
Citation: Yu, B.; Dong, N. Factorized

Doubling Algorithm for Large-Scale

High-Ranked Riccati Equations in

Fractional System. Fractal Fract. 2023,

7, 468. https://doi.org/10.3390/

fractalfract7060468

Academic Editor: António Lopes

Received: 6 May 2023

Revised: 7 June 2023

Accepted: 8 June 2023

Published: 10 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Factorized Doubling Algorithm for Large-Scale High-Ranked
Riccati Equations in Fractional System
Bo Yu and Ning Dong *

School of Science, Hunan University of Technology, Zhuzhou 412007, China; yubo@hut.edu.cn
* Correspondence: dongning@hut.edu.cn

Abstract: In real-life control problems, such as power systems, there are large-scale high-ranked
discrete-time algebraic Riccati equations (DAREs) from fractional systems that require stabilizing
solutions. However, these solutions are no longer numerically low-rank, which creates difficulties in
computation and storage. Fortunately, the potential structures of the state matrix in these systems
(e.g., being banded-plus-low-rank) could be beneficial for large-scale computation. In this paper, a
factorized structure-preserving doubling algorithm (FSDA) is developed under the assumptions that
the non-linear and constant terms are positive semidefinite and banded-plus-low-rank. The detailed
iteration scheme and a deflation process for FSDA are analyzed. Additionally, a technique of partial
truncation and compression is introduced to reduce the dimensions of the low-rank factors. The
computation of residual and the termination condition of the structured version are also redesigned.
Illustrative numerical examples show that the proposed FSDA outperforms SDA with hierarchical
matrices toolbox (SDA_HODLR) on CPU time for large-scale problems.

Keywords: large-scale Riccati equations; high-ranked terms; deflation; partial truncation and
compression; doubling algorithm

1. Introduction

Consider the fractional system [1,2]

∆(α)x(t + 1) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where α ∈ (0, 1) and (α) represents the order of the fractional derivative, A ∈ RN×N ,
B ∈ RN×m and C ∈ Rl×N with m, l ≤ N. If ∆(α)x(t + 1) is approximated by the Grünwald–
Letnikov rule [3] at k = 1, the system (1) is equivalent to the discrete-time linear system

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t), (2)

where A = hαA+ αI and B = hαB. The corresponding optimal control and the feedback
gain can be expressed in terms of the unique positive semidefinite stabilizing solution of
the discrete-time algebraic Riccati Equation (DARE)

D(X) ≡ −X + A>X(I + GX)−1 A + H = 0, A, G, H ∈ RN×N . (3)

There have been numerous methods, including classical and state-of-the-art tech-
niques, developed over the past few decades to solve this equation in a numerically stable
manner. See [4–15] and the references therein for more details.

In many large-scale control problems, the matrix G = BR−1B> in the non-linear term
and H = C>T−1C in the constant term are of low-rank with B ∈ RN×mg

, R ∈ Rmg×mg
,

C ∈ Rmh×N , T ∈ Rmh×mh
, and mg, mh � N. Then the unique positive definite stabilizing

solution in the DARE (3) or its dual equation can be approximated numerically by a low-
rank matrix [16,17]. However, when the constant term H in the DARE equation has a

Fractal Fract. 2023, 7, 468. https://doi.org/10.3390/fractalfract7060468 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7060468
https://doi.org/10.3390/fractalfract7060468
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-4742-4364
https://orcid.org/0000-0003-1515-8225
https://doi.org/10.3390/fractalfract7060468
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7060468?type=check_update&version=2

Fractal Fract. 2023, 7, 468 2 of 30

high-rank structure, the stabilizing solution is no longer numerically low-ranked, making
its storage and outputting difficult. To solve this issue, an adapted version of the doubling
algorithm, named SDA_h, was proposed in [18]. The main idea behind SDA_h is to take
advantage of the numerical low-rank of the stabilizing solution in the dual equation to
estimate the residual of the original DARE. In this way, SDA_h can efficiently evaluate the
residual and output the feedback gain. An interesting question up to now is:

Can SDA solve the large-scale DAREs efficiently when both G and H are of high-rank?

The main difficulty, in this case, lies in that the stabilizing solutions both in DARE (3)
and its dual equation are not of low-rank, making the direct application of SDA difficult for
large-scale problems, especially the estimation of residuals and the realization of algorithmic
termination. This paper attempts to overcome this obstacle. Rather than answering the
above question completely, DARE (3) with the banded-plus-low-rank structure

A = DA + LA
10KA(LA

20)
> (4)

is considered, where DA ∈ RN×N is a banded matrix, LA
10, LA

20 ∈ RN×ma
are low-rank

matrices and KA ∈ Rma×ma
is the kernel matrix with ma � N. The assumption of (4) is not

necessary when G and H are of low rank, i.e., in that case A is allowed to be any (sparse)
matrix. We also assume that the high-rank non-linear item and the constant item are of
the form

G = DG + LGKG(LG)>, H = DH + LHKH(LH)>, (5)

where DG, DH ∈ RN×N are positive semidefinite banded matrices, LG ∈ RN×mg
,

LH ∈ RN×mh
, KG ∈ Rmg×mg

and KH ∈ Rmh×mh
are symmetric and mg, mh � N (here mg

and mh might be zero). In addition, we assume that DA, DG, and DH are all banded matri-
ces with banded inverse (BMBI), which has some applications in the power system [19–21].
See also [22–29], as well as their references for other applications.

The main contributions in this paper are:

• Although the hierarchical (e.g., HODLR) structure [30,31] can be employed to run the
SDA to cope with large-scale DAREs with both high-rank H and G, it is the first to
develop SDA to the factorized form—FSDA—to deal with such DAREs.

• The structure of the FSDA iterative sequence is explicitly revealed to consist of two
parts—the banded part and the low-rank part. The banded part can iterate indepen-
dently while the low-rank part relies heavily on the product of the banded part and
the low-rank part.

• A deflation process of the low-rank factors is proposed to reduce the column number
of the low-rank part. The conventional truncation and compression in [17,18] for the
whole low-rank factor does not to work as it destroys the implicit structure and makes
the subsequent deflation infeasible. Instead, a partial truncation and compression
(PTC) technique is then devised to impose merely on the exponentially increasing part
(after deflation), effectively slimming the dimensions of the low-rank factors.

• The termination criterion of FSDA consists of two parts. The residual of the banded
part is considered in the pre-termination, and only if it is small enough, the actual
termination criterion involving the low-rank factors is computed. This way, the
time-consuming detection of the terminating condition is reduced in complexity.

The research in this field is also motivated by other applications, such as the finite
element methods (FEM). In FEM, the matrices resulting from discretizing the matrix equa-
tions exhibit a sparse and structured pattern [32,33]. By capitalizing on these advantages,
iterative methods designed for such matrices can significantly enhance computational
efficiency, minimize memory usage, and lead to quicker solutions for large-scale problems.

The whole paper is organized as follows. Section 2 describes the FSDA for DAREs (3)
with high-rank non-linear and constant terms. The deflation process for the low-rank
factors and kernels is given in Section 3. Section 4 dwells on the technique of PTC to slim
the dimensions of low-rank factors and kernels. The way to compute the residual, as well as

Fractal Fract. 2023, 7, 468 3 of 30

the concrete implementation of the FSDA, is described in Section 5. Numerical experiments
are listed in Section 6 to show the effectiveness of the FSDA.

Notation 1. IN (or simply I) is the N × N identity matrix. For a matrix A ∈ RN×N , ρ(A)
denotes the spectral radius of A. For symmetric matrices A and B ∈ RN×N , we say A > B
(A ≥ B) if A− B is a positive definite (semi-definite) matrix. Unless stated otherwise, the norm
‖ · ‖ is the F-norm of a matrix. For a sequence of matrices {Ai}k

i=1, ∏0
i=k Ai = Ak Ak−1 . . . A1 A0.

For a banded matrix B, bw(B) represents the bandwidth. Additionally, the Sherman–Morrison–
Woodbury (SMW) formula (see [34] for example), (M + UDV>)−1 = M−1 − M−1U(D−1 +
V>M−1U)−1V>M−1 is required in the analysis of iterative scheme.

2. SDA and the Structured Iteration for DARE

For DARE
D(X) = −X + A>X(I + GX)−1 A + H = 0

and its dual equation

Da(Y) = −Y + AY(I + HY)−1 A> + G = 0, (6)

SDA [7] generates a sequence of matrices, for k ≥ 1
Gk = Gk−1 + Ak−1(I + Gk−1Hk−1)

−1Gk−1 A>k−1,
Hk = Hk−1 + A>k−1Hk−1(I + Gk−1Hk−1)

−1 Ak−1,
Ak = Ak−1(I + Gk−1Hk−1)

−1 Ak−1,
(7)

with A0 = A, G0 = G, H0 = H. Under some conditions (see also Theorem 1), {Ak}
converges to the zero matrix and {Hk} and {Gk} converge to the stabilizing solutions of
D(X) = 0 and Da(Y) = 0, respectively.

2.1. FSDA for High-Rank Terms

Given banded matrices DA
0 = DA, DG

0 = DG and DH
0 = DH , low-rank matrices LG

0 ,
LA

10, LH
0 , and LA

20, and kernels KA
0 = KA, KG

0 = KG, and KH
0 = KH in the structured initial

matrices (4) and (5), the FSDA is described inductively as follows, where

Ak = DA
k + LA

1,kKA
k (LA

2,k)
>, Gk = DG

k + LG
k KG

k (LG
k)
>, Hk = DH

k + LH
k KH

k (LH
k)> (8)

with sparse banded matrices DA
k , DG

k , DH
k ∈ RN×N , low-rank factors LA

1,k ∈ RN×m
a1
k ,

LA
2,k ∈ RN×ma2

k , LG
k ∈ RN×mg

k , LH
k ∈ RN×mh

k , kernel matrices KA
k ∈ Rm

a1
k ×ma2

k , KG
k ∈ Rmg

k×mg
k ,

KH
k ∈ Rmh

k×mh
k and ma1

k , ma2
k , mg

k , mh
k � N. Without loss of generality, we assume that

ma1
0 = ma2

0 ≡ ma and KA
0 = Ima . Otherwise, LA

20 := LA
20(K

A
0)
> and KA

0 := Ima fulfill
the assumption.

We first elaborate the concrete format of banded parts and low-rank factors for k = 1
and k ≥ 2. Note that banded parts are capable of iterating independently, regardless of the
low-rank parts and kernels.

Case for k = 1.

In the first step, we will assume that G0 = DG
0 and H0 = DH

0 , i.e., these matrices have
no low-rank part. Note that this is only performed in order to simplify exposition. The
fully general case with non-trivial low-rank parts will be shown in the case k ≥ 2n.

Insert the initial matrices DA
0 , DG

0 , and DH
0 and low-rank matrices LA

10 and LA
20 into

SDA (7). It follows from the SMW formula that

DG
1 = DG

0 + DAGHG
0 (DA

0)
>,

DH
1 = DH

0 + DA>HGH
0 DA

0 ,
DA

1 = DAGH
0 DA

0 = DA
0 (DA>HG

0)>
(9)

Fractal Fract. 2023, 7, 468 4 of 30

with

DAGHG
0 = DA

0 (IN + DG
0 DH

0)−1DG
0 , DA>HGH

0 = (DA
0)
>(IN + DH

0 DG
0)
−1DH

0 ,
DAGH

0 = DA
0 (IN + DG

0 DH
0)−1, DA>HG

0 = (DA
0)
>(IN + DH

0 DG
0)
−1.

It follows from [35] (Lem 4.5) that the iteration (9) is well defined if DG
0 and DH

0 are both
positive semidefinite.

The low-rank factors in (8) are

LG
1 = [LA

10, DAGHG
0 LA

20], LH
1 = [LA

20, DA>HGH
0 LA

10],

LA
11 = [LA

10, DAGH
0 LA

10], LA
21 = [LA

20, DA>HG
0 LA

20]
(10)

and the kernels in the low-rank parts are

KG
1 =

[
(LA

20)
>DGHG

0 LA
20 Img

0
Img

0
0

]
, KH

1 =

[
(LA

10)
>DHGH

0 LA
10 Imh

0
Imh

0
0

]
, (11)

KA
1 =

[
(LA

20)
>DGH

0 LA
10 Img

0
Imh

0
0

]
(12)

with

DGHG
0 = (IN + DG

0 DH
0)−1DG

0 , DHGH
0 = (IN + DH

0 DG
0)
−1DH

0 , DGH
0 = (IN + DG

0 DH
0)−1

and mg
0 = ma, mh

0 = ma.

Case for general k ≥ 2.

By inserting the banded matrices DG
k−1, DH

k−1 and DA
k−1 and the low-rank factors LG

k−1,
LH

k−1, LA
1,k−1, and LA

2,k−1 and the kernels KG
k−1, DH

k−1 and DA
k−1 into SDA (7), banded matrices

at the k-th iteration are

DG
k = DG

k−1 + DAGHG
k−1 (DA

k−1)
>,

DH
k = DH

k−1 + DA>HGH
k−1 DA

k−1,
DA

k = DAGH
k−1 DA

k−1 = DA
k−1(DA>HG

k−1)>
(13)

with

DAGHG
k−1 = DA

k−1(IN + DG
k−1DH

k−1)
−1DG

k−1, DA>HGH
k−1 = (DA

k−1)
>(IN + DH

k−1DG
k−1)

−1DH
k−1,

DAGH
k−1 = DA

k−1(IN + DG
k−1DH

k−1)
−1, DA>HG

k−1 = (DA
k−1)

>(IN + DH
k−1DG

k−1)
−1.

The corresponding low-rank factors are

mg
k−1 ma1

k−1 mg
k−1 mh

k−1 ma2
k−1

LG
k =

[
LG

k−1, LA
1,k−1, DAGH

k−1 LG
k−1, DAGHG

k−1 LH
k−1, DAGHG

k−1 LA
2,k−1

]
N,

(14)

ma1
k−1 mg

k−1 mh
k−1 ma1

k−1

LA
1,k =

[
LA

1,k−1, DAGH
k−1 LG

k−1, DAGHG
k−1 LH

k−1, DAGH
k−1 LA

1,k−1

]
N,

(15)

mh
k−1 ma2

k−1 mh
k−1 mg

k−1 ma1
k−1

LH
k =

[
LH

k−1, LA
2,k−1, DA>HG

k−1 LH
k−1, DA>HGH

k−1 LG
k−1, DA>HGH

k−1 LA
1,k−1

]
N,

(16)

ma2
k−1 mg

k−1 mh
k−1 ma2

k−1

LA
2,k =

[
LA

2,k−1, DA>HG
k−1 LH

k−1, DA>HGH
k−1 LG

k−1, DA>HG
k−1 LA

2,k−1

]
N.

(17)

Fractal Fract. 2023, 7, 468 5 of 30

To express the kernels explicitly, let

ΘH
k−1 = (LH

k−1)
>DGHG

k−1 LH
k−1, ΘG

k−1 = (LG
k−1)

>DHGH
k−1 LG

k−1,

ΘHG
k−1 = (LH

k−1)
>DGH

k−1LG
k−1, ΘA

k−1 = (LA
2,k−1)

>DGH
k−1LA

1,k−1,

ΘA
1,k−1 = (LA

1,k−1)
>DHGH

k−1 LA
1,k−1, ΘA

2,k−1 = (LA
2,k−1)

>DGHG
k−1 LA

2,k−1

and
ΘAH

1,k−1 = (LA
1,k−1)

>DHG
k−1LH

k−1, ΘAG
1,k−1 = (LA

1,k−1)
>DHGH

k−1 LG
k−1,

ΘAH
2,k−1 = (LA

2,k−1)
>DGHG

k−1 LH
k−1, ΘAG

2,k−1 = (LA
2,k−1)

>DGH
k−1LG

k−1

with

DGHG
k−1 = (IN + DG

k−1DH
k−1)

−1DG
k−1, DHGH

k−1 = (IN + DH
k−1DG

k−1)
−1DH

k−1,

DGH
k−1 = (IN + DG

k−1DH
k−1)

−1, DHG
k−1 = (IN + DH

k−1DG
k−1)

−1.

Define the kernel components

KGH
k−1 =

[
0 KG

k−1
KH

k−1 0

] (
I

mh
k−1+mg

k−1
+

[
−ΘH

k−1 ΘHG
k−1

(ΘHG
k−1)

> ΘG
k−1

] [
−KH

k−1 0
0 KG

k−1

])−1
, (18)

KGHG
k−1 = KGH

k−1

[
0 Imh

k−1

−Img
k−1

0

]
, KHGH

k−1 =

[
0 −Imh

k−1

Img
k−1

0

]
KGH

k−1 (19)

and

KAGHG
k−1 = −KA

k−1[Θ
AG
2,k−1, ΘAH

2,k−1]K
GHG
k−1 ,

KA>HGH
k−1 = −(KA

k−1)
>[ΘAH

1,k−1, ΘAG
1,k−1]K

HGH
k−1 ,

KAGHGA>
k−1 = KA

k−1ΘA
2,k−1(K

A
k−1)

> + KAGHG
k−1 [ΘAG

2,k−1, ΘAH
2,k−1]

>(KA
k−1)

>,

KA>HGHA
k−1 = (KA

k−1)
>ΘA

1,k−1KA
k−1 + KA>HGH

k−1 [ΘAH
1,k−1, ΘAG

1,k−1]
>KA

k−1,

KAGH
k−1 = −KA

k−1[Θ
AG
2,k−1, ΘAH

2,k−1]K
GH
k−1,

KA>GH
k−1 = −(KA

k−1)
>[ΘAH

1,k−1, ΘAG
1,k−1](K

GH
k−1)

>,

KAGHA
k−1 = KA

k−1ΘA
k−1KA

k−1 + KAGH
k−1 [ΘAH

1,k−1, ΘAG
1,k−1]

>KA
k−1.

(20)

Then the kernel matrices corresponding to LG
k , LH

k , and LA
1,k (LA

2,k) at the k-th step are

mg
k−1 ma1

k−1 mg
k−1 + mh

k−1 ma2
k−1

KG
k =

KG

k−1 0 0 0
0 KAGHGA>

k−1 KAGHG
k−1 KA

k−1
0 (KAGHG

k−1)> −KGHG
k−1 0

0 (KA
k−1)

> 0 0

mg

k−1
ma1

k−1
mg

k−1 + mh
k−1

ma2
k−1

, (21)

mh
k−1 ma2

k−1 mh
k−1 + mg

k−1 ma1
k−1

KH
k =

KH

k−1 0 0 0
0 KA>HGHA

k−1 KA>HGH
k−1 (KA

k−1)
>

0 (KA>HGH
k−1)> −KHGH

k−1 0
0 KA

k−1 0 0

mh

k−1
ma2

k−1
mh

k−1 + mg
k−1

ma1
k−1

(22)

and

Fractal Fract. 2023, 7, 468 6 of 30

ma2
k−1 mg

k−1 + mh
k−1 ma2

k−1

KA
k =

 KAGHA
k−1 KAGH

k−1 KA
k−1

(KA>GH
k−1)> −KGH

k−1 0
KA

k−1 0 0

 ma1
k−1

mg
k−1 + mh

k−1
ma1

k−1

. (23)

Remark 1. 1. The banded parts in (13) in the FSDA can iterate independently of the low-rank
parts, motivating to the pre-termination criterion in Section 5.

2. Low-rank factors in (14)–(17) are seen growing in dimension on a scale of O(4k), obviously
intolerable for large-scale problems. So a deflation process and a truncation and compression
technique are required to reduce the dimensions of the low-rank factors.

3. In real implementations, low-rank factors and kernels for k ≥ 2 are actually deflated,
truncated, and compressed, as described in the next two sections, where a superscript “dt” is added
to the upper right corner of each low-rank factor. Correspondingly, column numbers mg

k−1, mh
k−1,

ma1
k−1, and ma2

k−1 are the ones after deflation, truncation, and compression. Here, we temporarily
omit this superscript “dt” just for the convenience when describing the successive iteration process.

2.2. Convergence and the Evolution of the Bandwidth

To obtain the convergence, we further assume that

[A, G] is d-stabilizable and [H, A] is d-detectable (24)

and
[DA, DG] is d-stabilizable and [DH , DA] is d-detectable. (25)

The following theorem concludes the convergence of SDA (7), see [35] (Thm 4.3,
Thm 4.6) or [36] (Thm 3.1).

Theorem 1. Under the assumption (24), there are unique symmetric positive semi-definite and
stabilizing solutions Xs and Ys to DARE (3) and its dual Equation (6), respectively. Moreover,
the sequences {Gk}, {Hk} and {Ak} generated by SDA (7) satisfy 0 ≤ H ≤ Hk ≤ Hk+1 ≤ Xs,
0 ≤ G ≤ Gk ≤ Gk+1 ≤ Ys for all k and

limk→∞ Hk = Xs, limk→∞ Gk = Ys, limk→∞ Ak = 0, (26)

all quadratically.

For the banded iterations (9) and (13), we have the following corollary.

Corollary 1. Under the assumption (25), there are unique symmetric positive semi-definite and
stabilizing solutions DX and DY to the equation

− X + (DA)>X(I + DGX)−1DA + DH = 0 (27)

and its dual equation

−Y + DAY(I + DHY)−1(DA)> + DG = 0 (28)

respectively. Moreover, the sequences {DG
k }, {D

H
k } and {DA

k } generated by iterations (9) and (13)
satisfy 0 ≤ DH ≤ DH

k ≤ DH
k+1 ≤ DX , 0 ≤ DG ≤ DG

k ≤ DG
k+1 ≤ DY for all k and

limk→∞ DH
k = DX , limk→∞ DG

k = DY, limk→∞ DA
k = 0, (29)

all quadratically.

Proof. This is a direct application of Theorem 1 to Equation (27) and its dual Equation (28)
under the assumption (25).

Fractal Fract. 2023, 7, 468 7 of 30

Corollary 2. Under the conditions of Theorem 1 and Corollary 1, the symmetric positive semidefi-
nite solutions Xs and Ys to DARE (3) and its dual equation have the decompositions

Xs = DX + LX
lr and Ys = DY + LY

lr.

Moreover, for the sequences generated by FSDA, {DA
k } and {LA

1,kKA
k (LA

2,k)
>} converge to zero,

{DH
k } and {LH

k KH
k (LH

k)>} converge to DX and LX
lr and, {DG

k } and {LG
k KG

k (LG
k)
>} converge to

DY and LY
lr, respectively, all quadratically.

Proof. It follows from (26) that {Ak} converges to zero. Then the decomposition Ak = DA
k +

LA
1,kKA

k (LA
2,k)
> in (8) together with limk→∞ DA

k = 0 imply that the sequence {LA
1,kKA

k (LA
2,k)
>}

will converge to zero quadratically.
Additionally, as the sequences {Hk} and {Gk} converge quadratically, by (26), to the

unique solutions Xs and Ys, respectively, and

Hk = DH
k + LH

k KH
k (LH

k)>, Gk = DG
k + LG

k KG
k (LG

k)
>

in (8). So, given the initial banded matrices DH
0 = DH and DG

0 = DG, the iterations {DH
k }

and {DG
k } in (9) and (13) are independent of the low-ranked part and have the unique

limits DX and DY, respectively. Consequently, the sequences {LH
k KH

k (LH
k)>} = {Hk−DH

k }
and {LG

k KG
k (LG

k)
>} = {Gk − DG

k } converge quadratically to the matrices Xs − DX := LX
lr

and Ys − DY := LY
lr, respectively.

Remark 2. 1. Although the product LA
1,kKA

k (LA
2,k)
> converges to zero, it follows from (15), (17)

and (23) that the kernel KA
k and low-rank factors LA

1,k and LA
2,k might still not converge to zero,

respectively.
2. If the convergence of SDA (or the corresponding FSDA) is quadratic, the number of the

iterations k is not big when termination occurs, then the matrices LX
lr and LY

lr are generally of
numerical low-rank.

To show the evolution of the bandwidth of DA
k , DG

k and DH
k , we first require the

following result [37].

Theorem 2. Let A = (aij) be an n× n matrix. Assume that there is a number m such that aij = 0
if |i − j| > m and that ‖A‖ ≤ c1 and ‖A−1‖ ≤ c2 for some c1 > 0 and c2 > 0. Then for
A−1 = (αij), there are numbers K > 0 and 0 < r < 1 depending only on c1, c2 and m, such that

|αij| ≤ Kr|i−j| f or all i, j.

We now consider the evolution of the bandwidth for the banded parts.

Theorem 3. Let ba
k = bw(DA

k), bg
k := bw(DG

k) and bh
k := bw(DH

k) for k ≥ 0. If the assump-
tion (25) holds, then for iteration scheme (13), there is an integers k̄ independent of k, such that

ba
k ≤ 2k̄ba

0 + (2k̄ − 1) log(τ/K)
r ,

bg
k ≤ (2k̄+1 − 2)ba

0 + bg
0 + (2k̄+1 − 2− k̄) log(τ/K)

r ,
bh

k ≤ (2k̄+1 − 2)ba
0 + bh

0 + (2k̄+1 − 2− k̄) log(τ/K)
r ,

where τ is the truncation tolerance and K > 0 and 0 < r < 1 depend only on the upper bounds of
‖I + DH

i DG
i ‖, ‖I + DG

i DH
i ‖, ‖(I + DH

i DG
i)
−1‖ and ‖(I + DG

i DH
i)−1‖ for i ≤ k̄.

Fractal Fract. 2023, 7, 468 8 of 30

Proof. It follows from [35] (Thm 4.6) that I − DH
k DG

k and I − DG
k DH

k are non-singular for
all k. This together with (29) indicate that there is an integer k̄ such that |(DA

k̄)ij| < τ and
the increment of DG

k and DH
k in (13) satisfies

|(DA
k̄ (I + DG

k̄ DH
k̄)−1DG

k̄ DA>
k̄)ij| < τ and |(DA>

k̄ (I + DH
k̄ DG

k̄)
−1DH

k̄ DA
k̄)ij| < τ, (30)

where τ is the given the truncation tolerance. On the other hand for k = 1, . . . , k̄, it follows
from Theorem 2 that there are K > 0 and 0 < r < 1 independent of k, such that

|
(
(I + DG

k DH
k)−1)

ij| ≤ Kr|i−j|, |
(
(I + DH

k DG
k)
−1)

ij| ≤ Kr|i−j|.

Then one has

bw
(
(I + DG

k DH
k)−1) ≤ log(τ/K)

r , bw
(
(I + DG

k DH
k)−1) ≤ log(τ/K)

r

for k ≤ k̄. Now recalling the iteration (9), the bandwidths of the first iteration admit
the bounds

ba
1 ≤ 2ba

0 + log(τ/K)
r , bg

1 ≤ 2ba
0 + bg

0 + log(τ/K)
r , bh

1 ≤ 2ba
0 + bh

0 + log(τ/K)
r .

Iterating the above bandwidth bounds according to the scheme (13) at k ≥ 1, we have

ba
k ≤ 2kba

0 + (2k − 1) log(τ/K)
r ,

bg
k ≤ (2k+1 − 2)ba

0 + bg
0 + (2k+1 − 2− k) log(τ/K)

r ,
bh

k ≤ (2k+1 − 2)ba
0 + bh

0 + (2k+1 − 2− k) log(τ/K)
r .

(31)

In particular, the bounds on the RHS of (31) will attain the maximal values at k = k̄ since
elements with the absolute value less than τ are removed as in (30).

3. Deflation of Low-Rank Factors and Kernels

It has been shown that there is an exponential increase in the dimension of low-rank
factors and kernels. Nevertheless, it is clear that the first three items in LA

1,k and LA
2,k

(see (15) and (17)) are same as the second to the fourth item in LG
k and LH

k (see (14) and (16)),
respectively. Then the deflation of low-rank factors and kernels is needed to keep these
matrices low-ranked. To see this process clearly, we start with the case k = 2.

Case for k = 2.

Consider the deflation of the low-rank factors firstly. It follows from (14)–(17) that

LG
2 = [LG

1 , LA
11, DAGH

1 LG
1 , DAGHG

1 LH
1 , DAGHG

1 LA
21],

LA
12 = [LA

11, DAGH
1 LG

1 , DAGHG
1 LH

1 , DAGH
1 LA

11],
LH

2 = [LH
1 , LA

21, DA>HG
1 LH

1 , DA>HGH
1 LG

1 , DA>HGH
1 LA

11],
LA

22 = [LA
21, DA>HG

1 LH
1 , DA>HGH

1 LG
1 , DA>HG

1 LA
21]

with

DAGHG
1 = DA

1 (I + DG
1 DH

1)−1DG
1 , DA>HGH

1 = (DA
1)
>DH

1 (I + DG
1 DH

1)−1,
DAGH

1 = DA
1 (I + DG

1 DH
1)−1, DA>HG

1 = (DA
1)
>(I + DH

1 DG
1)
−1.

Expanding the above low-rank factors with the initial LA
10 ∈ RN×ma

and LA
20 ∈ RN×ma

, one
can see from Appendix A that LA

10 and DAGHG
1 LA

20 (or LA
20 and DA>HGH

1 LA
10) occur twice in

LG
2 (or LH

2). To reduce the dimension of LG
2 , we remove the duplicated LA

10 in LG
1 (or LA

20 in
LH

1) and retain the one in LA
11 (or LA

21). Furthermore, we remove DAGHG
1 LA

20 in DAGHG
1 LA

21

(or DA>HGH
1 LA

10 in DA>HGH
1 LA

11) and keep the one in DAGHG
1 LH

1 (or DA>HGH
1 LG

1). Then the

Fractal Fract. 2023, 7, 468 9 of 30

original LG
2 (or LH

2) is deflated to LGd
2 (or LHd

2) of a smaller dimension, where the superscript
“d ” indicates the matrix after deflation. Analogously, as DAGH

1 LA
10 and DA>HG

1 LA
20 appear

twice in LA
12 and LA

22, we apply the same deflation process to LA
12 and LA

22, respectively,
obtaining LAd

12 and LAd
22 in Appendix A, where the left blank in each factor corresponds

to the deleted matrix and the black bold matrices inherit from the undeflated ones. Note
that the deflated matrices LGd

2 , LAd
12 , LHd

2 and LAd
22 are still denoted by LG

2 , LA
12, LH

2 and LA
22,

respectively, in next iteration to simplify notations.
For the kernels at k = 2, one has

2ma 4ma 2ma 2ma

KG
2 =

KG

1 0 0 0
0 KAGHGA>

1 KAGHG
1 KA

1
0 (KAGHG

1)> −KGHG
1 0

0 (KA
1)
> 0 0

2ma

4ma

2ma

2ma

,

2ma 4ma 2ma 2ma

KH
2 =

KH

1 0 0 0
0 KA>HGHA

1 KA>HGH
1 (KA

1)
>

0 (KA>HGH
1)> −KHGH

1 0
0 KA

1 0 0

2ma

4ma

2ma

2ma

and
2ma 4ma 2ma

KA
2 =

 KAGHA
1 KAGH

1 KA
1

(KA>GH
1)> −KGH

1 0
KA

1 0 0

 2ma

4ma

2ma

with non-zero components defined in (18)–(20). Here, details of the deflation of KG
2 are

explained explicitly and that for KH
2 is similar. In fact, there are 10 block rows and block

columns with each of initial size ma × ma in KG
2 . Due to the deflation of the L-factors

described above, we add the first and the ninth row to the third and the seventh row and
then remove the first and the ninth row, respectively. We also add the the first and the
ninth column to the third and the seventh column and then remove the first and the ninth
column, respectively, completing the deflation of KGd

2 .
Analogously, there are eight block rows and block columns, each of the initial size

ma ×ma in KA
2 . The deflation process simultaneously adds the seventh column and row

subblocks to the third column and row subblocks, respectively. Then the first column sub-
block of the upper right KA

1 and the first row sub-block of the lower-left KA
1 overlap with

the first column sub-block of KAGH
1 and the first row sub-block of (KA>GH

1)>, respectively,
completing the deflation of KAd

2 .
The whole process is described in Figures 1 and 2 where each small square is of

size ma ×ma and each block with gray background represents the non-zero component
in KG

2 and KA
2 . The little white squares in KGd

2 and KAd
2 inherit from the originally unde-

flated submatrices and the little black squares in KGd
2 and KAd

2 represent the submatrices
after summation.

Fractal Fract. 2023, 7, 468 10 of 30

KG
2 : d→ := KGd

2

Figure 1. The deflation process of KG
2 (or KH

2).

KA
2 : d→ := KAd

2

Figure 2. The deflation process of KA
2 .

Case for k ≥ 3.

After the (k− 1)-th deflation, the deflated matrices LGd
k−1, LAd

1,k−1, LHd
k−1 and LAd

2,k−1 are
denoted by LG

k−1, LA
1,k−1, LH

k−1 and LA
2,k−1 for simplicity. Now there are mg

k−1 − (k− 1)ma

(or mh
k−1 − (k− 1)ma) columns in LG

k−1 and LA
1,k−1 (or LH

k−1 and LA
2,k−1) and ma2

k−1 −ma (or

ma1
k−1−ma) columns in DAGHG

k−1 LA
2,k−1 and DAGHG

k−1 LH
k−1 (or DA>HGH

k−1 LA
1,k−1 and DA>HGH

k−1 LG
k−1)

that are identical. Then, one can remove columns of

LG
k−1(:, (k− 2)ma + 1 : mg

k−1 −ma)
(
or LH

k−1(:, (k− 2)ma + 1 : mh
k−1 −ma)

)
and

DAGHG
k−1 LA

2,k−1(:, 1 : ma2
k−1 −ma)

(
or DA>HGH

k−1 LA
1,k−1(:, 1 : ma1

k−1 −ma)
)
,

and keep the columns of

LA
1,k−1(:, 1 : mg

k−1 − (k− 1)ma)
(
or LA

2,k−1(:, 1 : mh
k−1 − (k− 1)ma)

)
and

DAGHG
k−1 LH

k−1(:, mh
k−1 −ma2

k−1 + 1 : mh
k−1 −ma)

(
or DA>HGH

k−1 LG
k−1(:, mg

k−1 −ma1
k−1 + 1 : mg

k−1 −ma)
)

in LG
k (A1) (or LH

k (A3)), respectively. So there are k− 1 matrices, each of order N×ma, that are

left in LG
k−1 (or LH

k−1), i.e., DAGHG
0 LA

20, DAGHG
1 DA>HG

0 LA
20, . . . , DAGHG

k−2 Πk−3
i=0 DA>HG

i LA
20 in (A1)

(or DA>HGH
0 LA

10, DA>HGH
1 DAGH

0 LA
10, . . . , DA>HGH

k−2 Πk−3
i=0 DAGH

i LA
10 in (A3)) in Appendix B.

Meanwhile, only one matrix of order N × ma is left in DAGHG
k−1 LA

2,k−1, (or DA>HGH
k−1 LA

1,k−1),

i.e., the last item DAGHG
k−1 Π0

i=k−2DA>HG
i LA

20 in (A1) (or DA>HGH
k−1 Π0

i=k−2DAGH
i LA

10 in (A3)) of
Appendix B. We also take LG

3 as an example to describe the above deflation more clearly in
Appendix C.

Fractal Fract. 2023, 7, 468 11 of 30

To deflate LA
1,k (LA

2,k), columns of

DAGH
k−1 LA

1,k−1(:, 1 : ma1
k−1 −ma)

(
or DA>HG

k−1 LA
2,k−1(:, 1 : ma2

k−1 −ma)
)

are removed but the columns of

DAGH
k−1 LG

k−1(:, mg
k−1 −ma1

k−1 + 1 : mg
k−1 −ma)

(
or DA>HG

k−1 LH
k−1(:, mh

k−1 −ma2
k−1 + 1 : mh

k−1 −ma)
)

are retained in LA
1,k (or LA

2,k). So only one matrix of order N ×ma is left in DAGH
k−1 LA

1,k−1 (or

DA>HG
k−1 LA

2,k−1), i.e., the last item Π0
i=k−1DAGH

i LA
10 in (A2) (or Π0

i=k−1DA>HG
i LA

20 in (A4)) of
Appendix B. Note that the low-rank factors in the (k− 1)-th iteration are the ones after
deflation, truncation and compression, deleting the superscript “d” for the simplicity. We
take LA

13 as an example to describe the above deflation more clearly in Appendix D.
Correspondingly, the kernel matrices KG

k , KH
k , and KA

k are deflated according to their
low-rank factors. Here, we describe the deflation of KG

k and that of KH
k is essentially the

same. By recalling the place of non-zero sub-matrices (the block with gray background in
Figure 3) of KG

k in (21), the deflation process essentially adds KG
k−1((k− 2)ma + 1 : mg

k−1−ma,

(k − 2)ma + 1 : mg
k−1 − ma) to KAGHGA>

k−1 (1 : mg
k−1 − (k − 1)ma, 1 : mg

k−1 − (k − 1)ma),
columns KA

k−1(:, 1 : ma2
k−1 −ma) to KAGHG

k−1 (:, mg
k−1 + mh

k−1 −ma2
k−1 + 1 : mg

k−1 + mh
k−1 −ma)

and rows (KA
k−1)

>(1 : ma2
k−1 − ma, :) to (KAGHG

k−1)>(mg
k−1 + mh

k−1 − ma2
k−1 + 1 : mg

k−1 +

mh
k−1 −ma, :), respectively. See Figure 3 for illustration.

KG
k : d→ := KGd

k

Figure 3. The deflation process of KG
k (or KH

k).

Similarly, by recalling the positions of non-zero matrices (the block with gray background
in Figure 4) of KA

k in (23), the deflation process will add columns KA
k−1(:, 1 : ma2

k−1 −ma) to
columns KAHG

k−1 (:, mh
k−1 −ma2

k−1 + 1 : mh
k−1 −ma) and rows KA

k−1(1 : ma1
k−1 −ma, :) to rows

(KA>GH
k−1)>(mg

k−1 −ma1
k−1 + 1 : mg

k−1 −ma, :). See Figure 4 for illustration.

Fractal Fract. 2023, 7, 468 12 of 30

KA
k : d→ := KAd

k

Figure 4. The deflation process of KA
k .

4. Partial Truncation and Compression

Although the deflation of the low-rank factors and kernels in the last section can
reduce dimensional growth, the exponential increment of the undeflated part is still rapid,
making large-scale computation and storage infeasible. Conventionally, one efficient
way to shrink the column number of low-rank factors is by truncation and compression
(TC) [17,18], which, unfortunately, is hard to be applied to our case due to the following
two main obstacles.

• Direct application of TC to LHd
k , LGd

k , LAd
1,k , LAd

2,k , and their corresponding kernels KHd
k ,

KGd
k and KAd

k at the k-th step will require four QR decompositions, resulting in a
relatively high computational complexity and CPU consumption.

• The TC process applied to the whole low-rank factors at current step breaks up the
implicit structure, causing the deflation to be unrealized in the next iteration.

In this section, we will instead present a technique of partial truncation and compres-
sion (PTC) to overcome the above difficulties. Our PTC only requires two QR decomposi-
tions of the exponentially increasing (not the entire) parts of low-rank factors, keeping the
successive deflation for subsequent iterations.

PTC for low-rank factors. Recall the deflated forms (A1) and (A3) in Appendix B.
LGd

k and LHd
k can be divided to three parts

LGd
k = [LGd

k (1), LGd
k (2), LGd

k (3)]
LHd

k = [LHd
k (1), LHd

k (2), LHd
k (3)].

The number of columns in

LGd
k (1) := [DAGHG

0 LA
20, DAGHG

1 DA>GH
0 LA

20, . . . , DAGHG
k−2 Π0

i=k−3DA>GH
i LA

20] ∈ RN×(k−1)ma

and

LHd
k (1) := [DA>HGH

0 LA
10, DA>HGH

1 DA>GH
0 LA

10, . . . , DA>HGH
k−2 Π0

i=k−3DAGH
i LA

10] ∈ RN×(k−1)ma

increases only linearly with k, and the last parts

LGd
k (3) := DAGHG

k−1 Π0
i=k−2DA>GH

i LA
20 ∈ RN×ma

and
LHd

k (3) := DA>HGH
k−1 Π0

i=k−2DAGH
i LA

10 ∈ RN×ma

are always of size N×ma. So we only truncate and compress the dominantly growing parts

LGd
k (2) := [LA

1,k−1, DAGH
k−1 LG

k−1, DAGHG
k−1 LH

k−1]

Fractal Fract. 2023, 7, 468 13 of 30

and
LHd

k (2) := [LA
2,k−1, DA>HGLH

k−1, DA>HGH
k−1 LG

k−1]

by orthogonalization. Consider the QR decompositions with column pivoting of

LGd
k (2)PG

k = [QG
k Q̃G

k]

[
UG

k,1 UG
k,2

0 ŨG
k

]
, ‖ŨG

k ‖ < ug
0τg,

LHd
k (2)PH

k = [QH
k Q̃H

k]

[
UH

k,1 UH
k,2

0 ŨH
k

]
, ‖ŨH

k ‖ < uh
0τh,

(32)

where PG
k and PH

k are permutation matrices such that the diagonal elements of

[
U J

k,1 U J
k,2

0 Ũ J
k

]
(J = G or H) are decreasing in absolute value, ug

0 = ‖UG
0,1‖, uh

0 = ‖UH
0,1‖ and τg and τh are

some small tolerances controlling PTC of LGd
k (2) and LHd

k (2), respectively, mg(2)
k and mh(2)

k
are the respective column numbers of LG

k (2) and LH
k (2) bounded above by some given

mmax. Then their ranks satisfy

rg
k := rank(LG

k (2)) ≤ mg(2)
k ≤ mmax, rh

k := rank(LH
k (2)) ≤ mh(2)

k ≤ mmax

with mmax � N. Furthermore, QG
k ∈ RN×rg

k and QH
k ∈ RN×rh

k are orthonormal and

UG
k = [UG

k,1 UG
k,2] ∈ Rrg

k×mhga
k−1 and UH

k = [UH
k,1 UH

k,2] ∈ Rrh
k×mhga

k−1 are full-rank with mhga
k−1 =

mh
k−1 + mg

k−1 + ma
k−1. Then LGd

k and LHd
k can be truncated and reorganized as

LGdt
k = [LGd

k (1), QG
k , LGd

k (3)] := [LGdt
k (1), LGdt

k (2), LGdt
k (3)] ∈ RN×mg

k ,
LHdt

k = [LHd
k (1), QH

k , LHd
k (3)] := [LHdt

k (1), LHdt
k (2), LHdt

k (3)] ∈ RN×mh
k

(33)

with mg
k = rg

k + kma and mh
k = rh

k + kma.
Similarly, recalling the deflated forms in (A2) and (A4) in Appendix B, LAd

1,k and LAd
2,k

are also divided into two parts,

LAd
1,k = [LAd

1,k (1), LAd
1,k (2)] and LAd

2,k = [LAd
2,k (1), LAd

2,k (2)]

with
LAd

1,k (1) = LGd
k (2), LAd

1,k (2) = Π0
i=k−1DAGH

i LA
10,

LAd
2,k (1) = LHd

k (2), LAd
2,k (2) = Π0

i=k−1DA>HG
i LA

20.

Since LGd
k (2) and LHd

k (2) have been compressed to QG
k and QH

k , respectively, one has the
truncated and compressed factors

LAdt
1,k = [QG

k , LAd
1,k (2)] = [LAdt

1,k (1), LAdt
1,k (2)] ∈ RN×m

a1
k ,

LAdt
2,k = [QH

k , LAd
2,k (2)] = [LAdt

2,k (1), LAdt
2,k (2)] ∈ RN×ma2

k
(34)

with ma1
k = rg

k + ma and ma2
k = rh

k + ma, finishing the PTC process for the low-rank factors
in the k-th iteration.

It is worth noting that the above PTC process can proceed to the next iteration. In fact,
one has

LG
k+1 = [LGdt

k , LAdt
1,k , DAGH

k LGdt
k , DAGHG

k LHdt
k , DAGHG

k+1 LAdt
2,k],

LH
k+1 = [LHdt

k , LAdt
2,k , DA>HG

k LHdt
k , DA>HGH

k LGdt
k , DA>HGH

k LAdt
1,k]

after the k-th PTC. As LAdt
1,k (1) is equal to LGdt

k (2) and LAdt
2,k (1) is equal to LHdt

k (2), one can
deflate LG

k+1 and LH
k+1 to

Fractal Fract. 2023, 7, 468 14 of 30

LGd
k+1 = [LGd

k+1(1), LGd
k+1(2), LGd

k+1(3)], LHd
k+1 = [LHd

k+1(1), LHd
k+1(2), LHd

k+1(3)]

with

LGd
k+1(1) = [LGdt

k (1), LGdt
k (3)], LHd

k+1(1) = [LHdt
k (1), LHdt

k (3)],
LGd

k+1(2) = [LAdt
1,k , DAGH

k LGdt
k , DAGHG

k LHdt
k], LHd

k+1(2) = [LAdt
2,k , DA>HG

k LHdt
k , DA>HGH

k LGdt
k],

LGd
k+1(3) = DAGHG

k LAdt
2,k (2), LHd

k+1(3) = DA>HGH
k LAdt

1,k (2).

Applying PTC to LGd
k+1(2) and LHd

k+1(2), respectively, again, one has

LGdt
k+1 = [LGd

k+1(1), QG
k+1 LGd

k+1(3)] := [LGdt
k+1(1), LGdt

k+1(2), LGdt
k+1(3)],

LHdt
k+1 = [LHd

k+1(1), QH
k+1, LHd

k+1(3)] := [LHdt
k+1(1), LHdt

k+1(2), LHdt
k+1(3)],

(35)

where QG
k+1 ∈ RN×rg

k+1 and QH
k+1 ∈ RN×rh

k+1 are unitary matrices from QR decomposition
and the PTC in the (k + 1)-th iteration is completed.

PTC for kernels. Define matrices

ÛA
1,k = UG

k ⊕ Ima , ÛG
k = I(k−1)ma ⊕UG

k ⊕ Ima ,
ÛA

2,k = UH
k ⊕ Ima , ÛH

k = I(k−1)ma ⊕UH
k ⊕ Ima ,

with UG
k and UH

k in (32). Then the truncated and compressed kernels are

KGdt
k := ÛG

k KGd
k (ÛG

k)
> ∈ Rmg

k×mg
k ,

KHdt
k := ÛH

k KHd
k (ÛH

k)> ∈ Rmh
k×mh

k ,
KAdt

k := ÛA
1,kKHd

k (ÛA
2,k)
> ∈ Rmg

k×mh
k .

(36)

To eliminate items less than O(τg) and O(τh) in the low-rank factors and kernels,
an additional monitoring step is imposed after the PTC process. Specifically, the last
item DAGHG

k−2 Π0
i=k−3DA>GH

i LA
20 in LGdt

k (or DA>HGH
k−2 Π0

i=k−3DAGH
i LA

10 in LHdt
k) will be dis-

carded if its norm is less than O(τg) (or O(τh)). Similarly, Π0
i=k−1DAGH

i LA
10 in LAd

1,k (2) (or

Π0
i=k−1DA>HG

i LA
20 in LAd

2,k (2)) will be abandoned if its norm is less than O(τg) (or O(τh)).
In this way, the growth of column dimension in the low-rank factors LGdt

k , LHdt
k , LAdt

1,k and
LAdt

2,k , as well as the kernels KGdt
k , KHdt

k , KAdt
k , will be controlled efficiently while sacrificing

a hopefully negligible bit of accuracy. Additionally, their sizes after PTC will be further
restricted by setting a reasonable upper bound mmax.

5. Algorithm and Implementation
5.1. Computation of Residuals

The computation of relative residuals, such as rrel = |D(Hk)|/|D(H0)|, is commonly
used in the context of solving the DARE using SDA, as mentioned in [4]. Typically, the
FSDA algorithm is designed to stop when the relative residual is sufficiently small, which
guarantees that the approximated solution Hk is close to the exact solution of the DARE [35].
However, computing rrel directly can be computationally expensive due to the high rank of
Hk and Gk. To overcome this difficulty, the residual is divided into two parts, the banded
part and the low-ranked part, under the assumptions of Equations (4) and (5). The residual
for the banded part can be computed relatively easily and serves as a pre-termination
condition, followed by the termination of the entire FSDA algorithm based on the residual
for the low-ranked part.

Fractal Fract. 2023, 7, 468 15 of 30

5.1.1. Residual for the Banded Part

Define

D̃HG
k = (I + DH

k DG
0)
−1, D̃HGH

k = D̃HG
k DH

k , D̃GHG
k = DG

0 D̃HG
k

and
K̃H

k = (I + KH
k (LH

k)>D̃GHG
k LH

k)−1KH
k .

With the current approximated solution Hk = DH
k + LH

k KH
k (LH

k)>, the residual for
DARE (3) is

D(Hk) = −Hk + A>
(

D̃HGH
k + D̃HG

k LH
k K̃H

k (D̃HG
k LH

k)>
)

A + H

:= DR
k + LR

k KR
k (LR

k)
>,

where the banded part, the low-rank part and the kernel are

DR
k = DH

0 − DH
k + (DA

0)
>DH

k (I + DG
0 DH

k)−1DA
0 ,

LR
k = [LA

20, (DA
0)
>D̃HGH

k LA
10, (DA

0)
>D̃HG

k LH
k , LH

k],

KR
k =

ma ma mh
k mh

k
K̃A>HGHA

k Ima K̃A>HG
k 0

Ima 0 0 0
(K̃A>HG

k)> 0 K̃H
k 0

0 0 0 −KH
k

ma

ma

mh
k

mh
k

(37)

respectively, and
K̃A>HG

k = (LA
10)
>D̃HG

k LH
k · K̃

H
k ,

K̃A>HGHA
k = (LA

10)
>D̃HGH

k LA
10 + K̃A>HG

k ·
(
(LA

10)
>D̃HG

k LH
k

)>
.

It is not difficult to see that the main flop counts in the kernel KR
k lie in forming matrices

(LA
10)
>D̃HGH

k LA
10, (LA

10)
>D̃HG

k LH
k , (LH

k)>D̃GHG
k LH

k . (38)

To avoid calculating them in each iteration, we first verify if

B_RRes =
‖DR

k ‖
|D̄R

0 |+ ‖LR
0 ‖2‖KR

0 ‖
≤ εb (39)

with |D̄R
0 | = ‖DA

0 ‖2
2‖DH

0 ‖‖(I + DG
0 DH

0)−1‖2 and εb being the band tolerance. Here, the
norm ‖ · ‖2 is the matrix spectral norm, which is not easy to compute and is replaced
by l1-matrix norm in practice. This is feasible as the residual of D(Hk) comes from two
relatively independent parts, i.e., the banded part and the low-rank part.

5.1.2. Residual for the Low-Rank Part

When the pre-termination (39) is satisfied, matrices in (38) are then constructed, fol-
lowed by the deflation, truncation, and compression of the low-rank factor LR

k . Specifically,
the columns LA

20(:, 1 : ma) are removed and columns of LH
k (:, 1 : ma) are kept such that LR

k
is deflated to LRd

k , i.e.,

Fractal Fract. 2023, 7, 468 16 of 30

LR
k = LA

20, (DA
0)
>D̃HGH

k LA
10, (DA

0)
>D̃HGLH

k , LH
k

[]1 : ma → mh
k + 2ma + 1 : mh

k + 3ma

d→ (DA
0)
>D̃HGH

k LA
10, (DA

0)
>D̃HGLH

k , LH
k

[]
:= LRd

k .

Let Îma = [Ima , 0, . . . 0] ∈ Rma×mh
k , K̂A>HG

k = [(K̃A>HG
k)>, 0, . . . , 0] ∈ Rmh

k×mh
k . The

kernel KR
k in (37) is correspondingly deflated as

KR
k

d→

ma mh
k mh

k 0 0 Îma

0 K̃H
k K̂A>HG

k
(Îma)> (K̂A>HG

k)> K̂A>HGHA
k

 ma

mh
k

mh
k

:= KRd
k ,

where all elements in K̂A>HGHA
k are same to those in KH

k except K̂A>HGHA
k (1 : ma, 1 : ma) =

K̃A>HGHA
k − KH

k (1 : ma, 1 : ma).
After deflation, the truncation and compression are applied to LRd

k with QR decomposition

LRd
k PR

k = [QR
k Q̃R

k]

[
UR

k,1 UR
k,2

0 ŨR
k

]
, ‖ŨR

k ‖ < ur
0τr,

where PR
k is the permutation matrix such that the diagonal elements of

[
UR

k,1 UR
k,2

0 ŨR
k

]
are decreasing in absolute value, ur

0 = ‖UR
0,1‖ and τr is the given tolerance, QR

k ∈ Rn×rr
k

is orthonormal and UR
k = [UR

k,1 UR
k,2] ∈ Rrr

k×nk is full-ranked. Since ‖LR
k KR

k (LR
k)
>‖ ≈

‖UR
k KRd

k (UR
k)
>‖, the terminating condition of the whole algorithm is chosen to be

LR_RRes =
‖UR

k KRd
k (UR

k)
>‖

|D̄R
0 |+ ‖LR

0 ‖2‖KR
0 ‖
≤ εl (40)

with εl being the low-rank tolerance.

5.2. Algorithm and Operation Counts

The process of deflation and PTC together with the computation of residuals (39)
and (40) are summarized in the FSDA Algorithm 1.

Fractal Fract. 2023, 7, 468 17 of 30

Algorithm 1 FSDA. Solve DAREs with high-ranked G and H

Inputs: Banded matrices DA
0 , DG

0 , DH
0 , low-rank factors LA

10, LA
20, LG

0 , LH
0 , KG

0 , KH
0 , and

the iterative tolerance tol; truncation tolerances τg, τh, τr and upper bound mmax;
band tolerance εb and low-rank tolerance εl .

Outputs: Banded matrix DH , low-rank matrix LH and the kernel matrix KH with the
stabilizing solution Xs ≈ DH + LHKH(LH)>.

1. Set DG
1 = DG

0 + DAGHG
0 (DA

0)
>, DH

1 = DH
0 + DA>HGH

0 DA
0 , DA

1 = DA
0 (DA>HG

0)> as

in (9). Set LG
1 = [LA

10, DAGHG
0 LA

20], LH
1 = [LA

20, DA>HGH
0 LA

10], LA
11 = [LA

10, DAGH
0 LA

10],
LA

21 = [LA
20, DA>HG

0 LA
20] as in (10). Set KG

1 , KH
1 , KA

1 as in (11) and (12).
2. For k = 2, . . . , until convergence, do
3. Compute banded matrices DG

k , DH
k , DA

k as in (13).
4. Form components (18)–(20) and construct kernels KG

k , KG
k and KG

k as in (21)–(23).

5. Deflate kernels KG
k

d→ KGd
k , KH

k
d→ KHd

k and KA
k

d→ KAd
k in a way of Figures 3 and 4.

6. Deflate the low-rank factors LG
k

d→ LGd
k , LH

k
d→ LHd

k , LA
1,k

d→ LAd
1,k and LA

2,k
d→ LAd

2,k
as in (A1)–(A4).

7. Partially truncate and compress LGd
k and LHd

k as in (32) with accuracy ug
0τg, ug

0τh.
8. Construct compressed low-rank factors LGdt

k , LHdt
k , LAdt

1,k and LAdt
2,k as in (33)–(34).

9. Construct compressed kernels KGdt
k , KHdt

k and KAdt
k as in (36).

10. Evaluate the residual of the banded part B_RRes in (39).
11. If B_RRes < tol, compute the residual of low-rank part LR_RRes in (40).
12. If LR_RRes < tol, break, end.
13. End (If);
14. KG

k := KGdt
k , KH

k := KHdt
k , KA

k := KAdt
k .

15. LG
k := LGdt

k , LH
k := LHdt

k , LA
1,k := LAdt

1,k , LA
2,k := LAdt

2,k .
16. k := k + 1;
17. End (For)
18. Output DH

k = DH , LH
k = LH and KH

k = KH .

Remark 3. 1. At each iteration, elements in the banded matrices DA
k , DH

k , and DG
k with an absolute

value less than tol = eps ·max{‖DA‖, ‖DG‖, ‖DH‖} are eliminated.
2. The deflation process involves merging selected rows and columns in the kernels KG

k , KH
k ,

and KA
k based on overlapping columns in the low-rank factors LG

k , LH
k , LA

1,k, and LA
2,k. This requires

adding some columns and rows.
3. The PTC is applied to LGd

k (2) and LHd
k (2). The column numbers of LGd

k (1) and LHd
k (1)

increase linearly with respect to k, while those of LGd
k (3) and LHd

k (3) remain unchanged. Elements
in LGd

k (1), LHd
k (1), LGd

k (3), and LHd
k (3) with an absolute value less than tol are removed to

minimize the column size of the low-rank factors.

To further analyze the complexity and the memory requirement of the FSDA, the band-
width of DA

k , DG
k , and DH

k at each iteration are assumed to be ba
k , bg

k and bh
k (ba

k , bg
k , bh

k � N),

respectively. We also set bhg
k = max{bh

k , bg
k}, bhga

k = max{bh
k , bg

k , ba
k}, ma

k = max{ma1
k , ma2

k },
and mhga

k−1 := mh
k−1 + mg

k−1 + ma
k−1 for the convenience of counting flops. The table in

Appendix E lists the time and memory requirement for different components in the k-th
iteration of the FSDA, where the estimations are upper bounds due to the truncation errors
τg, τh and τr.

6. Numerical Examples

In this section, we will demonstrate the effectiveness of the FSDA algorithm in com-
puting the approximate solution of the DARE (3). The FSDA algorithm was implemented
using MATLAB 2014a [38] on a 64-bit PC running Windows 10. The PC had a 3.0 GHz Intel

Fractal Fract. 2023, 7, 468 18 of 30

Core i5 processor with 6 cores and 6 threads, 32GB RAM, and a machine unit round-off
value of eps = 2.22× 10−16. The residual for the DARE was estimated using the upper
bound formula

r̃k = B_RRes + LR_RRes,

where B_RRes in (39) and LR_RRes in (40) are the relative residuals for the banded part
and the low-rank part, respectively. The tolerance values for truncation and compression
were set to τg = τh = τr = 10−16, and the termination tolerance values were set to
εb = εl = 10−11. We also tried N·eps as the tolerance value for τg, τh and τr in our
experiments, but found that it had no impact on the residual accuracy. The maximum
permitted column number in the low-rank factors was set to mmax = 2200. As a comparison,
we also ran the ordinary SDA algorithm with hierarchical structure (i.e., HODLR) using the
hm-toolbox (http://github.com/numpi/hm-toolbox, accessed on 1 June 2023) [39,40]. The
SDA algorithm with hierarchical structure is referred to as SDA_HODLR in this paper. The
derived relative residual for SDA_HODLR is denoted by r̂k. In our numerical experiments,
the initial bandwidths of all banded matrices in Examples 1 and 3 were relatively small,
while those in Example 2 were non-trivial.

Example 1. The first example is of the medium scale, measuring the error between the true solution
and the computed one. Given the constant θ =

√
η + 1

η − 2ζ , where ζ and η are positive numbers such
that θ is real. Let LA

10 = θe with e the random vector satisfying e>e = 1, LA
20 = LA

10, DA
0 = ζ IN ,

then A = DA
0 + LA

10(LA
20)
>. Set G = DG

0 = IN , H = DH
0 = (η + 1

η)DA
0 − (DA

0)
2 − IN .

The solution of the DARE is of the form Xs = DX + LX(LX)> with DX = ηDA
0 − IN and

LX =
√

ηLA
10.

It is not difficult to see that the solution Xs is stabilizing since the spectral radius of
(IN + GXs)−1 A is less than unity when η > 1.

We first took ζ = 1.2 and η = 2 to calculate B_RRes, followed by LR_RRes as well
as the upper bound of residual of DARE r̃k. In our implementations, the relative error
between the approximated solution (denoted by Hj when terminated at the j-th iteration)
and the true stabilizing solution Xs was evaluated, and the numerical results are presented
in Table 1. It is seen that for different scales (N = 1000, 3000, 5000, 7000) FSDA was able to
attain the prescribed banded accuracy in five iterations. Residuals LR_Res and r̃k were then
evaluated, attaining the order O(10−16). The relative error with the computational time
being not included in the CPU time, also reflects that H5 approximates the true solution
very well. On the other hand, SDA_HODLR also attains the prescribed residual accuracy
in five iterations, but cost more CPU time (in seconds).

We then took η = 1.2 to make the spectral radius of (IN + GXs)−1 A close to 1 and
recorded the numerical performance of the FSDA with ζ = 1.0. It is seen from Table 1 that
the FSDA costs seven iterations before termination, obtaining almost the same banded
residual histories (B_RRes) for different N. As before, LR_RRes and r̃k were of O(10−17)
and O(10−16), respectively, showing that H7 is a good approximation to the true solution
to DARE (3). The last relative error ‖H7 − Xs‖/‖Xs‖ also validates this fact. Analogously,
SDA_HODLR requires seven iterations to arrive at the residual level O(10−15). It is also
seen that the FSDA costs less CPU time than SDA_HODLR for all N.

http://github.com/numpi/hm-toolbox

Fractal Fract. 2023, 7, 468 19 of 30

Table 1. Residual and actual errors in Example 1.

ζ = 1.2, η = 2.0

N 1000 3000 5000 7000

FSDA

4.39× 10−1 4.41× 10−1 4.42× 10−1 4.42× 10−1

3.47× 10−2 3.48× 10−2 3.49× 10−2 3.49× 10−2

B_RRes 1.38× 10−4 1.38× 10−4 1.38× 10−4 1.38× 10−4

2.10× 10−9 2.11× 10−9 2.11× 10−9 2.11× 10−9

4.25× 10−16 4.27× 10−16 4.27× 10−16 4.31× 10−16

LR_RRes 2.09× 10−18 2.27× 10−18 4.04× 10−18 3.28× 10−18

r̃k 4.27× 10−16 4.29× 10−16 4.31× 10−16 4.34× 10−16

‖H5 − Xs‖/‖Xs‖ 2.56× 10−16 2.57× 10−16 2.56× 10−16 2.48× 10−16

CPU 0.04 0.09 0.22 0.48

SDA_HODLR

4.44× 10−1 4.44× 10−1 4.44× 10−1 4.44× 10−1

3.50× 10−2 3.50× 10−2 3.50× 10−2 3.50× 10−2

r̂k 1.39× 10−4 1.39× 10−4 1.39× 10−4 1.39× 10−4

2.12× 10−9 2.12× 10−9 2.12× 10−9 2.12× 10−9

1.33× 10−15 1.27× 10−15 1.34× 10−15 1.47× 10−15

CPU 1.17 19.93 76.67 186.61

ζ = 1.0, η = 1.2

N 1000 3000 5000 7000

FSDA

8.68× 10−1 8.84× 10−1 8.89× 10−1 8.92× 10−1

6.06× 10−1 6.18× 10−1 6.21× 10−1 6.23× 10−1

1.93× 10−1 1.97× 10−1 1.98× 10−1 1.99× 10−1

B_RRes 1.15× 10−2 1.18× 10−2 1.18× 10−2 1.19× 10−2

3.40× 10−5 3.47× 10−5 3.49× 10−5 3.50× 10−5

2.91× 10−10 2.97× 10−10 2.99× 10−10 3.00× 10−10

8.22× 10−16 8.38× 10−16 8.43× 10−16 8.46× 10−16

LR_RRes 3.03× 10−17 1.07× 10−17 2.77× 10−17 1.75× 10−17

r̃k 8.52× 10−16 8.48× 10−16 8.70× 10−16 8.63× 10−16

‖H7 − Xs‖/‖Xs‖ 4.23× 10−15 5.04× 10−15 4.94× 10−15 4.98× 10−15

CPU 0.31 0.45 0.48 0.96

SDA_HODLR

9.08× 10−1 9.08× 10−1 9.08× 10−1 9.08× 10−1

6.34× 10−1 6.34× 10−1 6.34× 10−1 6.34× 10−1

2.02× 10−1 2.02× 10−1 2.02× 10−1 2.02× 10−1

r̂k 1.21× 10−2 1.21× 10−2 1.21× 10−2 1.21× 10−2

3.56× 10−5 3.56× 10−5 3.56× 10−5 3.56× 10−5

3.05× 10−10 3.05× 10−10 3.05× 10−10 3.05× 10−10

4.75× 10−15 4.62× 10−15 4.97× 10−15 5.52× 10−15

CPU 1.61 27.10 107.16 263.34

Example 2. Consider a generalized model of power system labelled by PI Sections 20–80 (https:
//sites.google.com/site/rommes/software, “S10PI_n1.mat” accessed on 1 June 2023). All transmis-
sion lines in the network are modelled by RLC ladder networks, of cascaded RLC PI-circuits [41].
The original band-plus-low-rank matrix A has a small scale of 528 (Figure 5) and is then extended

https://sites.google.com/site/rommes/software
https://sites.google.com/site/rommes/software

Fractal Fract. 2023, 7, 468 20 of 30

to larger ones. Specifically, we extract the banded part DA
ori of the bandwidth 217 from the original

matrix Aori and tile it along the diagonal direction for 20 times to obtain DA
0 . We then implement

an SVD of the matrix Aori−DA
ori to produce the singular value matrix ΣA and the unitary matrices

UA and VA. The low-ranked parts LA
10 and LA

20 are then constructed by tiling UA(:, 1 : ra) and
VA(:, 1 : ra) 20 times and multiplying Σ1/2

A (1 : ra, 1 : ra) from the right, respectively, where ra
is the number of singular values in ΣA less than 10−8. Let F1 and F3 be block diagonal matrices
with each diagonal block the 3× 3 random matrix (generated by ‘rand(3)’). Let F2 and F4 be also
diagonal block matrices with the top left element a random number, the last diagonal block 2× 2
random matrix and others 3× 3 random matrices. Define matrices G and H as

G := DG
0 = (Rg + R>g)/2 + ξ IN , H := DH

0 = (Rh + R>h)/4 + ξ IN ,

with Rg = (F1 + IN)(F2 + IN), Rh = (F3 + IN)(F4 + IN).

Figure 5. Structured matrix Aori of size 528× 528 in Example 2.

We ran the FSDA with three different ξ = 0.11, 1.0, 3.0, each conducting five random
experiments. In all experiments, B_RRes and LR_RRes (in log 10) were observed attaining
the pre-terminating condition (39) and the terminating condition (40), respectively.

Figure 6 plots the obtained numerical results for five experiments, where Rk is the
upper bound of the residual of the DARE, BRes and LRes are the absolute residuals of
the banded part and the low-rank part (i.e., the numerators in B_RRes and LR_RRes),
respectively. It is seen that the relative residual levels of LR_RRes and B_RRes (between
10−14 and 10−17) are lower than those of LRes and BRes (between 10−11 and 10−13) in all
experiments. Particularly, the gap between them increases as ξ becomes larger. On the other
hand, the residual line of Rk is above the residual lines of B_RRes or LR_RRes, attaining
the level between 10−15 and 10−16. This demonstrates that the FSDA can obtain a relatively
high residual accuracy.

1 2 3 4 5
−17

−16

−15

−14

−13

−12

−11

−10

Number of Experiments

Lo
g 10

 (R
es

id
ua

l)

 ξ=0.11

BRes BRRes LRes LRRes Rk

1 2 3 4 5
−17

−16

−15

−14

−13

−12

−11

−10

Lo
g 10

 (R
es

id
ua

l)

Number of Experiments

 ξ=1

1 2 3 4 5
−17

−16

−15

−14

−13

−12

−11

−10

Lo
g 10

 (R
es

id
ua

l)

Number of Experiments

 ξ=3

Figure 6. Residual of the banded part and the low-rank part for different ξ.

Fractal Fract. 2023, 7, 468 21 of 30

To clearly see the evolution of the bandwidth of the banded matrices and the dimen-
sional increase in the low-rank factors for five iterations, we listed the history of bandwidths
of DG

k , DH
k , and DA

k (denoted by bg
k , bh

k , and ba
k , respectively) and the column numbers of

LHdt
k and LGdt

k (denoted by mh
k and mg

k , respectively) in Table 2, where the CPU row recorded
the consumed CPU time in seconds. It is obviously seen that, for ξ = 0.11, 1, and 3, the
FSDA requires 5, 4, and 3 iterations to reach the prescribed accuracy, respectively. Further
experiments show that the required number of iterations, when terminated, will decrease
as ξ goes larger. Additionally, we see that bandwidths bg

k and bh
k rise much in the second it-

eration but keep almost unchanged for the remaining iterations. Nevertheless, ba
k decreases

gradually after reaching the maximal value in the second iteration, which is consistent with
the convergence of DA

k in Corollary 1. On the other hand, we see from mh
k and mg

k that the
column numbers in the second iteration are about fourfold of those in the first iteration
since the FSDA does not deflate the low-rank factors at the first iteration. However, the
column numbers in the fifth iteration (if it exists) are less than twofold of those in the fourth
iteration. This reflects that deflation and PTC are efficient in reducing the dimensions of
low-rank factors. In our experiments, we also found that nearly half of the CPU time in
the FSDA was consumed in forming (IN + DH

k DG
0)
−1DH

k in the pre-termination. However,
such a time expense might decrease if the initial bandwidths bg

0 , bh
0 , and ba

0 are narrow.

Table 2. CPU times and history of bandwidth of banded matrices and column numbers of low-rank
factors in Example 2.

1 2 3 4 5

[bg
k bh

k ba
k mh

k mg
k] [bg

k bh
k ba

k mh
k mg

k] [bg
k bh

k ba
k mh

k mg
k] [bg

k bh
k ba

k mh
k mg

k] [bg
k bh

k ba
k mh

k mg
k]

[445 445 445 34 34] [445 445 445 34 34] [445 445 445 34 34] [445 445 445 34 34] [445 445 445 34 34]
[979 980 981 126 132] [982 982 1042 126 132] [973 767 973 126 132] [1047 1033 1051 126 132] [998 998 997 126 132]

ξ = 0.11 [981 980 980 474 484] [981 980 980 474 481] [973 767 748 480 492] [1050 1047 1049 468 495] [998 999 973 474 488]
[981 980 768 1012 1020] [981 980 768 1014 1018] [973 767 674 1025 1032] [1050 1042 1047 1096 1028] [981 980 768 1011 1023]
[981 980 519 1758 1767] [981 980 522 1759 1771] [973 767 493 1801 1812] [1050 1042 983 1946 1853] [981 980 525 1762 1773]

CPU 4443.63 4451.36 4456.96 4414.65 4457.14

[445 445 445 34 34] [445 445 445 34 34] [445 445 445 34 34] [445 445 445 34 34] [445 445 445 34 34]
[973 767 973 126 132] [768 973 769 126 132] [815 973 973 126 132] [1033 996 1042 126 132] [745 745 748 126 132]

ξ = 1 [973 973 973 471 476] [767 973 766 469 476] [815 973 768 477 487] [1042 1042 1042 479 490] [753 980 732 474 488]
[973 973 646 911 927] [767 973 555 910 916] [815 973 646 1007 1027] [1042 1042 840 973 980] [753 980 684 923 931]

CPU 4014.65 4025.74 3993.86 4107.84 4020.12

[445 445 445 34 34] [445 445 445 34 34] [445 445 445 34 34] [445 445 445 34 34] [445 445 445 34 34]
ξ = 3.0 [652 654 674 126 132] [746 746 746 126 132] [695 673 675 126 132] [674 686 685 126 132] [701 703 686 126 132]

[652 654 519 448 453] [746 746 650 466 475] [695 673 614 449 454] [674 686 658 447 454] [701 703 651 448 455]

CPU 1797.39 1640.02 1803.23 1748.16 1695.01

To further compare numerical performances between the FSDA and SDA_HODLR for
larger problems, we extended the original scale to N = 15,840, 21,120, 26,400 and 31,680
at ξ = 3.0 and ran both algorithms until convergence. The results are listed in Table 3,
where one can see that both the FSDA and SDA_HODLR (i.e., SDA_HD in the table)
attain the prescribed residual accuracy within three iterations, and SDA_HODLR requires
less CPU time than FSDA does. However, there seems a strong tendency that the FSDA
will outperform the SDA_HODLR on CPU time for larger problems, as the CPU time of
the SDA_HODLR appears to surge at N = 26,400 and SDA_HODLR used up memory at
N = 31,680 without producing any numerical results (denoted by “—”). The symbols “∗” in
the SDA_HODLR column represent no related records for bandwidth and column number
of the low-rank factors.

We further modified this example to have a simpler banded part to test both algorithms.
Specifically, the relatively data-concentrated banded part of bandwidth 3 is extracted and
tiled along the diagonal direction for 20 times to form DA

0 . As before, an SVD is imposed on
the rest matrix to construct the low-ranked parts LA

10 and LA
20 after tiling the derived unitary

Fractal Fract. 2023, 7, 468 22 of 30

matrices 20 times and multiplying Σ1/2
A (1 : ra, 1 : ra) from the right. We still selected ξ = 3.0

and ran both the FSDA and SDA_HODLR at scales N = 15,840, 21,120, 26,400 and 31,680
again. The obtained results are recorded in Table 4, where it is readily seen that the FSDA
outperforms the SDA_HODLR on CPU time. Once again, the SDA_HODLR ran out of
memory for the case N = 31,680.

Table 3. Numerical results for FSDA and SDA_HODLR in Example 2 at ξ = 3.0. The symbol ∗ stands
for no related records.

N 15,840 21,120 26,400 31,680

FSDA SDA_HD FSDA SDA_HD FSDA SDA_HD FSDA SDA_HD

bg
k [445 695 695] ∗ [445 736 736] ∗ [445 723 723] ∗ [445 652 652] ∗

bh
k [445 673 673] ∗ [445 745 745] ∗ [445 737 737] ∗ [445 654 654] ∗

ba
k [445 675 614] ∗ [445 745 674] ∗ [445 738 653] ∗ [445 674 619] ∗

mh
k [34 126 448] ∗ [34 126 469] ∗ [34 126 460] ∗ [34 126 444] ∗

mg
k [34 132 453] ∗ [34 132 476] ∗ [34 132 469] ∗ [34 132 454] ∗

IT. 3 3 3 3 3 3 3 —
RES. 7.83 × 10−17 1.44 × 10−15 7.27 × 10−17 1.70 × 10−15 8.04 × 10−17 1.74 × 10−15 5.96 × 10−15 —
CPU 6740.54 1285.31 13,037.43 3701.43 18,154.14 17,653.63 21,618.03 —

Table 4. Numerical results for FSDA and SDA_HODLR in relatively simpler banded part of Example 2
at ξ = 3.0. The symbol ∗ stands for no related records.

N 15,840 21,120 26,400 31,680

FSDA SDA_HD FSDA SDA_HD FSDA SDA_HD FSDA SDA_HD

bg
k [31 31 31] ∗ [36 37 37] ∗ [38 39 39] ∗ [34 37 37] ∗

bh
k [28 30 30] ∗ [34 36 36] ∗ [38 40 40] ∗ [36 39 39] ∗

ba
k [28 31 28] ∗ [36 38 34] ∗ [38 42 38] ∗ [34 40 35] ∗

mh
k [48 280 628] ∗ [48 286 647] ∗ [48 287 651] ∗ [48 285 647] ∗

mg
k [48 281 628] ∗ [48 285 645] ∗ [48 287 650] ∗ [48 287 650] ∗

IT. 3 3 3 3 3 3 3 —
RES. 5.95 × 10−17 2.09 × 10−15 3.46 × 10−16 1.81 × 10−15 8.49 × 10−16 3.05 × 10−15 9.93 × 10−17 —
CPU 133.71 1255.06 218.07 3744.06 288.53 15,508.81 344.18 —

Example 3. This example is an extension of small-scale electric power systems networks to a
large-scale one which is used for signal stability analysis [19–21]. The corresponding matrix
Aori is from the power system of New England (https://sites.google.com/site/rommes/software,

“ww_36_pemc_36.mat”, accessed on 1 June 2023). Figure 7 presents the original structure of the
matrix A of order 66. We properly modified elements Aori(32, 28) = −36.4687, Aori(32, 29) =
−37.922, Aori(46, 42) = −33.0033; Aori(46, 43) = −76.8277, Aori(60, 56) = −83.0405,
Aori(60, 57) = −73.9947, Aori(60, 59) = −34.0478. Then the banded part DA

ori is extracted from
blocks Aori(1:6, 1:6), Aori(7:13, 7:13), Aori(14:20, 14:20), Aori(21:27, 21:27), Aori(28:34, 28:34),
Aori(35:41, 35:41), Aori(42:48, 42:48), Aori(49:55, 49:55), Aori(56:62, 56:62), and Aori(63:66,
63:66), admitting the bandwidth of 4. After tiling DA

ori 200, 400, and 600 times along the diagonal
direction, we obtain banded matrix DA

0 of scales N = 13,200, 26,400 and 39,600. For the low-rank
factors, an SVD of the matrix Aori − DA

ori is firstly implemented to produce the diagonal singular
value matrix ΣA and the unitary matrices UA and VA. The low-ranked parts LA

10 and LA
20 are then

constructed by tiling UA(:, 1 : ra) and VA(:, 1 : ra) 200, 400, and 600 times and dividing their
F-norms, respectively, where ra is the number of singular values in ΣA less than 10−10. The matrices
G and H are

G := DG
0 = ξ IN , H := DH

0 = IN −
1

1 + ξ
DA

0 (DA
0)
>

with ξ > 0.

https://sites.google.com/site/rommes/software

Fractal Fract. 2023, 7, 468 23 of 30

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1194

Figure 7. Structured matrix A of order 66× 66 (1194 non-zeros) in Example 3.

We took different ξ and ran the FSDA to compute the stabilizing solution for different
dimensions N = 13,200, 26,400, and 39,600. In our experiments, the FSDA always satisfied
the pre-terminating condition (39) first and then terminated at LR_RRes < εl = 10−11. We
picked ξ = 95 and listed derived results in Table 5, where BRes (or LRes) and B_RRes
(or LR_RRes) record the absolute and the relative residual for the banded part (or the
low-rank part), respectively, and r̃k, [bg

k bh
k ba

k mh
k mg

k] record histories of the upper bound
of the residual of DARE, the bandwidths of DG

k , DH
k and DA

k and the column numbers of
the low-rank factors LHdt

k and LGdt
k , respectively. Particularly, the tk column describes the

accumulated time to compute residuals (excluding the data marked with “∗”).

Table 5. Residuals, column numbers of low-rank factors, and CPU times at ξ = 95 in Example 3.

k BRes B_RRes LRes LR_RRes r̃k [bg
k bh

k ba
k mh

k mg
k] tk

N = 13,200 ξ = 95 τg = τh = 10−16 mmax = 2000

1 1.02× 103 1.42× 10−2 1.04× 103 ∗ 1.25× 10−2 ∗ 2.67× 10−2 ∗ [6 6 6 29 29] 1.03
2 2.33× 100 3.25× 10−5 1.40× 10−1 ∗ 2.06× 10−6 ∗ 3.45× 10−5 ∗ [6 6 6 66 66] 5.01
3 6.19× 10−3 8.64× 10−8 2.94× 10−3 ∗ 4.33× 10−8 ∗ 1.30× 10−7 ∗ [6 6 6 76 76] 79.13
4 1.37× 10−7 2.02× 10−12 6.28× 10−6 7.76× 10−11 7.96× 10−11 [6 6 6 100 101] 158.63
5 2.27× 10−9 3.30× 10−14 4.31× 10−11 6.33× 10−16 3.38× 10−14 [6 6 6 169 170] 246.55

N = 26,400 ξ = 95 τg = τh = 10−16 mmax = 2000

1 8.31× 102 8.64× 10−3 1.61× 103 ∗ 1.81× 10−2 ∗ 2.67× 10−2 ∗ [6 6 6 29 29] 3.58
2 2.95× 100 3.07× 10−5 1.40× 10−1 ∗ 1.46× 10−5 ∗ 3.21× 10−5 ∗ [6 6 6 66 66] 13.92
3 4.91× 10−3 5.11× 10−8 2.94× 10−3 ∗ 3.06× 10−8 ∗ 8.07× 10−8 ∗ [6 6 6 75 76] 534.56
4 1.94× 10−7 2.02× 10−12 5.28× 10−6 5.49× 10−11 5.69× 10−11 [6 6 6 97 98] 1085.76
5 3.21× 10−9 3.30× 10−14 4.81× 10−11 8.00× 10−16 3.39× 10−14 [6 6 6 160 161] 1675.01

N = 39,600 ξ = 95 τg = τh = 10−16 mmax = 2000

1 1.01× 103 8.64× 10−3 1.62× 103 ∗ 1.81× 10−2 ∗ 2.67× 10−2 ∗ [6 6 6 29 29] 7.93
2 3.61× 100 3.07× 10−5 1.40× 10−1 ∗ 1.19× 10−6 ∗ 3.19× 10−5 ∗ [6 6 6 66 66] 33.41
3 6.02× 10−3 5.11× 10−8 2.94× 10−3 ∗ 2.50× 10−8 ∗ 7.62× 10−8 ∗ [6 6 6 76 77] 605.64
4 2.37× 10−7 2.02× 10−12 5.28× 10−6 4.48× 10−11 4.68× 10−11 [6 6 6 100 102] 1210.54
5 3.94× 10−9 3.30× 10−14 5.22× 10−11 4.43× 10−16 3.39× 10−14 [6 6 6 170 172] 1923.38

Obviously, for different N, the FSDA is capable of achieving the prescribed accuracy
after five iterations. The residuals BRes, B_RRes, LRes, and LR_RRes indicate that the
FSDA tended to converge quadratically. Especially, BRes (or B_RRes) at different N are of
nearly same order and terminate at O(10−9) (or O(10−11)). Similarly, LRes (or LR_RRes)
at different N attain the order O(10−11) (or O(10−16)). More iterations seemed useless in
improving the accuracy of LRes and LR_RRes. Note that data labelled with the superscript
“∗” in columns LRes, LR_RRes and r̃k come from the re-running of the FSDA to complement
the residual in each iteration, and their corresponding CPU time is not included in the

Fractal Fract. 2023, 7, 468 24 of 30

column tk. Lastly, [bg
k bh

k ba
k mh

k mg
k] indicate that the bandwidths of DG

k , DG
k , and DG

k are
invariant and the column numbers of the low-rank factors grow less than twice in each
iteration, demonstrating the effectiveness of the deflation and PTC.

We also ran the FSDA to compute the solution of the DARE of ξ = 90 and the results
were recorded in Table 6. In this case, the FSDA requires seven iterations to reach the
prescribed accuracy. As before, the last few residuals in the column BRes (or B_RRes) at
different N are almost the same of O(10−9) (or O(10−14)). The residuals LRes (or LR_RRes)
at different N terminate at O(10−10) (or O(10−15)). In particular, BRes and B_RRes showed
that the FSDA attained the prescribed accuracy at the 5th iteration, but the corresponding
residual of the low-rank part was still between 10−8 and 10−9. So two additional iterations
were required to meet the termination condition (40), even if the residual level in B_RRes
kept stagnant in the last three iterations. From a structured point of view, it seems that
the low-rank part is approaching the critical case while the banded part still lies in the
non-critical case. Similarly, [bk

g bk
h bk

a mh
k mg

k] indicate that DG
k , DH

k , and DA
k are all block

diagonal with block sizes ≤ 6 and the deflation and PTC for the low-rank factors are
effective. Moreover, tk shows that the CPU times at the current iteration were less than
twice that of the previous iteration when k ≥ 3.

Table 6. Residuals, spans of columns, and CPU times at ξ = 90 in Example 3.

k BRes B_RRes LRes LR_RRes r̃k [bg
k bh

k ba
k mh

k mg
k] tk

N = 13,200 ξ = 90 τg = τh = 10−16 mmax = 2000

1 1.02× 103 1.42× 10−2 1.59× 103 ∗ 2.12× 10−2 ∗ 3.35× 10−2 ∗ [6 6 6 29 29] 1.05
2 2.33× 100 3.25× 10−5 3.04× 10−1 ∗ 4.24× 10−6 ∗ 3.68× 10−5 ∗ [6 6 6 66 66] 5.03
3 6.19× 10−3 8.64× 10−8 4.38× 10−2 ∗ 6.11× 10−7 ∗ 6.99× 10−7 ∗ [6 6 6 76 76] 82.23
4 6.09× 10−7 8.49× 10−12 3.45× 10−3 4.81× 10−8 4.81× 10−8 [6 6 6 100 101] 162.04
5 1.00× 10−9 1.40× 10−14 9.49× 10−4 1.32× 10−8 1.32× 10−8 [6 6 6 169 170] 248.86
6 1.00× 10−9 1.40× 10−14 1.01× 10−5 1.41× 10−10 1.41× 10−10 [6 6 6 225 256] 355.07
7 1.00× 10−9 1.40× 10−14 9.45× 10−10 1.31× 10−14 2.72× 10−14 [6 6 6 225 256] 449.81

N = 26,400 ξ = 90 τg = τh = 10−16 mmax = 2000

1 1.44× 103 1.42× 10−2 1.61× 103 ∗ 2.21× 10−2 ∗ 3.63× 10−2 ∗ [6 6 6 29 29] 3.89
2 3.29× 100 3.25× 10−5 3.04× 10−1 ∗ 3.00× 10−6 ∗ 3.55× 10−5 ∗ [6 6 6 66 66] 14.24
3 8.76× 10−3 8.64× 10−8 4.38× 10−2 ∗ 4.32× 10−7 ∗ 5.19× 10−7 ∗ [6 6 6 76 76] 554.22
4 8.61× 10−7 8.49× 10−12 3.45× 10−3 3.40× 10−8 3.40× 10−8 [6 6 6 100 101] 1100.79
5 1.42× 10−9 1.40× 10−14 9.49× 10−4 9.35× 10−9 9.35× 10−9 [6 6 6 169 170] 1667.77
6 1.42× 10−9 1.40× 10−14 1.01× 10−5 1.00× 10−10 1.00× 10−10 [6 6 6 210 234] 2286.67
7 1.42× 10−9 1.40× 10−14 9.46× 10−10 9.33× 10−15 2.33× 10−14 [6 6 6 210 234] 2924.54

N = 39,600 ξ = 90 τg = τh = 10−16 mmax = 2000

1 1.76× 103 1.42× 10−2 1.61× 103 ∗ 2.21× 10−2 ∗ 3.63× 10−2 ∗ [6 6 6 29 29] 7.49
2 4.03× 100 3.25× 10−5 3.04× 10−1 ∗ 2.45× 10−6 ∗ 3.49× 10−5 ∗ [6 6 6 66 66] 28.02
3 1.07× 10−2 8.64× 10−8 4.38× 10−2 ∗ 3.53× 10−7 ∗ 4.39× 10−7 ∗ [6 6 6 76 76] 564.66
4 1.05× 10−6 8.49× 10−12 3.45× 10−3 2.78× 10−8 2.78× 10−8 [6 6 6 100 101] 1206.85
5 1.74× 10−9 1.40× 10−14 9.49× 10−4 7.64× 10−9 7.64× 10−9 [6 6 6 169 170] 1929.52
6 1.74× 10−9 1.40× 10−14 1.01× 10−5 8.19× 10−11 8.19× 10−11 [6 6 5 209 234] 3553.12
7 1.74× 10−9 1.40× 10−14 9.48× 10−10 7.63× 10−15 2.17× 10−14 [6 6 0 209 234] 5806.44

We further compare numerical performances between the FSDA and SDA_HODLR
for large-scale problems. Different values of ξ have been tried and the compared numerical
behaviors of both algorithms are analogous. We list the results of ξ = 98 and ξ = 250 in
Table 7, where one can see that the FSDA requires less iterations and CPU time to satisfy the
stop criterion than the SDA_HODLR. Particularly, the SDA_HODLR depleted all memory
at N = 39,600 and did not yield any numerical results (denoted by “—”). The symbols
“∗” in the SDA_HODLR column represent no related records for bandwidths and column
numbers of the low-rank factors.

Fractal Fract. 2023, 7, 468 25 of 30

Table 7. Numerical results between FSDA and SDA_HODLR of Example 3. The symbol ∗ stands for
no related records.

N 13,200 26,400 39,600

FSDA SDA_HD FSDA SDA_HD FSDA SDA_HD

bg
k [6 6 6 6] ∗ [6 6 6 6] ∗ [6 6 6 6] ∗

bh
k [6 6 6 6] ∗ [6 6 6 6] ∗ [6 6 6 6] ∗

ba
k [6 6 6 6] ∗ [6 6 6 6] ∗ [6 6 6 6] ∗

mh
k [29 66 77 101] ∗ [29 66 77 102] ∗ [29 66 77 102] ∗

ξ = 98 mg
k [29 66 77 102] ∗ [29 66 77 103] ∗ [29 66 77 102] ∗

IT. 4 5 4 5 4 —
RES. 8.01 × 10−12 1.64 × 10−12 7.42 × 10−12 1.50 × 10−14 6.22 × 10−12 —
CPU 162.18 1130.93 1148.34 18,832.71 1246.78 —

bg
k [6 6 6] ∗ [6 6 6] ∗ [6 6 6] ∗

bh
k [6 6 6] ∗ [6 6 6] ∗ [6 6 6] ∗

ba
k [6 6 6] ∗ [6 6 6] ∗ [6 6 6] ∗

mh
k [29 66 69] ∗ [29 66 69] ∗ [29 66 69] ∗

ξ = 250 mg
k [29 66 73] ∗ [29 66 71] ∗ [29 66 73] ∗

IT. 3 3 3 3 3 —
RES. 1.75 × 10−12 1.73 × 10−12 2.54 × 10−12 1.74 × 10−12 3.62 × 10−12 —
CPU 80.96 655.69 536.76 15,322.53 634.70 —

7. Conclusions

The stabilizing solution of the discrete-time algebraic Riccati Equation (DARE) from
the fractional system, with high-rank non-linear term G and constant term H, is not of
numerical low-rank. The structure-preserving doubling algorithm (SDA_h) proposed in [18]
is no longer applicable for large scale problems. In some applications, such as in power
systems, the state matrix A is of banded-plus-low-rank, and in those cases SDA can be
further developed to the factorized structure-preserving doubling algorithm (FSDA) to solve
large scale DAREs with high-rank non-linear and constant terms. Under the assumption that
G and H are positive semidefinite and DG and DH are banded matrices with banded inverse
(BMBI), we presented the iterative scheme of FSDA, as well as the convergence of the banded
and the low-ranked parts. A deflation process and the technique of PCT are subsequently
proposed to efficiently control the growth of the number of columns of low-rank factors.
Numerical experiments have demonstrated that the FSDA always reaches the economical pre-
terminating condition associated with the banded part before the real terminating condition
related to the low-rank part, yielding good approximated solutions Hk = DH

k + LH
k KH

k (LH
k)>

and Gk = DG
k + LG

k KG
k (LG

k)
> to the DARE and its dual, respectively. Moreover, our FSDA is

superior to the existing SDA_HODLR on the CPU time for large-scale DAREs. For future
work, the computation of the stabilizing solution for CAREs might be further investigated.
This will be more complicated as the Cayley transformation is incorporated and the selection
of the corresponding parameter does not seem easy. In addition, other sparse structures of A
and high-rank H and G might be investigated.

Author Contributions: Conceptualization, B.Y.; methodology, B.Y.; software, N.D.; validation, N.D.;
and formal analysis, B.Y. All authors have read and agreed to the final version of this manuscript.

Funding: This work was supported in part by the NSF of China (11801163), the NSF of Hunan
Province (2021JJ50032, 2023JJ50165), the foundation of Education Department of Hunan Province
(HNJG-2021-0129) and Degree & Postgraduate Education Reform Project of Hunan University of
Technology and Hunan Province (JG2315, 2023JGYB210).

Acknowledgments: Part of the work occurred when the first author visited Monash University. The
authors also thank the editor and three anonymous referees for their helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Fractal Fract. 2023, 7, 468 26 of 30

Appendix A

LG
2 = [LG

1 | LA
11 | DAGH

1 LG
1 | DAGHG

1 LH
1 | DAGHG

1 LA
21]

= LA
10, DAGHG

0 LA
20, | LA

10, DAGH
0 LA

10, | DAGH
1 LA

10, DAGH
1 DAGHG

0 LA
20, | DAGHG

1 LA
20, DAGHG

1 DA>GHG
0 LA

10, | DAGHG
1 LA

20, DAGHG
1 DA>HG

0 LA
20

[]
d→ DAGHG

0 LA
20, | LA

10 , DAGH
0 LA

10 , | DAGH
1 LA

10 , DAGH
1 DAGHG

0 LA
20 , |DAGHG

1 LA
20 , DAGHG

1 DA>GHG
0 LA

10 , | DAGHG
1 DA>HG

0 LA
20

[]
:= LGd

2 ,

LA
12 = [LA

11 | DAGH
1 LG

1 | DAGHG
1 LH

1 | DAGHG
1 LA

21]

= LA
10, DAGH

0 LA
10, | DAGH

1 LA
10, DAGH

1 DAGHG
0 LA

20, | DAGHG
1 LA

20, DAGHG
1 DA>GHG

0 LA
10, | DAGH

1 LA
10, DAGH

1 DAGH
0 LA

10

[]
d→ LA

10 ,DAGH
0 LA

10 , |DAGH
1 LA

10 , DAGH
1 DAGHG

0 LA
20 , | DAGHG

1 LA
20 , DAGHG

1 DA>GHG
0 LA

10 | DAGH
1 DAGH

0 LA
10

[]
:= LAd

12 ,

LH
2 = [LH

1 | LA
21 | DA>HG

1 LH
1 | DA>HGH

1 LG
1 | DA>HGH

1 LA
11]

= LA
20, DA>HGH

0 LA
10, | LA

20, DA>HG
0 LA

20, | DA>HG
1 LA

20, DA>HG
1 DA>HGH

0 LA
10, | DA>HGH

1 LA
10, DA>HGH

1 DAGHG
0 LA

20, | DA>HGH
1 LA

10, DA>HGH
1 DAGH

0 LA
10

[]
d→ DA>HGH

0 LA
10, | LA

20 , DA>HG
0 LA

20 , | DA>HG
1 LA

20 , DA>HG
1 DA>HGH

0 LA
10 , |DA>HGH

1 LA
10 ,DA>HGH

1 DAGHG
0 LA

20 , | DA>HGH
1 DAGH

0 LA
10

[]
:= LHd

2 ,

LA
22 = [LA

21 | DA>HG
1 LH

1 | DA>HGH
1 LG

1 | DA>HG
1 LA

21]

= LA
20, DA>HG

0 LA
20, | DA>HG

1 LA
20, DA>HG

1 DA>HGH
0 LA

10, |DA>HGH
1 LA

10, DA>HGH
1 DAGHG

0 LA
20, | DA>HG

1 LA
20, DA>HG

1 DA>HG
0 LA

20

[]
d→ LA

20 , DA>HG
0 LA

20 , |DA>HG
1 LA

20 , DA>HG
1 DA>HGH

0 LA
10 , |DA>HGH

1 LA
10 , DA>HGH

1 DAGHG
0 LA

20 , | DA>HG
1 DA>HG

0 LA
20

[]
:= LAd

22 .

Matrices LG
1 , LA

11, LH
1 and LA

21 are actually the deflated, truncated and compressed
low-rank factors LGdt

1 , LAdt
11 , LHdt

1 and LAdt
21 , respectively. We omit the superscript “dt” for

the simpler notation.

Appendix B

LG
k = LG

k−1 |LA
1,k−1 |D

AGH
k−1 LG

k−1 |D
AGHG
k−1 LH

k−1 |D
AGHG
k−1 LA

2,k−1

[](k− 2)ma + 1 : mg
k−1 −ma → 1 : mg

k−1 − (k− 1)ma 1 : m
a2
k−1 −ma → mh

k−1 −m
a2
k−1 + 1 : mh

k−1 −ma

d→ DAGHG
0 LA

20, DAGHG
1 DA>HG

0 LA
20, . . . , DAGHG

k−2 Π0
i=k−3 DA>HG

i LA
20 | LA

1,k−1 | DAGH
k−1 LG

k−1 | DAGHG
k−1 LH

k−1 | DAGHG
k−1 Π0

i=k−2 DA>HG
i LA

20

[]
:= LGd

k , (A1)

LA
1,k = LA

1,k−1 | DAGH
k−1 LG

k−1 | DAGHG
k−1 LH

k−1 | DAGH
k−1 LA

1,k−1

[]1 : m
a1
k−1 −ma → mg

k−1 −m
a1
k−1 + 1 : mg

k−1 −ma

d→ LA
1,k−1 | DAGH

k−1 LG
k−1 | DAGHG

k−1 LH
k−1 | Π0

i=k−1DAGH
i LA

10

[]
:= LAd

1,k , (A2)

LH
k = LH

k−1 |LA
2,k−1 |D

A>HG
k−1 LH

k−1 |D
A>HGH
k−1 LG

k−1 |D
A>HGH
k−1 LA

1,k−1

[](k− 2)ma + 1 : mh
k−1 −ma → 1 : mh

k−1 − (k− 1)ma 1 : m
a1
k−1 −ma → mg

k−1 −m
a1
k−1 + 1 : mg

k−1 −ma

d→ DA>HGH
0 LA

10, DA>HGH
1 DAGH

0 LA
10, . . . , DA>HGH

k−2 Π0
i=k−3 DAGH

i LA
10 | LA

2,k−1 | DA>HG
k−1 LH

k−1 | DA>HGH
k−1 LG

k−1 | DA>HGH
k−1 Π0

i=k−2 DAGH
i LA

10

[]
:= LHd

k , (A3)

LA
2,k = LA

2,k−1 | DA>HG
k−1 LH

k−1 | DA>HGH
k−1 LG

k−1 | DA>HG
k−1 LA

2,k−1

[]1 : m
a2
k−1 −ma → mh

k−1 −m
a2
k−1 + 1 : mh

k−1 −ma

d→ LA
2,k−1 | DA>HG

k−1 LH
k−1 | DA>HGH

k−1 LG
k−1 |Π

0
i=k−1DA>HG

i LA
20

[]
:= LAd

2,k . (A4)

Fractal Fract. 2023, 7, 468 27 of 30

Matrices LG
k−1, LA

1,k−1, LH
k−1 and LA

2,k−1 are actually the deflated, truncated and com-
pressed low-rank factors LGdt

k−1, LAdt
1,k−1, LHdt

k−1 and LAdt
2,k−1, respectively. We omit the superscript

“dt” for convenience.

Appendix C. Description for the Deflation of LG
3

mg
2 ma1

2 mg
2 mh

2 ma2
2

LG
3 = [LG

2 | LA
12 | DAGH

2 LG
2 | DAGHG

2 LH
2 | DAGHG

2 LA
22] N

= DAGHG
0 LA

20, LA
10 , DAGH

0 LA
10 , DAGH

1 LA
10 , DAGH

1 DAGHG
0 LA

20 , DAGHG
1 LA

20 , DAGHG
1 DA>GHG

0 LA
10 , DAGHG

1 DA>HG
0 LA

20,

[∣∣∣∣ (A5)
LA

10 , DAGH
0 LA

10 , DAGH
1 LA

10 , DAGH
1 DAGHG

0 LA
20 , DAGHG

1 LA
20 , DAGHG

1 DA>GHG
0 LA

10 , DAGH
1 DAGH

0 LA
10,

∣∣∣∣ (A6)

DAGH
2 LA

2 , |
DAGHG

2 (DA>HGH
0 LA

10, LA
20 , DA>HG

0 LA
20 , DA>HG

1 LA
20 , DA>HG

1 DA>HGH
0 LA

10 , DA>HGH
1 LA

10 , DA>HGH
1 DAGHG

0 LA
20 , DA>HGH

1 DAGH
0 LA

10)

∣∣∣∣ (A7)
DAGHG

2 (LA
20 , DA>HG

0 LA
20 , DA>HG

1 LA
20 , DA>HG

1 DA>HGH
0 LA

10 , DA>HGH
1 LA

10 , DA>HGH
1 DAGHG

0 LA
20 , DA>HG

1 DA>HG
0 LA

20)

]
(A8)

d→ DAGHG
0 LA

20, DAGHG
1 DA>HG

0 LA
20,

[∣∣∣∣
LA

10 , DAGH
0 LA

10 , DAGH
1 LA

10 , DAGH
1 DAGHG

0 LA
20 , DAGHG

1 LA
20 , DAGHG

1 DA>GHG
0 LA

10 , DAGH
1 DAGH

0 LA
10,

∣∣∣∣
DAGH

2 LA
2 , |

DAGHG
2 (DA>HGH

0 LA
10, LA

20 , DA>HG
0 LA

20 , DA>HG
1 LA

20 , DA>HG
1 DA>HGH

0 LA
10 , DA>HGH

1 LA
10 , DA>HGH

1 DAGHG
0 LA

20 , DA>HGH
1 DAGH

0 LA
10)

∣∣∣∣
DAGHG

2 DA>HG
1 DA>HG

0 LA
20

]

2ma ma1
2 mg

2 mh
2 ma

= [DAGHG
0 LA

20, DAGHG
1 DA>HG

0 LA
20 | LA

12 | DAGH
2 LG

2 | DAGHG
2 LH

2 | DAGHG
2 DA>HG

1 DA>HG
0 LA

20] N := LGd
3 .

After the previous deflation, there are mg
2 − 2ma columns in LG

2 and LA
12 (items marked

with bold type in (A2) and (A3)) and ma
2 − ma columns (items marked with bold type

in (A4) and (A5)) in DAGHG
2 LH

2 and DAGHG
2 LA

22 are identical. Then, one can remove
columns of LG

2 (:, ma + 1 : mg
2 − ma) in (A2) and DAGHG

2 LA
22(:, 1 : ma

2 − ma) in (A5) (i.e.,
items with bold type in (A2) and (A5)), keep columns of LA

12(:, 1 : mg
2 − 2ma) in (A3) and

DAGHG
2 LH

2 (:, mh
2 −ma2

2 + 1 : mh
2 −ma) in (A4) (i.e., items with bold type in (A3) and (A4)),

respectively. Then there are two matrices with each of order N ×ma are left in LG
2 and only

one matrix of order N ×ma left in DAGHG
k LA

22.
Note that matrices LG

2 , LA
12, LH

2 and LA
22 are actually the deflated, truncated and com-

pressed low-rank factors LGdt
2 , LAdt

12 , LHdt
2 and LAdt

22 , respectively.

Appendix D. Description for the Deflation of LA
13

ma1
2 mg

2 mh
2 ma1

2

LA
13 = [LA

12 | DAGH
2 LG

2 | DAGHG
2 LH

2 | DAGH
2 LA

12] N

= [LA
12, |

DAGH
2 (DAGHG

0 LA
20, LA

10 , DAGH
0 LA

10 , DAGH
1 LA

10 , DAGH
1 DAGHG

0 LA
20 , DAGHG

1 LA
20 , DAGHG

1 DA>GHG
0 LA

10 , DAGHG
1 DA>HG

0 LA
20),

∣∣∣∣ (A9)

DAGHG
2 LH

2 , |
DAGH

2 (LA
10 , DAGH

0 LA
10 , DAGH

1 LA
10 , DAGH

1 DAGHG
0 LA

20 , DAGHG
1 LA

20 , DAGHG
1 DA>GHG

0 LA
10 , DAGH

1 DAGH
0 LA

10)

]
(A10)

d→ [LA
12, |

DAGH
2 (DAGHG

0 LA
20, LA

10 , DAGH
0 LA

10 , DAGH
1 LA

10 , DAGH
1 DAGHG

0 LA
20 , DAGHG

1 LA
20 , DAGHG

1 DA>GHG
0 LA

10 , DAGHG
1 DA>HG

0 LA
20),

∣∣∣∣
DAGHG

2 LH
2 , |

DAGH
2 DAGH

1 DAGH
0 LA

10

]
(A11)

ma1
2 mg

2 mh
2 ma

= [LA
12 | DAGH

2 LG
2 | DAGHG

2 LH
2 | DAGH

2 DAGH
1 DAGH

0 LA
10] N := LAd

13 .

Fractal Fract. 2023, 7, 468 28 of 30

To deflate LA
13, columns of DAGH

2 LA
12(:, 1 : ma1

2 −ma) are removed (i.e., items marked
with bold type in (A7)) but columns of DAGH

2 LG
2 (:, mg

2 − ma1
2 + 1 : mg

2 − ma) (i.e., items
marked with bold type in (A6)) are retained in LA

12. So only one matrix of order N ×ma is
left in DAGH

2 LA
12, i.e., the last item Π0

i=2DAGH
i LA

10 in (A8).
Note that matrices LG

2 , LA
12 and LH

2 are actually the deflated, truncated, and compressed
low-rank factors LGdt

2 , LAdt
12 , and LHdt

2 , respectively.

Appendix E

Table A1. Complexity and memory requirement at k-th iteration in the FSDA.

Items Flops Memory

Banded part

DAGH
k , DA>HG

k * 4N(2bhg
k−1 + 1)2 + bhg

k−1ba
k−1 2N(2bhga

k−1 + 1)

DG
k , DH

k , DA
k 4N(2bg

k−1 + 1)(2bhga
k−1 + 1) 2N(2bhga

k−1 + 1)

Low-rank part and kernels

DAGH
k−1 LG

k−1, DAGHG
k−1 LH

k−1, DAGHG
k−1 LA

2,k−1 2Nbhga
k−1(m

g
k−1 + mh

k−1 + ma
k−1) (mg

k−1 + mh
k−1 + ma

k−1)N

DA>HG
k−1 LH

k−1, DA>HGH
k−1 LG

k−1, DA>HGH
k−1 LA

1,k−1 2Nbhga
k−1(m

g
k−1 + mh

k−1 + ma
k−1) (mg

k−1 + mh
k−1 + ma

k−1)N

ΘH
k−1, ΘG

k−1, ΘHG
k−1

2N(bhg
k−1(m

h
k−1 + mg

k−1) + bhg
k−1mg

k−1
+(mh

k−1)
2 + (mg

k−1)
2 + mg

k−1mh
k−1)

(mh
k−1)

2 + (mg
k−1)

2 + mh
k−1mg

k−1

ΘA
k−1, ΘA

1,k−1, ΘA
2,k−1 2N(2bhg

k−1ma
k−1 + bhg

k−1ma
k−1 + 3(ma

k−1)
2) 3(ma

k−1)
2

ΘAH
1,k−1, ΘAG

1,k−1 2N(bhg
k−1(m

h
k−1 + mg

k−1) + ma
k−1(m

h
k−1 + mg

k−1)) ma
k−1(m

h
k−1 + mg

k−1)

ΘAH
2,k−1, ΘAG

2,k−1 2N(bhg
k−1(m

h
k−1 + mg

k−1) + ma
k−1(m

h
k−1 + mg

k−1)) ma
k−1(m

h
k−1 + mg

k−1)

KAGHG
k−1 (ma

k−1)
2(mh

k−1 + mg
k−1) + ma

k−1(m
h
k−1 + mg

k−1)
2 ma

k−1(m
h
k−1 + mg

k−1)

KAGHGA>
k−1 , KA>HGHA

k−1 , KAGHA
k−1 6(ma

k−1)
2(2ma

k−1 + mh
k−1 + mg

k−1) 3(ma
k−1)

2

KA>HGH
k−1 2(ma

k−1)(m
a
k−1 + mh

k−1)(m
a
k−1 + mh

k−1 + mg
k−1) ma

k−1(m
h
k−1 + mg

k−1)

KAGH
k−1 , KA>GH

k−1 2(ma
k−1)(m

a
k−1 + mh

k−1)
2 2ma

k−1(m
h
k−1 + mg

k−1)

KGH
k−1 *, KGHG

k−1 , KHGH
k−1 8(mh

k−1 + mg
k−1)

3/3 3(mh
k−1 + mg

k−1)
2

QG
k , QH

k ** 4(ma
k−1 + mg

k−1 + mh
k−1)

2(N −ma
k−1 + mg

k−1 + mh
k−1) (rh

k + rg
k)N

UG
k , UH

k , 4(ma
k−1 + mg

k−1 + mh
k−1)r

g
k−1(N −ma

k−1 + mg
k−1 + mh

k−1) (rg
k + rh

k)×mhga
k−1

KGdt
k 12(ma

k−1 + mg
k−1 + mh

k−1)
2rg

k−1 (mg
k)

2

KHdt
k , 12(ma

k−1 + mg
k−1 + mh

k−1)
2rh

k−1 (mh
k)

2

KAdt
k 6(ma

k−1 + mg
k−1 + mh

k−1)
2(rg

k−1 + rg
k−1) mg

k mh
k

Residual part

(DA
0)
>D̃HGH

k LA
10, (DA

0)
>D̃HG

k LH
k 2bhg

k (ma + mh
k)N (mh

k + ma)N

(LH
k)>D̃GHG

k LH
k 2bhg

k (ma + mh
k)N (mh

k)
2

K̃H
k * 8(mh

k)
2/3 (mh

k)
2

K̃A>HG
k 2bhg

k (ma + mh
k)N mamh

k

K̃A>HGHA
k 2ma(bhg

k + ma)N + 2(ma)2mh
k (ma)2

QR
k ** 2(ma + 2mh

k)
2(N −ma − 2mh

k) rr
k N

UR
k 2(ma + 2mh

k)r
r
k(N −ma − 2mh

k) rr
k(m

a + 2mh
k)

UR
k KRd

k (UR
k)
> 2(ma + 2mh

k)r
r
k(r

r
k + ma + 2mh

k) (rr
k)

2

* LU factorization and Gaussian elimination is used [42]. ** Householder QR decomposition is used [12].

References
1. Nosrati, K.; Shafiee, M. On the convergence and stability of fractional singular Kalman filter and Riccati equation. J. Frankl. Inst.

2020, 357, 7188–7210.
2. Trujillo, J.J.; Ungureanu, V.M. Optimal control of discrete-time linear fractional-order systems with multiplicative noise. Int. J.

Control 2018, 91, 57–69. [CrossRef]
3. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.
4. Benner, P.; Fassbender, H. The symplectic eigenvalue problem, the butterfly form, the SR algorithm, and the Lanczos method.

Linear Algebra Appl. 1998, 275–276, 19–47.

http://doi.org/10.1080/00207179.2016.1266520

Fractal Fract. 2023, 7, 468 29 of 30

5. Chen, C.-R. A structure-preserving doubling algorithm for solving a class of quadratic matrix equation with M-matrix. Electron.
Res. Arch. 2022, 30, 574–581.

6. Chu, E.K.-W.; Fan, H.-Y.; Lin, W.-W. A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations.
Linear Algebra Appl. 2005, 396, 55–80.

7. Chu, E.K.-W.; Fan, H.-Y.; Lin, W.-W.; Wang, C.-S. A structure-preserving doubling algorithm for periodic discrete-time algebraic
Riccati equations. Int. J. Control 2004, 77, 767–788.

8. Kleinman, D. On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 1968, 13, 114–115.
[CrossRef]

9. Lancaster, P.; Rodman, L. Algebraic Riccati Equations; Clarendon Press: Oxford, UK, 1995.
10. Laub, A.J. A Schur method for solving algebraic Riccati equation. IEEE Trans. Autom. Control 1979, AC-24, 913–921.
11. Li, T.-X.; Chu, D.-L. A structure-preserving algorithm for semi-stabilizing solutions of generalized algebraic Riccati equations.

Electron. Trans. Numer. Anal. 2014, 41, 396–419.
12. Mehrmann, V.L. The Autonomous Linear Quadratic Control Problem; Lecture Notes in Control and Information Sciences; Springer:

Berlin, Germany, 1991; Volume 163.
13. Mohammad, I. Fractional polynomial approximations to the solution of fractional Riccati equation. Punjab Univ. J. Math. 2019, 51,

123–141.
14. Tvyordyj, D.A. Hereditary Riccati equation with fractional derivative of variable order. J. Math. Sci. 2021, 253, 564–572. [CrossRef]
15. Yu, B.; Li, D.-H.; Dong, N. Low memory and low complexity iterative schemes for a nonsymmetric algebraic Riccati equation

arising from transport theory. J. Comput. Appl. Math. 2013, 250, 175–189. [CrossRef]
16. Benner, P.; Saak, J.A. Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations. In DFG Priority Programme

1253 “Optimization with Partial Differential Equations”; Preprint SPP1253-090; DFG: Bonn, Germany, 2010.
17. Chu, E.K.-W.; Weng, P.C.-Y. Large-scale discrete-time algebraic Riccati equations—Doubling algorithm and error analysis. J.

Comput. Appl. Math. 2015, 277, 115–126. [CrossRef]
18. Yu, B.; Fan, H.-Y.; Chu, E.K.-W. Large-scale algebraic Riccati equations with high-rank constant terms. J. Comput. Appl. Math.

2019, 361, 130–143. [CrossRef]
19. Martins, N.; Lima, L.; Pinto, H. Computing dominant poles of power system transfer functions. IEEE Trans. Power Syst. 1996, 11,

162–170. [CrossRef]
20. Freitas, F.D.; Martins, N.; Varricchio, S.L.; Rommes, J.; Veliz, F.C. Reduced-Order Transfer Matrices from RLC Network Descriptor

Models of Electric Power Grids. IEEE Trans. Power Syst. 2011, 26, 1905–1916. [CrossRef]
21. Rommes, J.; Martins, N. Efficient computation of multivariable transfer function dominant poles using subspace acceleration.

IEEE Trans. Power Syst. 2006, 21, 1471–1483. [CrossRef]
22. Dahmen, W.; Micchelli, C.C. Banded matrices with banded inverses, II: Locally finite decomposition of spline spaces. Constr.

Approx. 1993, 9, 263–281. [CrossRef]
23. Cantero, M.J.; Moral, L.; Velázquez, L. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear

Algebra Appl. 2003, 362, 29–56. [CrossRef]
24. Kimura, H. Generalized Schwarz form and lattice-ladder realizations of digital filters. IEEE Trans. Circuits Syst. 1985, 32,

1130–1139. [CrossRef]
25. Kavcic, A.; Moura, J. Matrices with banded inverses: Inversion algorithms and factorization of Gauss–Markov processes. IEEE

Trans. Inf. Theory 2000, 46, 1495–1509. [CrossRef]
26. Strang, G. Fast transforms: Banded matrices with banded inverses. Proc. Natl. Acad. Sci. USA 2010, 107, 12413–12416. [CrossRef]

[PubMed]
27. Strang, G. Groups of banded matrices with banded inverses. Proc. Am. Math. Soc. 2011, 139, 4255–4264. [CrossRef]
28. Strang, G.; Nguyen, T. Wavelets and Filter Banks; Wellesley-Cambridge Press: Cambridge, UK, 1996.
29. Olshevsky, V.; Zhlobich, P.; Strang, G. Green’s matrices. Linear Algebra Appl. 2010, 432, 218–241. [CrossRef]
30. Grasedyck, L.; Hackbusch, W.; Khoromskij, B.N. Solution of large scale algebraic matrix Riccati equations by use of hierarchical

matrices. Computing 2003, 70, 121–165. [CrossRef]
31. Kressner, D.; Krschner, P.; Massei, S. Low-rank updates and divide-and-conquer methods for quadratic matrix equations. Numer.

Algorithms 2020, 84, 717–741. [CrossRef]
32. Benner, P.; Saak, J. A Semi-Discretized Heat Transfer Model for Optimal Cooling of Steel Profiles. In Dimension Reduction of

Large-Scale Systems; Benner, P., Sorensen, D.C., Mehrmann, V., Eds.; Lecture Notes in Computational Science and Engineering;
Springer: Berlin/Heidelberg, Germany, 2005; Volume 45.

33. Korvink, G.; Rudnyi, B. Oberwolfach Benchmark Collection. In Dimension Reduction of Large-Scale Systems; Benner, P., Sorensen,
D.C., Mehrmann, V., Eds.; Lecture Notes in Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany,
2005; Volume 45.

34. Golub, G.H.; Van Loan, C.F. Matrix Computations; Johns Hopkins University Press: Baltimore, MD, USA, 1996.
35. Huang, C.-M.; Li, R.-C.; Lin, W.-W. Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations; SIAM: Washington,

DC, USA, 2018.
36. Lin, W.-W.; Xu, S.-F. Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations. SIAM J.

Matrix Anal. Appl. 2006, 28, 26–39. [CrossRef]

http://dx.doi.org/10.1109/TAC.1968.1098829
http://dx.doi.org/10.1007/s10958-021-05254-0
http://dx.doi.org/10.1016/j.cam.2013.03.017
http://dx.doi.org/10.1016/j.cam.2014.09.005
http://dx.doi.org/10.1016/j.cam.2019.04.014
http://dx.doi.org/10.1109/59.486093
http://dx.doi.org/10.1109/TPWRS.2011.2136442
http://dx.doi.org/10.1109/TPWRS.2006.881154
http://dx.doi.org/10.1007/BF01198006
http://dx.doi.org/10.1016/S0024-3795(02)00457-3
http://dx.doi.org/10.1109/TCS.1985.1085647
http://dx.doi.org/10.1109/18.954748
http://dx.doi.org/10.1073/pnas.1005493107
http://www.ncbi.nlm.nih.gov/pubmed/20615937
http://dx.doi.org/10.1090/S0002-9939-2011-10959-6
http://dx.doi.org/10.1016/j.laa.2009.07.038
http://dx.doi.org/10.1007/s00607-002-1470-0
http://dx.doi.org/10.1007/s11075-019-00776-w
http://dx.doi.org/10.1137/040617650

Fractal Fract. 2023, 7, 468 30 of 30

37. Demko, S. Inverses of band matrices and local convergence of spline projections. SIAM. J. Numer. Anal. 1977, 14, 616–619.
[CrossRef]

38. Mathworks. MATLAB User’s Guide; Mathworks: Natick, MA, USA, 2010.
39. Massei, S.; Palitta, D.; Robol, L. Solving rank structured Sylvester and Lyapunov equations. SIAM J. Matrix Anal. Appl. 2018, 39,

1564–1590. [CrossRef]
40. Massei, S.; Robol, L.; Kressner, D. hm-toolbox: Matlab software for HODLR and HSS matrices. SIAM J. Sci. Comput. 2020, 42,

C43–C68. [CrossRef]
41. Watson, N.; Arrillaga, J. Power Systems Electromagnetic Transients Simulation; IET, Digital Libray: London, UK, 2003.
42. Arbenz, P.; Gander, W. A Survey of Direct Parallel Algorithms for Banded Linear Systems; Tech. Report 221; Departement Informatik,

Institut für Wissenschaftliches Rechnen, ETH Zürich: Zurich, Switzerland, 1994.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/0714041
http://dx.doi.org/10.1137/17M1157155
http://dx.doi.org/10.1137/19M1288048

	Introduction
	SDA and the Structured Iteration for DARE
	FSDA for High-Rank Terms
	Convergence and the Evolution of the Bandwidth

	Deflation of Low-Rank Factors and Kernels
	Partial Truncation and Compression
	Algorithm and Implementation
	Computation of Residuals
	Residual for the Banded Part
	Residual for the Low-Rank Part

	Algorithm and Operation Counts

	Numerical Examples
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References

