈N, with uh ∈ Hh, strongly converging
to u inH.

We denote by L(X) the space of linear and continuous operators on a Hilbert space X.
We now recall the notion of the strong convergence of operators.

Definition 6. A sequence of bounded operators {Bh}h∈N, with Bh ∈ L(Hh), strongly converges to
an operator B ∈ L(H) if for every sequence of vectors {uh}h∈N with uh ∈ Hh strongly converging
to a vector u inH, the sequence {Bhuh} strongly converges to Bu inH.

2.5. Fractional-in-Time Derivatives

We recall the notion of fractional-in-time derivatives in the sense of Riemann–Liouville
and Caputo by using the notations of the monograph [21].

Let α ∈ (0, 1). We define

gα(t) =


tα−1

Γ(α)
if t > 0,

0 if t ≤ 0,

where Γ is the usual Gamma function.

Definition 7. Let Y be a Banach space, T > 0 and let f ∈ C([0, T]; Y) be such that g1−α ∗ f ∈
W1,1((0, T); Y).

(i) The Riemann–Liouville fractional derivative of order α ∈ (0, 1) is defined as follows:

Dα
t f (t) :=

d
dt

(g1−α ∗ f )(t) =
d
dt

∫ t

0
g1−α(t− τ) f (τ)dτ,

for a.e. t ∈ (0, T].
(ii) The Caputo-type fractional derivative of order α ∈ (0, 1) is defined as follows:

∂α
t f (t) := Dα

t ( f (t)− f (0)),

for a.e. t ∈ (0, T].
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We stress the fact that Definition 7-(ii) gives a weaker definition of the (Caputo)
fractional derivative with respect to the original one (see [34]), since f is not assumed to be
differentiable. Moreover, it holds that ∂α

t (c) = 0 for every constant c ∈ R.
We refer to [17] for further details on fractional derivatives.
In the next sections we consider problems of the following type:

(P̃)

{
∂α

t u− Au = f a.e. in Ω, for all t ∈ (0, T),
u(0) = ϕ in Ω.

Here, A is a closed linear operator with domain D(A) in a Banach space Y, f : [0, ∞)→ Y
and ϕ ∈ Y are given.

According to ([21], Definition 2.1.4), we give the following notion of strong solution
for problem (P̃).

Definition 8. Let 0 < T1 ≤ T2 < T. We say that u is a strong solution of (P̃) on the interval
I = [0, T] if the following conditions are satisfied.

(i) (The case α = 1) The function u ∈ C([0, T); Y) is such that u(0) = ϕ, u(t) ∈ D(A) for all
t ∈ [T1, T2] ⊂ I, and ∂tu ∈ C([T1, T2]; Y). Moreover, the equation ∂tu(t) = Au(t) + f (t)
is satisfied on [T1, T2] ⊂ I.

(ii) (The case α ∈ (0, 1)) The function u ∈ C([0, T); Y) is such that u(0) = ϕ, u(t) ∈ D(A) for
t ∈ [T1, T2], and ∂α

t u ∈ C([T1, T2]; Y). Moreover, the equation ∂α
t u(t) = Au(t) + f (t) is

satisfied on [T1, T2] ⊂ I.

3. The Energy Forms

We now introduce energy forms associated to the formal problems (P) and (Ph),
respectively. From now on, let Ω, K, Ωh and Kh be as defined in Section 2.1 and let b denote
a strictly positive continuous function in Ω.

3.1. The Fractal Energy Form

As in ([2], Section 3.1), we introduce a Lagrangian measure LK on K and the corre-
sponding energy form EK as

EK(u, v) =
∫

K
dLK(u, v) (6)

with domain D(K). This space is a Hilbert space with norm

‖u‖D(K) =
(
‖u‖2

L2(K) + EK(u, u)
) 1

2 (7)

and has been characterized in terms of the domains of the energy forms on Ki.
In the following we omit the subscript K, the Lagrangian measure is simply denoted

by L(u, v) and we set L[u] = L(u, u).
As in Proposition 3.1 of [2], the following result holds.

Proposition 4. In the previous notations and assumptions, the form EK with domain D(K) is a
regular Dirichlet form in L2(K) and the space D(K) is a Hilbert space under the intrinsic norm (7).

For the definition and properties of Dirichlet forms, see [35].
We now introduce the Laplace operator on K. Since (EK, D(K)) is a densely defined

regular Dirichlet form on L2(K), from ([36], Chapter 6, Theorem 2.1) there exists a unique
self-adjoint, non-positive operator ∆K on L2(K), with domain D(∆K) ⊆ D(K) dense in
L2(K), such that

EK(u, v) = −
∫

K
(∆Ku) v dµ, u ∈ D(∆K), v ∈ D(K). (8)
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We denote by (D(K))′ the dual space of D(K). We now introduce the Laplace operator on
K as a variational operator from D(K) to (D(K))′ by

EK(u, w) = −〈∆Kz, w〉(D(K))′ ,D(K), z ∈ D(K), w ∈ D(K), (9)

where 〈·, ·〉(D(K))′ ,D(K) denotes the duality pairing between (D(K))′ and D(K). In the
following ∆K denote the Laplace operator both as the self-adjoint operator (see (8)) and as
the variational operator (see (9)), leaving the interpretation to the context.

We now define the space of functions

V(Ω, K) =
{

u ∈ H1(Ω) : u|K ∈ D(K)
}

. (10)

We remark that the space V(Ω, K) is non-trivial.
We introduce the energy form

E[u] =
∫

Ω
|∇u|2dL2 + EK[u|K] +

∫
K

b|u|K|2 dµ (11)

defined on the domain V(Ω, K). In the following, we denote by L2(Ω, m) the Lebesgue
space with respect to the measure m with

dm = dL2 + dµ. (12)

By E(u, v), for u, v ∈ V(Ω, K), we denote the corresponding bilinear form

E(u, v) =
∫

Ω
∇u∇v dL2 + EK(u|K, v|K) +

∫
K

bu|Kv|K dµ. (13)

Proposition 5. The form E, defined in (11), is a Dirichlet form in L2(Ω, m) and the space V(Ω, K)
is a Hilbert space equipped with the scalar product

(u, v)V(Ω,K) = (u, v)H1(Ω) + EK(u, v) + (u, v)L2(K). (14)

We denote, by ‖u‖V(Ω,K), the norm in V(Ω, K) associated with (14), i.e.,

‖u‖V(Ω,K) =
(
‖u‖2

H1(Ω) + ‖u‖
2
D(K)

) 1
2 . (15)

3.2. The Pre-Fractal Energy Forms

For each h ∈ N, we construct the energy forms EKh on the pre-fractal boundaries Kh.
By ` we denote the natural arc-length coordinate on each segment of the polygonal curve
Kh and we introduce the coordinates x1 = x1(`), x2 = x2(`), on every segment M(j)

h of Kh,
j = 1, . . . , 4h. By d` we denote the one-dimensional measure given by the arc-length `.

Let u ∈ H1(Kh), where we recall that H1(Kh) is the Sobolev space on the piecewise
affine set Kh (see Section 2.2). We define EKh [u] by setting

EKh [u] =
4h

∑
j=1

∫
M(j)

h

σh|∇`u|Kh |
2 d`, (16)

where σh is a positive constant and∇` denotes the tangential derivative along the pre-fractal
Kh. We denote the corresponding bilinear form by EKh(u, v).

Let V(Ωh, Kh) be the space of restrictions to Ωh of functions u defined on Ω for which
the following norm is finite:

‖u‖2
V(Ωh ,Kh)

= ‖u‖2
H1(Ωh)

+ ‖u‖2
H1(Kn)

.
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We point out that this space is not trivial as it contains C∞(Ω) ∩ H1(Ω) (see [37]).
We now consider the following energy form defined on V(Ωh, Kh):

E(h)[u] =
∫

Ωh

|∇u|2 dL2 + EKh [u|Kh ] + δh

∫
Kh

b|u|Kh |
2 d`, (17)

where δh is a positive constant.
By E(h)(u, v) we denote the corresponding bilinear form defined on V(Ωh, Kh) ×

V(Ωh, Kh):

E(h)(u, v) =
∫

Ωh

∇u∇v dL2 + EKh(u|Kh , v|Kh) + δh

∫
Kh

bu|Kh v|Kh d`. (18)

In the following, we consider also the space L2(Ωh, mh), where mh is the measure given by

dmh = dL2 + χKh δhd`. (19)

Proposition 6. The form E(h) with domain V(Ωh, Kh), defined in (17), is a Dirichlet form in
L2(Ωh, mh) and the space V(Ωh, Kh) is a Hilbert space equipped with the norm

‖u‖V(Ωh ,Kh)
=

( ∫
Ωh

|∇u|2 dL2 + EKh [u|Kh ] + ‖u‖
2
L2(Ωh ,mh)

) 1
2
. (20)

3.3. Resolvents and Associated Semigroups

Since (E, V(Ω, K)) is a densely defined closed bilinear form on L2(Ω, m), from ([36],
Chapter 6, Theorem 2.1) there exists a unique self-adjoint non-positive operator A on
L2(Ω, m), with domain D(A) ⊆ V(Ω, K) dense in L2(Ω, m), such that

E(u, v) = (−Au, v)L2(Ω,m), u ∈ D(A), v ∈ V(Ω, K). (21)

Moreover, in Theorem 13.1 of [35] it is proved that, to each closed symmetric form E, a
family of linear operators {Gλ, λ > 0} can be associated, with the property

E(Gλu, v) + λ(Gλu, v)L2(Ω,m) = (u, v)L2(Ω,m), u ∈ L2(Ω, m), v ∈ V(Ω, K).

This family {Gλ, λ > 0} is a strongly continuous resolvent with generator A, which also
generates a strongly continuous semigroup {T(t)}t≥0.

Proceeding as above, we denote by {Gh
λ, λ > 0}, Ah and {Th(t)}t≥0 the resolvents,

the generators and the semigroups associated to E(h), for every h ∈ N, respectively.
We recall the main properties of the semigroups {T(t)}t≥0 and {Th(t)}t≥0 in the

following Proposition.

Proposition 7. Let {T(t)}t≥0 and {Th(t)}t≥0 be the semigroups generated by the operators A and
Ah associated to the energy forms in (11) and in (17), respectively. Then {T(t)}t≥0 and {Th(t)}t≥0
are analytic contraction semigroups in L2(Ω, m) and L2(Ωh, mh), respectively.

The proof follows, as in Proposition 3.4 in [2].

4. Existence and Uniqueness Results
4.1. The Abstract Cauchy Problems

Let T be a fixed positive real number. We consider the Cauchy problem

(P)

∂α
t u(t) = Au(t) + f (t), 0 < t < T,

u(0) = ϕ,
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where A : D(A) ⊂ H → H is the generator associated to the energy form E introduced in
(11), and f and ϕ are given functions in suitable Banach spaces.

We consider also, for every h ∈ N, the Cauchy problems

(Ph)

∂α
t uh(t) = Ahuh(t) + fh(t), 0 < t < T,

uh(0) = ϕh,

where Ah : D(Ah) ⊂ Hh → Hh is the generator associated to the energy form E(h) intro-
duced in (17), and fh and ϕh are given functions in suitable Banach spaces.

We want to prove existence and uniqueness results for the strong solutions of problems
(P) and (Ph), for every h ∈ N, in the sense of Definition 8. Firstly, recall the definition of
the Wright type function (see ([38], Formula (28))):

Φα(z) :=
∞

∑
n=0

(−z)n

n!(−αn + 1− α)
, 0 < α < 1, z ∈ C.

From ([16], page 14), it holds that Φα(t) is a probability density function, i.e.

Φα(t) ≥ 0 if t > 0,
∫ +∞

0
Φα(t)dt = 1.

For more properties about the Wright function, we refer to [16,38,39], among others.
We recall that the operators A and Ah generate strongly continuous, analytic, contrac-

tion semigroups {T(t)} and {Th(t)} on H and Hh, respectively. For t > 0, we define the
operators Sα(t) : H → H and Pα(t) : H → H as follows:

Sα(t)v :=
∫ +∞

0
Φα(τ)T(τtα)v dτ,

Pα(t)v := αtα−1
∫ +∞

0
τΦα(τ)T(τtα)v dτ.

The operators Sα and Pα are known in the literature as resolvent families. We note that the
semigroup property does not hold for the operators Sα and Pα unless α = 1.

We can define, in an analogous way, for every h ∈ N, resolvent families Sh
α(t) and

Ph
α (t) on Hh associated to the semigroup {Th(t)}.

We now give the existence and uniqueness results for the strong solutions of problems
(P) and (Ph), respectively. For both cases, we refer to ([21], Theorem 2.1.7).

Theorem 1. Let ϕ ∈ D(A). Let f ∈ C0,β((0, T); H) for 0 < β < 1 satisfy one of the following
two properties:

(i) (The case α = 1) ∫ T0

0
‖ f (t)‖H dt < ∞

for some T0 > 0;
(ii) (The case α ∈ (0, 1)) there exists q ∈ ( 1

α , ∞) such that

∫ T0

0
‖ f (t)‖q

H dt < ∞

for some T0 > 0.

Then, there exists a unique strong solution u of problem (P) in the sense of Definition 8
given by

u(t) = T(t)ϕ +
∫ t

0
T(t− τ) f (τ)dτ (22)
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if α = 1, and by

u(t) = Sα(t)ϕ +
∫ t

0
Pα(t− τ) f (τ)dτ (23)

if 0 < α < 1, respectively.

Theorem 2. For every h ∈ N, let ϕh ∈ D(Ah). Let fh ∈ C0,β((0, T); Hh) for 0 < β < 1 satisfy
one of the following two properties:

(i) (The case α = 1) ∫ T0

0
‖ fh(t)‖Hh dt < ∞

for some T0 > 0;
(ii) (The case α ∈ (0, 1)) there exists q ∈ ( 1

α , ∞) such that

∫ T0

0
‖ fh(t)‖

q
Hh

dt < ∞

for some T0 > 0.

Then, for every h ∈ N there exists a unique strong solution uh of problem (Ph) in the sense of
Definition 8 given by

uh(t) = Th(t)ϕh +
∫ t

0
Th(t− τ) fh(τ)dτ (24)

in α = 1, and by

uh(t) = Sh
α(t)ϕ +

∫ t

0
Ph

α (t− τ) fh(τ)dτ (25)

in 0 < α < 1, respectively.

4.2. The Venttsel’ Boundary Value Problems

In this section, we prove that the strong solutions of problems (P) and (Ph) solve,
respectively, problems (P̄) and (P̄h), formally stated in the Introduction. We start with the
fractal case.

Theorem 3. Let u be the solution of problem (P). Then we have, for every fixed t ∈ (0, T),

∂α
t u(t, P)− ∆u(t, P) = f (t, P) for a.e. P ∈ Ω,

〈∂α
t u, z〉L2(K),L2(K) + EK(u, z) +

〈
∂u
∂n , z

〉
(D(K))′ ,D(K)

+〈bu, z〉L2(K),L2(K) = 〈 f , z〉L2(K),L2(K) for every z ∈ D(K),

u(0, P) = ϕ(P) for P ∈ Ω.

Moreover, ∂u
∂n ∈ C((0, T); (B2,2

d f
2

(K))′).

Proof. Following the approach of the proof of Theorem 6.1 in [2], and taking into account
Theorem 1, we obtain the thesis.

As to the pre-fractal case, the following result holds.
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Theorem 4. For every h ∈ N, let uh be the solution of problem (Ph). Then we have, for every fixed
t ∈ (0, T),

∂α
t uh(t, P)− ∆uh(t, P) = fh(t, P) for a.e. P ∈ Ωh,

δh〈∂α
t uh, z〉L2(Kh),L2(Kh)

+ EKh(uh, z) +
〈

∂uh
∂nh

, z
〉

H−
1
2 (Kh),H

1
2 (Kh)

+δh〈buh, z〉L2(Kh),L2(Kh)
= δh〈 fh, z〉L2(Kh),L2(Kh)

for every z ∈ H
1
2 (Kh),

uh(0, P) = ϕh(P) for P ∈ Ωh.

Moreover, ∂uh
∂nh
∈ C((0, T); L2(Kh)).

Proof. Following the approach of the proof of Theorem 6.2 in [2], and taking into account
Theorem 2, we obtain the thesis.

5. Convergence Results

In this section, we study the asymptotic behavior of the solution uh of the following
homogeneous problem associated to (Ph), i.e.,

(P0
h )

∂α
t uh(t) = Ahuh(t), 0 < t < T,

uh(0) = ϕh,

for every h ∈ N. Namely, we prove that {uh} converges to the unique strong solution of
the homogeneous problem associated to (P):

(P0)

∂α
t u(t) = Au(t), 0 < t < T,

u(0) = ϕ.

The convergence is achieved by the Mosco–Kuwae–Shioya convergence of the energy forms.
In accordance with this aim, we recall some preliminary definitions and results.

5.1. Convergence of Spaces and M-Convergence of the Energy Forms

We define the space H := L2(Ω, m) where m is the measure in (12). We also introduce
the sequence {Hh}h∈N with Hh := {L2(Ω) ∩ L2(Ωh, mh)} where mh is the measure in (19).
We endow these spaces with the norms

‖u‖2
H = ‖u‖2

L2(Ω) + ‖u|K‖
2
L2(K,µ), ‖u‖

2
Hh

= ‖u‖2
L2(Ωh)

+ ‖u|Kh‖
2
L2(Kh ,δh`)

Proposition 8. Let δh =
( 3

4
)h. The sequence of Hilbert spaces {Hh}h∈N converges in the sense of

Definition 3 to the Hilbert space H.

For the proof, see Proposition 4.1 in [2].
We now introduce the notion of M–K–S convergence of forms, first given by Mosco

in [40], for a fixed Hilbert space and later extended by Kuwae and Shioya (see ([33],
Definition 2.11)) to the case of varying Hilbert spaces .

We extend the forms E defined in (11) and E(h) defined in (17) to the whole spaces H
and Hh, respectively, by setting

E[u] = +∞ if u ∈ H \V(Ω, K)

and
E(h)[u] = +∞ if u ∈ Hh \V(Ωh, Kh).
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Definition 9. Let Hh be a sequence of Hilbert spaces converging to a Hilbert space H. A se-
quence of forms

{
E(h)

}
defined in Hh M-K-S-converges to a form E defined in H if the following

conditions hold:

(i) for every {vh} ∈ Hh weakly converging to u ∈ H inH

lim
h→∞

E(h)[vh] ≥ E[u];

(ii) for every u ∈ H there exists a sequence {wh}, with wh ∈ Hh strongly converging to u inH,
such that

lim
h→∞

E(h)[wh] ≤ E[u].

We now state the convergence of the approximating energy forms E(h) in the context
of varying Hilbert spaces.

Theorem 5. Let δh =
( 3

4
)h and σh = δ−1

h . Then, the sequence {E(h)}, defined in (17), converges
in the sense of Definition 9 to the form E defined in (11).

For the proof, we refer to Theorem 4.3 in [2].

5.2. Convergence of the Solutions of the Abstract Cauchy Problems

We are now ready to prove the main theorem of this section, i.e., the convergence of
the sequence {uh} of strong solutions of problems (P0

h ) to the unique strong solution u of
problem (P0). Crucial tools are the Mosco–Kuwae–Shioya convergence of the energy forms
and the use of the representation formulae for the strong solutions given by (23) and (25).
We remark that here we extend to the setting of varying Hilbert spaces the results in [22].

We consider the one-dimensional Lebesgue measure dt on [T1, T2]. Let mh be the
measure introduced in (19) and m be the measure introduced in (12). The space L2([T1, T2]×
Ω, dt× dmh) is isomorphic to L2([T1, T2]; Hh) and L2([T1, T2]×Ω, dt× dm) is isomorphic
to L2([T1, T2]; H). If we denote by Fh = L2([T1, T2]; Hh) and by F = L2([T1, T2]; H), it holds
that Fh converges to F in the sense of Definition 3, where the set C is now C([T1, T2]×Ω)
and Zh is the identity operator on C.

We denote by F = {∪hFh} ∪ F. In the following proposition, we recall the characteri-
zation of strong convergence in F (by using Lemmas 2 and 3).

Proposition 9. A sequence of vectors {uh}h∈N strongly converges to u in F if one of the follow-
ing holds:

(i)


∫ T2

T1

‖uh(t)‖2
Hh

dt −−−−→
h→+∞

∫ T2

T1

‖u(t)‖2
H dt

∫ T2

T1

(uh(t), ψ(t))Hh dt −−−−→
h→+∞

∫ T2

T1

(u(t), ψ(t))H dt
(26)

for every ψ ∈ C([T1, T2]×Ω);

(ii)
∫ T2

T1

(uh(t), vh(t))Hh dt −−−−→
h→+∞

∫ T2

T1

(u(t), v(t))H dt (27)

for every sequence {vh}h∈N strongly converging to v in F .

Theorem 6. Let u(t, x) = Sα(t)ϕ(x) and uh(t, x) = Sh
α(t)ϕh(x) be the unique strong solutions

of problems (P0) and (P0
h ), for every h ∈ N, according to Theorems 1 and 2, respectively. Let δh be

as in Theorem 5. If {ϕh} strongly converges to ϕ inH and there exists a constant C > 0, such that

‖ϕh‖D(Ah)
< C for every h ∈ N, (28)
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then:

(i) {uh(t)} converges to u(t) inH for every fixed t ∈ [T1, T2] ⊂ [0, T];
(ii) {uh} converges to u in F .

Proof. If α = 1, the proof follows as in Theorem 5.3 in [2] with small changes.
Now let 0 < α < 1.
First, we prove (i). By using the characterization of the strong convergence given in

Lemma 2, we have to prove that for every t ∈ [T1, T2] ⊂ [0, T]

(uh, vh)Hh −−−−→n→+∞
(u, v)H

for every sequence {vh}h∈N with vh ∈ Hh weakly converging inH to a vector v ∈ H.
We first point out that, from Theorem 5, Theorem 2.8 in [32] and Theorem 2.4 in [33], it

follows that for every t ∈ [T1, T2]

Th(t)ϕh −−−−→n→+∞
T(t)ϕ inH (29)

since ϕh → ϕ inH (see Definition 6).
From the representation formula (25) of Theorem 2 we have

(uh, vh)Hh =
∫

Ωh

Sh
α ϕh vh dL2 + δh

∫
Kh

Sh
α ϕh vh d`

and
(u, v)H =

∫
Ω

Sα ϕ v dL2 +
∫

K
Sα ϕ v dµ.

Recalling the definitions of Sh
α and Sα, we obtain

(uh, vh)Hh − (u, v)H =
∫ ∞

0
Φα(τ)

( ∫
Ωh

Th(τtα)ϕh vh dL2 −
∫

Ω
T(τtα)ϕ v dL2

)
dτ

+
∫ ∞

0
Φα(τ)

(
δh

∫
Kh

Th(τtα)ϕh vh d`−
∫

K
T(τtα)ϕ v dµ

)
dτ

=
∫ ∞

0
Φα(τ)

[
(Th(τtα)ϕh, vh)Hh − (T(τtα)ϕ, v)H

]
dτ.

From (29) and the weak convergence of vh to v, we have, for every t ∈ [T1, T2],

(Th(τtα)ϕh, vh)Hh
→ (T(τtα)ϕ, v)H .

By using Lemma 1, (28) and the contraction property of Th there exists a constant
C > 0 (independent from h), such that∣∣∣(Th(τtα)ϕh, vh)Hh

∣∣∣ ≤ C.

From the dominated convergence theorem, the claim follows directly.

Now, we prove (ii). From Proposition 9, we have to prove that

‖uh‖Fh
→ ‖u‖F, (30)

(uh, ψ)Fh → (u, ψ)F ∀ψ ∈ C([T1, T2]×Ω). (31)

We note that

‖uh(t)‖Hh
≤
∫ +∞

0
Φα(τ)‖Th(τtα)ϕh‖Hh dτ ≤ C ∀ t ∈ [T1, T2],
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where the last inequality follows from the properties of the Wright function Φα, Proposi-
tion 7 and (28).

Thus, the sequence
{
‖uh(t)‖Hh

}
is equi-bounded in [T1, T2]. Moreover, from (i) we

have, for every t ∈ [T1, T2],
‖uh(t)‖Hh

→ ‖u(t)‖H .

Hence, from the dominated convergence theorem, (30) is achieved.
We now go to (31). From (i) we have, for every t ∈ [T1, T2],

(uh(t), ψ(t))Hh −−−−→n→+∞
(u(t), ψ(t))H ∀ψ ∈ C([T1, T2]×Ω).

Since ∣∣(uh(t), ψ(t))Hh

∣∣ ≤ C‖ψ‖C([T1,T2]×Ω),

the dominated convergence theorem yields

(uh, ψ)Fh −−−−→n→+∞
(u, ψ)F.

Remark 1. We note that the convergence of ϕh to ϕ inH and the equi-boundeness hypothesis (28)
imply the convergence in F .

Remark 2. We stress the fact that the geometry considered in this paper is a prototype. Actually,
our results can be extended to the case of domains having boundaries that are quasi-filling variable
Koch curves. Indeed, Theorem 5 can be extended to these geometries by adapting Theorem 3.2 in [3]
to the framework of varying Hilbert spaces, and, thus, allowing us to state a result analogous to
Theorem 6.
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