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Abstract: The unique solvability in the sense of classical solutions for nonlinear inverse problems to
differential equations, solved for the oldest Dzhrbashyan–Nersesyan fractional derivative, is studied.
The linear part of the equation contains a bounded operator, a continuous nonlinear operator that
depends on lower-order Dzhrbashyan–Nersesyan derivatives, and an unknown element. The inverse
problem is given by an equation, special initial value conditions for lower Dzhrbashyan–Nersesyan
derivatives, and an overdetermination condition, which is defined by a linear continuous operator.
Applying the fixed-point method for contraction mapping a theorem on the existence of a local
unique solution is proved under the condition of local Lipschitz continuity of the nonlinear mapping.
Analogous nonlocal results were obtained for the case of the nonlocally Lipschitz continuous nonlin-
ear operator in the equation. The obtained results for the problem in arbitrary Banach spaces were
used for the research of nonlinear inverse problems with time-dependent unknown coefficients at
lower-order Dzhrbashyan–Nersesyan time-fractional derivatives for integro-differential equations
and for a linearized system of dynamics of fractional Kelvin–Voigt viscoelastic media.

Keywords: fractional differential equation; Dzhrbashyan–Nersesyan fractional derivative; inverse
problem; identification problem; equation with unknown coefficients; initial boundary value problem
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1. Introduction

Fractional integro-differential calculus is actively used for problems of mathematical
modeling of the dynamics of various processes and phenomena. Therefore, it attracts more
and more interest both for the theory development [1–4] and in terms of use in applied
problems (see, e.g., [5–8]). In recent years, active research has been conducted on various
problems for equations with fractional derivatives, including direct and inverse problems,
optimal control problems [9], controllability problems [10], and others. In these problems,
researchers have considered Riemann–Liouville and Gerasimov–Caputo derivatives, which
have already become a traditional object of research, as well as Hilfer derivatives [5], various
ϕ-derivatives [11], new Caputo–Fabrizio [12] and Atangana–Baleanu [13] derivatives with
integral kernels without singularity, stochastic differential equations [11], etc.

At the same time, inverse problems for differential equations [14–18], i.e., problems
for differential equations with unknown parameters and additional overdetermination con-
ditions, arise in physics, astronomy, geophysics, chemistry, and biology, when conducting
research of processes, some parameters of which are not available for direct measurements.
In recent years, linear inverse problems to equations with fractional derivatives have been
researched in the works [19–25].

Consider the nonlinear inverse problem

Dσn z(t) = Az(t) + B(t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t), u(t)), t ∈ [t0, T], (1)
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Dσk z(t0) = zk, k = 0, 1, . . . , n− 1, (2)

Φz(t) = Ψ(t), t ∈ [t0, T]. (3)

Here, Dσk z(t) are Dzhrbashyan–Nersesyan fractional derivatives [26], which corre-
spond to αk ∈ (0, 1], k = 0, 1, . . . , n (see Section 2 for the exact definition), A is a linear-
bounded operator on some Banach space Z , Φ is a linear-bounded mapping from Z to
another Banach space U , and B : [t0, T] × Zn × U → Z , zk ∈ Z , k = 0, 1, . . . , n − 1,
Ψ ∈ C([t0, T];U ) are given. The overdetermination condition has the form (3); unknown
functions are z(t) and u(t). We investigate Problem (1)–(3) by applying the methods used
in [15] to study unique solvability issues for the analogous nonlinear inverse problem to
the first-order equation, which contains a nonlinear mapping B = B(t, z(t), u(t)). In [27],
a similar approach has been applied to prove the existence of a unique local solution of
an analogous nonlinear inverse problem to a differential equation in a Banach space with
Gerasimov–Caputo derivatives and an unbounded sectorial operator A in the linear part of
the equation.

The unique solvability of Problem (2) (so-called direct problem) for an inhomogenous
linear equation independent of u(t) (1) (when B = f (t) is a continuous function) was
studied in [28]. Results for the direct problem to the quasilinear equation were obtained
in work [29]. Problem (2) to the inhomogeneous linear Equation (1) with a sectorial
unbounded linear operator A was studied in [30]. There are other works on various
differential equations with Dzhrbashyan–Nersesyan fractional derivatives [31–37].

The issues of the existence and uniqueness of a solution are very important, since
they are the first to arise for any researcher when considering a new problem, applied or
theoretical. These issues for nonlinear inverse problems are traditionally difficult to study.
At the same time, such problems are often found in applied research. This work is aimed at
the study of a new class of such problems. The method of the investigation of a nonlinear
inverse problem in this work consists in its reduction to a system of nonlinear equations
of the form yk = Hk(y0, y1, . . . , yn), k = 0, 1, . . . , n, with the subsequent application of
the Banach fixed point theorem to it. The possibility for such reduction is provided by
special conditions for the form of the nonlinear operator B and its connection with the
overdetermination operator Φ (Conditions (A) and (C) in Section 6). The possibility of
fulfilling such conditions in applications is demonstrated on examples in Sections 5 and 6.
There, when considering the initial boundary value problems for an equation or a system
of partial differential equations, the fulfillment of these conditions is ensured by the fact
that the overdetermination operator acts on spatial variables, and the nonlinear operator
with respect to all unknown elements in the equation is linear with respect to unknown
coefficients at the derivatives of the unknown function; these coefficients do not depend
on spatial variables. The obtained results on the solvability of a class of nonlinear inverse
problems, as can be seen from the examples in Sections 5 and 6, allow us to prove the exis-
tence of a unique solution for complicate inverse coefficient problems to partial differential
equations or systems of such equations.

The second section of this work contains the definition of Dzhrbashyan–Nersesyan
fractional derivatives and the theorem obtained in [28] on the unique solvability of initial
value problem (2) for linear inhomogeneous equation (1). A theorem on the existence of a
unique local solution to Problem (1)–(3) has been proved in Section 3. Section 4 contains an
analogous theorem on a nonlocal solution to Problem (1)–(3). In both cases, the methods
of contraction mappings were used. In Section 5, a problem for an integro-differential
equation with unknown coefficients at lower-order Dzhrbashyan–Nersesyan time-fractional
derivatives have been investigated by the application of the obtained abstract results.
In Section 6, the problem for a linearized system of the dynamics of Kelvin–Voigt fractional
viscoelastic media depending on time-unknown coefficients and with overdetermination
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conditions in the form of integrals over the considered spatial region have also been studied
by the application of the abstract results .

2. Preliminaries

For 0 < αk ≤ 1, k = 0, 1, . . . , n ∈ N, define differential operators

Dσ0 z(t) = Dα0−1
t z(t), Dσk z(t) = Dαk−1

t Dαk−1
t Dαk−2

t . . . Dα0
t z(t), k = 1, 2, . . . , n. (4)

Here, Dβ
t := J−β

t is the Riemann–Liouville fractional integral of an order −β > 0.
If β < 0, D0

t is the identical operator, Dβ
t := Dm

t Jm−β
t is the Riemann–Liouville frac-

tional derivative of an order β ∈ (m − 1, m], m ∈ N. The Dzhrbashyan–Nersesyan
fractional derivatives of [26] of the orders σk, k = 0, 1, . . . , n, which correspond to the
sequence {α0, α1, . . . , αn}, 0 < αk ≤ 1, k = 0, 1, . . . , n ∈ N, are determined by equalities (4).
The Dzhrbashyan–Nersesian derivative is a natural general construction of a fractional
integro-differential operator (see [26,31,32]); note that its partial cases are the Riemann–
Liouville fractional derivative (α0 ∈ (0, 1), αk = 1, k = 1, 2, . . . , n) and the Gerasimov–
Caputo fractional derivative (αk = 1, k = 0, 1, . . . , n− 1, αn ∈ (0, 1)). Denote also

σk =
k

∑
j=0

αj − 1, k = 0, 1, . . . , n.

Consider a Banach space Z . Denote by L(Z) the Banach algebra of all linear-bounded
operators in Z . For α, β > 0, we will use the Mittag–Leffler function

Eα,β(z) :=
∞

∑
j=0

zj

Γ(αj + β)
, z ∈ L(Z).

Consider an initial problem

Dσk z(t0) = zk, k = 0, 1, . . . , n− 1, (5)

to a linear inhomogeneous equation

Dσn z(t) = Az(t) + f (t). (6)

A function z ∈ C((t0, T];Z) is a solution to Problem (5) and (6) on a segment [t0, T].
If Dσk z ∈ C([t0, T];Z), k = 0, 1, . . . , n− 1, Dσn z ∈ C((t0, T];Z), Condition (5) is fulfilled,
and for all t ∈ (t0, T], Equality (6) holds.

Theorem 1 ([28]). Let A ∈ L(Z), zk ∈ Z , 0 < αk ≤ 1, k = 0, 1 . . . , n, α0 + αn > 1,
f ∈ C([t0, T];Z). Then, there exists a unique solution to Problem (5) and (6). Moreover, the
solution has the form

z(t) =
n−1

∑
k=0

(t− t0)
σk Eσn ,σk+1((t− t0)

σn A)zk +

t∫
t0

(t− s)σn−1Eσn ,σn((t− s)σn A) f (s)ds.

3. Local Solvability of Nonlinear Inverse Problem

Let Z and U be Banach spaces, subset Z be open in R×Zn, and B : Z×U → Z be a
nonlinear mapping. Consider a nonlinear inverse problem

Dσn z(t) = Az(t) + B(t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t), u(t)), (7)

Dσk z(t0) = zk, k = 0, 1, . . . , n− 1, (8)
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Φz(t) = Ψ(t), t ∈ [t0, T]. (9)

A solution to Problem (7)–(9) on segment [t0, T] is a pair (z, u) ∈ C([t0, T];Z) ×
C([t0, T];U ), such that for k = 0, 1, . . . , n Dσk z ∈ C([t0, T];Z), Equality (8) is valid for all
t ∈ [t0, T] (t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t)) ∈ Z, and Equalities (7) and (9) hold.

Remark 1. Here, we require the continuity of solution z at point t = t0, in contrast to a general
situation [29,30]. This is required by the specifics of the research method.

Denote y = (y0, y1, . . . , yn−1). Furthermore, we will use the following conditions
(A)–(F).

(A) The mapping B : Z×U → Z has the form

B(t, y, u) = B1(t, y) + B2(t, y, u), (t, y, u) ∈ Z×U .

Take a = (a0, a1, . . . , an−1) ∈ Zn, for R, T > 0 denote

SZn(a, R) = {y ∈ Zn : ‖yk − ak‖Z < R, k = 0, 1, . . . , n− 1},

SZn(a, R, T) = [t0, T]× SZn(a, R).

For (t0, z0, z1, . . . , zn−1) ∈ Z and a sufficiently smooth function Ψ, take

v0 = Dσn Ψ(t0)−ΦAz0 −ΦB1(t0, z0, z1, . . . , zn−1).

Moreover, the following conditions will be used:
(B) The equation ΦB2(t0, z0, z1, . . . , zn−1, u) = v0 with respect to the variable u has a

unique solution u0 ∈ U ;
(C) The operator B3 : [t0, T]×Un+1 → U satisfies the identity

ΦB2(t, y, u) = B3(t, Φy0, Φy1, . . . , Φyn−1, u), (t, y, u) ∈ Z×U ;

(D) For some R > 0 and for all t ∈ [t0, T], the mapping

v = B3(t, Dσ0 Ψ(t), Dσ1 Ψ(t), . . . , Dσn−1 Ψ(t), u)

in the ball SU (u0, R) has an inverse mapping u = F(t, v);
(E) The operator F is continuous in the totality of the variables (t, v) on the set

SU (u0, R, T) for some R > 0 and Lipschitz continuous in v on this set;
(F) Both mappings B1(t, y) and B2(t, y, u) are continuous in the totality of the variables

on SZn×U ((z0, z1, . . . , zn−1, u0), R, T) ⊂ Z× U for some R > 0; moreover, they satisfy the
Lipschitz condition in (y, u) on this set.

Theorem 2. Let A ∈ L(Z), n ∈ N, Z be an open set in R× Zn, B : Z × U → Z , zk ∈ Z ,
k = 0, 1, . . . , n − 1, (t0, z0, z1, . . . , zn−1) ∈ Z, α0 = 1, 0 < αk ≤ 1, k = 1, 2, . . . , n, Φ ∈
L(Z ;U ), Dσk Ψ ∈ C([t0, T];U ), k = 0, 1, . . . , n, Φz0 = Ψ(t0), assumptions (A)–(F) hold. Then
there exists T1 ∈ (t0, T], such that nonlinear inverse problem (7)–(9) have a unique solution to
[t0, T1].

Proof. First, note that due to Conditions n ∈ N and α0 = 1, we have σn > 0, α0 + αn > 1.
For k, l = 0, 1, . . . , n− 1, in Lemma 1 [28], it was proved that

Dσk tσl Eσn ,σl+1(tσn A) = tσl−σk Eσn ,σl−σk+1(tσn A) ∈ C([0, T];L(Z)), k ≤ l,

Dσk tσk Eσn ,σk+1(tσn A) = Atσl−σk+σn Eσn ,σl−σk+σn+1(tσn A) ∈ C([0, T];L(Z)), k > l.
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The equality

Dσk

t∫
t0

(t− s)σn−1Eσn ,σn((t− s)σn A) f (s)ds =
t∫

t0

(t− s)σn−σk−1Eσn ,σn−σk ((t− s)σn A) f (s)ds

for k = 0, 1, . . . , n, f ∈ C([t0, T];Z) was obtained in the proof of Lemma 2 in [28]. Therefore,
for k = 0, 1, . . . , n− 1

Dσk z(t) =
k−1

∑
l=0

(t− t0)
σl−σk+σn Eσn ,σl−σk+σn+1((t− t0)

σn A)Azl+

+
n−1

∑
l=k

(t− t0)
σl−σk Eσn ,σl−σk+1((t− t0)

σn A)zl+

+

t∫
t0

(t− s)σn−σk−1Eσn ,σn−σk ((t− s)σn A)B(s, Dσ0 z(s), . . . , Dσn−1 z(s), u(s))ds. (10)

If Problem (7)–(9) have a solution (z, u) ∈ C([t0, T];Z) × C([t0, T];U ), then for k =
0, 1, . . . , n− 1, the inclusions Dσk z ∈ C([t0, T];Z) are true, and for every t ∈ [t0, T], Equali-
ties (9) and

z(t) =
n−1

∑
k=0

(t− t0)
σk Eσn ,σk+1((t− t0)

σn A)zk+

t∫
t0

(t− s)σn−1Eσn ,σn((t− s)σn A)B(s, Dσ0 z(s), . . . , Dσn−1 z(s), u(s))ds

are satisfied. Substitute the function z(t) into (9) and obtain

Φ
n−1

∑
k=0

(t− t0)
σk Eσn ,σk+1((t− t0)

σn A)zk+

+Φ
t∫

t0

(t− s)σn−1Eσn ,σn((t− s)σn A)B(s, Dσ0 z(s), Dσ1 z(t), . . . , Dσn−1 z(s))ds = Ψ(t).

Acting as the derivative Dσn on both parts of this equality and taking into account
Theorem 1, we obtain

ΦA
n−1

∑
k=0

(t− t0)
σk Eσn ,σk+1((t− t0)

σn A)zk+

+ΦA
t∫

t0

(t− s)σn−1Eσn ,σn((t− s)σn A)B(s, Dσ0 z(s), Dσ1 z(t), . . . , Dσn−1 z(s), u(s))ds+

+ΦB(t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t), u(t)) = Dσn Ψ(t).

Using Conditions (A) and (C), rewrite this equality as

ΦB2(t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t), u(t)) =

= B3(t, ΦDσ0 z(t), ΦDσ1 z(t), . . . , ΦDσn−1 z(t), u(t)) =

= B3(t, Dσ0 Ψ(t), Dσ1 Ψ(t), . . . , Dσn−1 Ψ(t), u(t)) = Dσn Ψ(t)−
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−ΦA
n−1

∑
k=0

(t− t0)
σk Eσn ,σk+1((t− t0)

σn A)zk−

−ΦA
t∫

t0

(t− t0)
σn−1Eσn ,σn((t− t0)

σn A)B(s, Dσ0 z(s), . . . , Dσn−1 z(s), u(s))ds−

−ΦB1(t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t)). (11)

Condition (D) and Equation (11) imply that

u(t) = F(t, v(t)) (12)

with

v(t) = Dσn Ψ(t)−ΦA
n−1

∑
l=0

(t− t0)
σl Eσn ,σl+1((t− t0)

σn A)zl−

−ΦA
t∫

t0

(t− t0)
σn−1Eσn ,σn((t− t0)

σn A)B(s, Dσ0 z(s), . . . , Dσn−1 z(s), u(s))ds−

−ΦB1(t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t)). (13)

Note that v(t0) = Dσn Ψ(t0)−ΦAz0 −ΦB1(t0, z0, z1, . . . , zn−1) = v0.
Then, the system of equations for n− 1 functions y0 := Dσ0 z, y1 := Dσ1 z, . . . , yn−1 :=

Dσn−1 z and for the n-th function u consists of Equations (10) for k = 0, 1, . . . , n− 1 and (12).
Consider the set

MT = {(y, u) ∈ C([t0, T];Zn ×U ) : ‖yk(t)− zk‖Z ≤ R, k = 0, 1, . . . , n− 1,
‖u(t)− u0‖U ≤ R, t ∈ [t0, T]},

with the metrics d((y, u), (x, v)) = ‖(y− x, u− v))‖C([0,T];Zn×U ). This metric space is evi-
dently complete. Define the mapping H with components H0, H1, . . . , Hn: for
k = 0, 1, . . . , n− 1

Hk(y0, y1 . . . , yn−1, u) =
k−1

∑
l=0

(t− t0)
σl−σk+σn Eσn ,σl−σk+σn+1((t− t0)

σn A)Azl+

+
n−1

∑
l=k

(t− t0)
σl−σk Eσn ,σl−σk+1((t− t0)

σn A)zl+

+

t∫
t0

(t− s)σn−σk−1Eσn ,σn−σk ((t− s)σn A)B(s, y0(s), y1(s), . . . , yn−1(s), u(s))ds,

Hn(y0, y1, . . . , yn−1, u) = F

(
t, Dσn Ψ(t)−ΦA

n−1

∑
l=0

(t− t0)
σl Eσn ,σl+1((t− t0)

σn A)zl−

−ΦA
t∫

t0

(t− t0)
σn−1Eσn ,σn((t− t0)

σn A)B(s, y0(s), y1(s), . . . , yn−1(s), u(s))ds−

−ΦB1(t, y0(t), y1(t), . . . , yn−1(t))).



Fractal Fract. 2023, 7, 464 7 of 15

Consequently, inverse problem (7)–(9) are equivalent to the system

y0(t) = H0(y0(t), y1(t), . . . , yn−1(t), u(t)),
y1(t) = H1(y0(t), y1(t), . . . , yn−1(t), u(t)),

. . . ,
yn−1(t) = Hn−1(y0(t), y1(t), . . . , yn−1(t), u(t)),

u(t) = Hn(H0(y(t), u(t)), H1(y(t), u(t)), . . . , Hn−1(y(t), u(t)), u(t)).

(14)

We have for k = 0, 1, . . . , n − 1 Hk(y0(t0), y1(t0), . . . , yn−1(t0), u(t0)) = yk(t0) = zk,
Hn(y0(t0), y1(t0), . . . , yn−1(t0), u(t0)) = F(t0, v(t0)) = F(t0, v0) = u0. Due to the con-
ditions of this theorem the vector function H(y0(t), . . . , yn−1(t), u(t)) is continuous in t
on [t0, T] for (y0, y1, . . . , yn−1, u) ∈ MT ; therefore, for sufficiently small T1, we have that
H[MT1 ] ⊂MT1 .

Take for j = 1, 2, k = 0, 1, . . . , n− 1 xj
k(t) = Hk(y

j
0(t), yj

1(t), . . . , yj
n−1(t), uj(t)), vj(t) =

Hn(H0(yj(t), uj(t)), H1(yj(t), uj(t)), . . . , Hn−1(yj(t), uj(t)), uj(t)). Since B1, B2, F are Lips-
chitz continuous in the phase variables, for k = 0, 1, . . . , n− 1,

‖x1
k(t)− x2

k(t)‖Z ≤ C1(T1 − t0)
σn−σk Eσn ,σn−σk+1((T1 − t0)

σn‖A‖L(Z))×

×
(

n−1

∑
l=0

sup
s∈[t0,T1]

‖y1
l (s)− y2

l (s)‖Z + sup
s∈[t0,T1]

‖u1(s)− u2(s)‖U

)
=

= C(T1)

(
n−1

∑
l=0
‖y1

l − y2
l ‖C([t0,T1];Z) + ‖u

1 − u2‖C([t0,T1];U )

)
,

‖v1(t)− v2(t)‖U ≤ C(T1)

(
n−1

∑
l=0
‖y1

l − y2
l ‖C([t0,T1];Z) + ‖u

1 − u2‖C([t0,T1];U )

)
+

+C2

n−1

∑
k=0

sup
s∈[t0,T1]

‖x1
k(s)− x2

k(s)‖Z ≤

≤ (1 + nC2)C(T1)

(
n−1

∑
l=0
‖y1

l − y2
l ‖C([t0,T1];Z) + ‖u

1 − u2‖C([t0,T1];U )

)
.

Therefore, for a sufficiently small T1 > 0, such that (n + 1 + nC2)C(T1) < 1, the map-
ping H has a unique fixed point (y0

0, y0
1, . . . , y0

n−1, u0) ∈MT1 .
Since α0 = 1 and by the construction of system of Equations (14) y0

k = Dσk y0
0,

k = 0, 1, . . . , n− 1, we have

Dσ0 y0
0(t) = y0

0(t) =
n−1

∑
l=0

(t− t0)
σl Eσn ,σl+1((t− t0)

σn A)zl+

+

t∫
t0

(t− s)σn−1Eσn ,σn((t− s)σn A)B(s, y0
0(s), y0

1(s), . . . , y0
n−1(s), u0(s))ds =

=
n−1

∑
l=0

(t− t0)
σl Eσn ,σl+1((t− t0)

σn A)zl+

+

t∫
t0

(t− s)σn−1Eσn ,σn((t− s)σn A)B(s, Dσ0 y0
0(s), Dσ1 y0

0(s), . . . , Dσn−1 y0
0(s), u0(s))ds.
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The last equality in (14) implies the fulfillment of overdetermination condition (9).
Since the mapping

t→ B(t, Dσ0 y0
0(t), Dσ1 y0

0(t), . . . , Dσn−1 y0
0(t), u0(t))

is continuous, due to Theorem 1, the pair (y0
0(t), u0(t)) is a solution to (7)–(9).

If there exist two solutions (z1, u1) and (z2, u2), then by Theorem 1, every solution
corresponds to a fixed point (Dσ0 z1, . . . , Dσn−1 z1, u1) and (Dσ0 z2, . . . , Dσn−1 z2, u2) of the
operator H, respectively. Since a fixed point is unique, u1(t) = u2(t), z1(t) = Dσ0 z1(t) =
Dσ0 z2(t) = z2(t) for t ∈ [t0, T1] at some T1 > 0.

Remark 2. The condition α0 = 1 in Theorem 2 may be replaced by a more general condition of
the form:

σ0, σ1, . . . , σk−1 < 0, σk ≥ 0, z0 = z1 = · · · = zk−1 = 0

for some k ∈ {0, 1, . . . , n− 1}. Indeed, under this condition, the function v(t) from (13) has a finite
limit as t→ t0+ (see Remark 1).

Remark 3. In Paper [27], local solutions of similar inverse problem are considered for an equation
with Gerasimov–Caputo fractional derivatives and with an unbounded sectorial operator A in the
linear part. Due to the unboundedness of A, it makes sense to consider the case of generalized and
smooth solutions. In this paper, we consider only smooth solutions, since the operator A is bounded,
so the generalized solutions are smooth, which is shown in the proof of the theorem.

4. Nonlocal Solvability of Nonlinear Inverse Problem

Let Z and U be Banach spaces, T > t0, and B : [t0, T]×Zn × U → Z be a nonlinear
operator. Consider problem (7)–(9) on [t0, T].

Let Assumptions (A)–(C) with Z = Zn × U and the next conditions (D1)–(F1) be
satisfied:

(D1) For t ∈ [t0, T], the mapping v = B3(t, Dα1 Ψ(t), Dα2 Ψ(t), . . . , Dαn Ψ(t), u) of the
variable u has an inverse function u = F(t, v) on U ;

(E1) The function F is continuous in the totality of the variables (t, v) on [t0, T]× U ,
and Lipschitz is continuous with respect to v on it;

(F1) Both mappings B1(t, y) and B2(t, y, u) are continuous in the totality of the vari-
ables on the set [t0, T]×Zn ×U , and Lipschitz is continuous with respect to (y, u) on it.

Theorem 3. Let A ∈ L(Z), n ∈ N, zk ∈ Z , α0 = 1, 0 < αk ≤ 1, k = 1, 2, . . . , n, Φ ∈ L(Z ;U ),
Dσk Ψ ∈ C([t0, T];U ), k = 0, 1, . . . , n, Φz0 = Ψ(t0), Conditions (A)–(C) with Z = Zn × U ,
and Conditions (D1)–(F1) be satisfied. Then, there exists a unique solution on [t0, T] of nonlinear
inverse problem (7)–(9) .

Proof. Similarly to the proof of Theorem 2, consider the system of equations

y0(t) = H0(y0(t), y1(t), . . . , yn−1(t), u(t)),
y1(t) = H1(y0(t), y1(t), . . . , yn−1(t), u(t)),

. . . ,
yn−1(t) = Hn−1(y0(t), y1(t), . . . , yn−1(t), u(t)),

u(t) = Hn(H0(y(t), u(t)), H1(y(t), u(t)), . . . , Hn−1(y(t), u(t)), u(t)),

(15)

but here in the complete metric space C([t0, T];X n ×U ). As before, for k = 0, 1, . . . , n− 1,

Hk(y0, y1 . . . , yn−1, u) =
k−1

∑
l=0

(t− t0)
σl−σk+σn Eσn ,σl−σk+σn+1((t− t0)

σn A)Azl+
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+
n−1

∑
l=k

(t− t0)
σl−σk Eσn ,σl−σk+1((t− t0)

σn A)zl+

+

t∫
t0

(t− s)σn−σk−1Eσn ,σn−σk ((t− s)σn A)B(s, y0(s), y1(s), . . . , yn−1(s), u(s))ds,

Hn(y0, y1, . . . , yn−1, u) = F

(
t, Dσn Ψ(t)−ΦA

n−1

∑
l=0

(t− t0)
σl Eσn ,σl+1((t− t0)

σn A)zl−

−ΦA
t∫

t0

(t− t0)
σn−1Eσn ,σn((t− t0)

σn A)B(s, y0(s), y1(s), . . . , yn−1(s), u(s))ds−

−ΦB1(t, y0(t), y1(t), . . . , yn−1(t))).

It was proved that for (y0, y1, . . . , yn−1, u) ∈ C([t0, T];Zn ×U ), we have

H(y0(t), y1(t), . . . , yn−1(t), u(t)) ∈ C([t0, T];Zn ×U ),

Hk(y0(t0), y1(t0), . . . , yn−1(t0), u(t0)) = yk(t0) = zk, k = 0, 1, . . . , n− 1,

Hn(y0(t0), y1(t0), . . . , yn−1(t0), u(t0)) = F(t0, v(t0)) = F(t0, v0) = u0.

For (yj, uj) ∈ C([t0, T];Zn × U ), j = 1, 2, k = 0, 1, . . . , n − 1, due to the Lipschitz
continuity in the phase variables of the mappings B1, B2, F, we have

‖Hk(y1, u1)− Hk(y2, u2)‖Z ≤ C1(t− t0)
σn−σk

(
n−1

∑
l=0
‖y1

l − y2
l ‖C([t0,t];Z)+

+‖u1 − u2‖C([t0,t];U )

)
, k = 0, 1, . . . , n− 1,

‖Hn(y1, u1)− Hn(y2, u2)‖U ≤ C1(t− t0)
σn

(
n−1

∑
l=0
‖y1

l − y2
l ‖C([t0,t];Z)+

+‖u1 − u2‖C([t0,t];U )

)
+ C2

n−1

∑
k=0

sup
s∈[t0,t]

‖Hk(y1, u1)− Hk(y2, u2))‖Z ≤

≤ (1 + nC2)C1(t− t0)
αn

(
n−1

∑
l=0
‖y1

l − y2
l ‖C([t0,t];Z) + ‖u1 − u2‖C([t0,t];U )

)
,

‖H(y1, u1)− H(y2, u2)‖C([t0,t];Zn×U ) ≤ C3(t− t0)
αn‖(y1, u1)− (y2, u2)‖C([t0,t];Zn×U ).

Denote H2(y, u) = H(H(y1, u1)) Hl+1(y, u) = H(Hl(y, u)),

Hl(y, u) = (Hl
0(y, u), Hl

1(y, u), . . . , Hl
n(y, u)), l ∈ N.

Therefore, for k = 0, 1, . . . , n− 1

‖H2
k (y

1, u1)− H2
k (y

2, u2)‖Z ≤ C1(t− t0)
αn

t∫
t0

n

∑
l=0
‖Hl(y1, u1)− Hl(y2, u2)‖C([t0,s];Z)ds,

‖H2
n(y

1, u1)− H2
n(y

2, u2)‖U ≤ C1(t− t0)
αn

t∫
t0

n

∑
l=0
‖Hl(y1, u1)− Hl(y2, u2)‖C([t0,s];Z)ds+

+C2

n−1

∑
k=0
‖H2

k (y
1, u1)− H[2]

k (y2, u2)‖C([t0,t];Z) ≤
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≤ (1 + nC2)C1(t− t0)
αn

t∫
t0

n

∑
l=0
‖Hl(y1, u1)− Hl(y2, u2)‖C([t0,t];Z) ≤

≤ (1 + nC2)C1C3(T − t0)
αn
(t− t0)

αn+1

αn + 1
‖(y1, u1)− (y2, u2)‖C([t0,t];Zn×U ),

‖H2(y1, u1)− H2(y2, u2)‖C([t0,t];Zn×U ) ≤

≤ C2
3(T − t0)

αn
(t− t0)

αn+1

αn + 1
‖(y1, u1)− (y2, u2)‖C([t0,t];Zn×U ).

Analogously, we obtain

‖H3(y1, u1)− H3(y2, u2)‖Z ≤

≤ C3
3(T − t0)

2αn
(t− t0)

αn+2

(αn + 1)(αn + 2)
‖(y1, u1)− (y2, u2)‖C([t0,t];Zn×U ) ≤

≤ C3
3(T − t0)

2αn
(t− t0)

αn+2

2!
‖(y1, u1)− (y2, u2)‖C([t0,t];Zn×U ), . . . ,

‖Hl(y1, u1)− Hl(y2, u2)‖Z ≤

≤ Cl
3(T − t0)

(l−1)αn
(t− t0)

αn+l−1

(l − 1)!
‖(y1, u1)− (y2, u2)‖C([t0,t];Zn×U ), l ∈ N.

Thus, for sufficiently large l ∈ N, the mapping Hl has a unique fixed point

(y0
0, y0

1, . . . , y0
n−1, u0) ∈ C([t0, T];Zn ×U ).

As for a local solution, we can prove that the pair (y0
0(t), u0(t)) is a solution to (7)–(9)

and can show the uniqueness of a solution.

5. Nonlinear Inverse Problem for an Integro-Differential Equation

Consider an inverse problem

Dσk
t w(ξ, 0) = wk(ξ), k = 0, 1, . . . , n− 1, ξ ∈ Ω, (16)

Dσn
t w(ξ, t) =

∫
Ω

K(ξ, η)w(η, t)dη +
n−1

∑
k=0

uk(t)Dσk
t w(ξ, t)+

+un(t)g(ξ, t) + h(ξ, t), (ξ, t) ∈ Ω× [t0, T], (17)

〈ηj(·), w(·, t)〉L2(Ω) = ψj(t), t ∈ [t0, T], j = 0, 1, . . . , n. (18)

Here, Ω is a measurable region in Rd, and Dσk
t are the partial Dzhrbashyan–Nersesyan

derivatives in t, which correspond to αk ∈ (0, 1], k = 0, 1 . . . , n, α0 = 1; wk ∈ L2(Ω),
k = 0, 1, . . . , n − 1, g, h ∈ C([t0, T]; L2(Ω)), ηj ∈ L2(Ω), j = 0, 1, . . . , n, and 〈·, ·〉L2(Ω)

the inner product in L2(Ω) is denoted.

Theorem 4. Let wk ∈ L2(Ω), k = 0, 1, . . . , n − 1, α0 = 1, 0 < αk ≤ 1, k = 1, 2, . . . , n,
K ∈ L2(Ω × Ω), wk ∈ L2(Ω), Dσk ψj ∈ C([t0, T];U ), k = 0, 1, . . . , n, ηj ∈ L2(Ω),
〈ηj(·), w0(·)〉L2(Ω) = ψj(0), j = 0, 1, . . . , n, g, h ∈ C([0, T]; L2(Ω)), det ‖ajk‖n

j,k=0 6= 0,
det ‖bjk(t)‖n

j,k=0 6= 0 for all t ∈ [t0, T], where ajk := 〈ηj(·), wk(·)〉L2(Ω), k = 0, 1, . . . , n− 1, j =

0, 1, . . . , n, ajn := 〈ηj(·), g(·, 0)〉L2(Ω), j = 0, 1, . . . , n, bjk(t) := Dσk
t ψj(t), k = 0, 1, . . . , n− 1,

bjn(t) := 〈ηj(·), g(·, t)〉L2(Ω) for j = 0, 1, . . . , n. Then, there exists T1 ∈ (t0, T], such that there is
a unique solution on the segment [t0, T1] of nonlinear inverse problem (16)–(18).
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Proof. Set Z := L2(Ω); since K ∈ L2(Ω×Ω), for v ∈ L2(Ω), we have

(Av)(ξ) :=
∫
Ω

K(ξ, η)v(η)dη, A ∈ L(Z).

Therefore, Problem (16)–(18) are representable in Forms (7)–(9), where Z = R ×
L2(Ω)n, U = Rn+1, B : R× L2(Ω)n ×Rn+1 → L2(Ω),

B(t, y, u) =
n−1

∑
k=0

ukyk + ung(·, t) + h(·, t), y = (y0, y1, . . . , yn−1), u = (u0, u1, . . . , un),

B1(t, y) = h(·, t), B2(t, y, u) =
n−1

∑
k=0

ukyk + ung(·, t),

zk = wk(·), k = 0, 1, . . . , n− 1. Check the conditions of Theorem 2.
The local Lipschitz continuity of B with respect to y, u is evident, and we have

Φ ∈ L(L2(Ω);Rn+1), since

Φ = (Φ0, Φ1, . . . , Φn) : L2(Ω)→ Rn+1, Φj(z) =
∫
Ω

ηj(ξ)z(ξ)dξ, j = 0, 1, . . . , n.

Set v0 = (v00, v01, . . . , v0n),

v0j = Dσn ψj(0)−
〈

ηj(·),
∫
Ω

K(·, η)w0(η)dη + h(·, 0)

〉
L2(Ω)

,

then the system of equations〈
ηj(·),

n−1

∑
k=0

ukwk(·) + ung(·, 0)

〉
L2(Ω)

= v0j, j = 0, 1, . . . , n,

is uniquely resolved with respect to (u0, u1, . . . , un), since det ‖ajk‖n
j,k=0 6= 0. Hence, Con-

dition (B) is true. Denote the unique solution by (u0
0, u0

1, . . . , u0
n). Further, we have for

j = 0, 1, . . . , n〈
ηj(·),

n−1

∑
k=0

ukyk(·) + ung(·, t)

〉
L2(Ω)

=
n−1

∑
k=0

uk〈ηj(·), yk(·)〉L2(Ω) + un〈ηj(·), g(·, t)〉L2(Ω).

Hence, Condition (C) is satisfied with B3 = (B30, B31, . . . , B3n), where for j = 0, 1, . . . , n

B3j(t, u00, u01, . . . , un n) =
n−1

∑
k=0

uj kun k + unn〈ηj(·), g(·, t)〉L2(Ω).

The vector function

vj =
n−1

∑
k=0

Dσk
t ψj(t)uk + un〈ηj(·), g(·, t)〉L2(Ω)

has an inverse vector function u = b(t)−1v, which is continuous on [t0, T] × Rn+1 and
satisfies the local Lipschitz condition in v, since the matrix b(t) = ‖bjk(t)‖n

j,k=0 is invertible
for all t ∈ [t0, T]. As before u = (u0, u1, . . . , un), v = (v0, v1, . . . , vn).

Thus, Conditions (A)–(F) are fulfilled, and by Theorem 2, inverse problem (16)–(18)
have a unique local solution.
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6. Nonlinear Inverse Problem for a Kelvin–Voigt Time-Fractional System

Consider the problem

(λ− ∆)Dσn
t w(ξ, t) = ν∆w(ξ, t)− r(ξ, t)+

+(λ− ∆)
n−1

∑
k=0

uk(t)Dσk
t w(ξ, t) + un(t)g(ξ, t) + h(ξ, t), (ξ, t) ∈ Ω× [0, T], (19)

∇ · w(ξ, t) = 0, (ξ, t) ∈ Ω× [0, T], (20)

w(ξ, t) = 0, (ξ, t) ∈ ∂Ω× [0, T], (21)

Dσk
t w(ξ, 0) = wk(ξ), ξ ∈ Ω, k = 0, 1, . . . , n− 1, (22)

∫
Ω

〈ηj(ξ), w(ξ, t)〉Rd dξ = ψj(t), t ∈ [0, T], j = 0, 1, . . . , n, (23)

where Ω ⊂ Rd is a bounded region with a smooth boundary ∂Ω, 〈·, ·〉Rd is the inner
product in Rd, Dσk

t are the partial Dzhrbashyan–Nersesyan derivatives in t associated with
αk ∈ (0, 1], k = 0, 1 . . . , n, α0 = 1; λ, ν ∈ R, ∆ = D2

ξ1
+ D2

ξ2
+ · · · + D2

ξd
is the Laplace

operator, and g, h : Ω × [0, T] → Rd, wk : Ω → Rd, k = 0, 1, . . . , n − 1, ηj : Ω → Rd,
ψj : [0, T]→ R, j = 0, 1, . . . , n, are set. Vector functions of the velocity w = (w1, w2, . . . , wd)

and of the pressure gradient r = (r1, r2, . . . , rd) = ∇p for some pressure p ∈ H1(Ω) and
functions uj(t), j = 0, 1, . . . , n, are unknown.

Remark 4. In the case of uj ≡ 0, j = 0, 1, . . . , n − 1, System (19) and (20) are linearized in
a neighborhood of zero point system, which describe the dynamics of the Kelvin–Voigt time-fractional
viscoelastic medium.

Let L2 := (L2(Ω))d, H1 := (W1
2 (Ω))d, H2 := (W2

2 (Ω))d. The closure of the subspace
L := {v ∈ (C∞

0 (Ω))d : ∇ · v = 0} in the norm of the space L2 will be denoted by Hσ and in
the norm of H1 by H1

σ. We will also use the notations: H2
σ := H1

σ ∩H2, Hπ as the orthogonal
complement for Hσ in L2, Σ : L2 → Hσ, Π := I − Σ as the appropriate orthoprojectors.

The operator Λ := Σ∆, extended to a closed operator in Hσ with the domain H2
σ, has

a real negative discrete spectrum with finite eigenvalues multiplicities; it is condensed
at −∞ only [38]. Eigenfunctions {λl} of Λ are numbered in non-increasing order, taking
into account their multiplicities. An orthonormal system of respective eigenfunctions {ϕl}
forms a basis in Hσ [38].

Under the assumption λ /∈ {λl} using the projectors Σ and Π, we obtain restrictions
of (19) and (20) into subspaces Hσ and Hπ accordingly:

Dσn
t w(ξ, t) = ν(λ−Λ)−1Λw(ξ, t) +

n−1

∑
j=0

uj(t)D
σj
t w(ξ, t)+

+un(t)(λ−Λ)−1Σg(ξ, t) + (λ−Λ)−1Σh(ξ, t), (ξ, t) ∈ Ω× [0, T], (24)

r(ξ, t) = Π∆Dσn
t w(ξ, t) + νΠ∆w(ξ, t)+

+un(t)Πg(ξ, t) + Πh(ξ, t), (ξ, t) ∈ Ω× [0, T]. (25)
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Therefore, we can find w : [0, T]→ Hσ, u0, u1, . . . , un : [0, T]→ R from Equation (24),
then a solution r : [0, T]→ Hπ to Equation (25) can be found. Therefore, we will consider
inverse problem (20)–(24).

Theorem 5. Let wk ∈ Hσ, k = 0, 1, . . . , n − 1, α0 = 1, 0 < αk ≤ 1, k = 1, 2, . . . , n,
Dσk ψj ∈ C([t0, T];U ), k = 0, 1, . . . , n, ηj ∈ L2, 〈ηj(·), w0(·)〉L2 = ψj(0), j = 0, 1, . . . , n,
g, h ∈ C([0, T];L2), det ‖ajk‖n

j,k=0 6= 0, det ‖bjk(t)‖n
j,k=0 6= 0 for t ∈ [0, T], where ajk :=

〈ηj(·), wk(·)〉L2 , k = 0, 1, . . . , n − 1, ajn := 〈ηj(·), (λ − Λ)−1Σg(·, 0)〉L2 , j = 0, 1, . . . , n,
bjk(t) := Dσk

t ψj, k = 0, 1, . . . , n − 1, bjn(t) :=
〈
ηj(·), (λ−Λ)−1Σg(·, t)

〉
L2

, j = 0, 1, . . . , n.
Then, there exists T1 ∈ (0, T], such that inverse problem (20)–(24) have a solution to the seg-
ment [0, T1].

Proof. Due to the incompressibility Equation (20), we reduce Problem (20)–(24) to Problem
(7)–(9) with Z = Hσ, A = (λ−Λ)−1Λ ∈ L(Hσ), U = Rn+1, Z = R×Hn

σ, B : R×Hn
σ ×

Rn+1 → Hσ,

B(t, y, u) =
n−1

∑
k=0

ukyk(·) + un(λ−Λ)−1Σg(·, t) + (λ−Λ)−1Σh(·, t),

B1(t, y) = (λ−Λ)−1Σh(·, t), B2(t, y, u) =
n−1

∑
k=0

ukyk(·) + un(λ−Λ)−1Σg(·, t),

where y = (y0, y1, . . . , yn−1) ∈ Hn
σ, u = (u0, u1, . . . , un) ∈ Rn+1;

Φ = (Φ0, Φ1, . . . , Φn) ∈ L(Hσ;Rn+1), Φj(y) = 〈ηj(·), y(·)〉L2 , j = 0, 1, . . . , n,

〈·, ·〉L2 is the inner product in L2, zk = wk(·), k = 0, 1, . . . , n − 1,
z(t) = w(·, t) ∈ Hσ, u(t) = (u0(t), u1(t), . . . , un(t)), Ψ(t) = (ψ0(t), ψ1(t), . . . , ψn(t)) ∈
Rn+1 for t ∈ [0, T]. Check the conditions of Theorem 2.

The mapping B is continuous on [0, T]×Hn
σ×Rn+1 and is locally Lipschitz continuous

in y, u. Define v0 = (v00, v01, . . . , v0n),

v0j = Dσn ψj(0)− 〈ηj(ξ), (λ−Λ)−1Λw0(ξ) + (λ−Λ)−1Σh(·, 0)〉L2 ,

then the system of equations〈
ηj(·),

n−1

∑
k=0

ukwk(·) + un(λ−Λ)−1Σg(·, 0)

〉
L2

= v0j, j = 0, 1, . . . , n,

has a unique solution (u0
0, u0

1, . . . , u0
n), since det ‖ajk‖n

j,k=0 6= 0. Therefore, Condition (B) is
fulfilled. Further, for j = 0, 1, . . . , n,〈

ηj(·),
n−1

∑
k=0

ukyk(·) + un(λ−Λ)−1Σg(·, t)

〉
L2

=

=
n−1

∑
k=0

ukΦj(yk) + un

〈
ηj(·), (λ−Λ)−1Σg(·, t)

〉
L2

.

Therefore, Condition (C) holds with B3 = (B30, B31, . . . , B3n), where for j = 0, 1, . . . , n

B3j(u00, u01, . . . , un n) =
n−1

∑
k=0

uj kun k + unn

〈
ηj(ξ), (λ−Λ)−1Σg(ξ, t)

〉
L2

.
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Since the matrix b(t) = ‖bjk(t)‖n
j,k=0 is invertible for t ∈ [0, T], the vector function

vj =
n−1

∑
k=0

Dσk
t ψj(t)uk + un

〈
ηj(ξ), (λ−Λ)−1Σg(ξ, t)

〉
L2

has the inverse mapping u = b(t)−1v, which is continuous on [0, T]×Rn+1 and locally
Lipschitz continuous in v = (v0, v1, . . . , vn).

Thus, due to Theorem 2, nonlinear inverse problem (20)–(24) have a unique local solution.

7. Conclusions

A new class of inverse problems for differential equations is investigated. The abstract
results on the existence of a unique solution allowed us to study the unique solvability
of new coefficient inverse problems for partial differential equations with Dzhrbashyan–
Nersesyan time-fractional derivatives, in other words, inverse problems for partial differen-
tial equations with unknown coefficients at derivatives of the unknown function. We plan
to use the methods applied in this paper and the results obtained as the basis for studies
of wider classes of nonlinear inverse problems to equations with an unbounded operator
in the linear part, as well as for so-called degenerate equations containing a degenerate
operator at the highest Dzhrbashyan–Nersesyan fractional derivative.

Note that we used the fixed-point theorem, the proof of which contains the construction
of a sequence of approximate solutions converging to the exact solution. Therefore, the
approach proposed in this paper can become the basis for a numerical study of this class of
inverse problems.
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