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Abstract: The aim of this study was to present several improved quantum Hermite–Hadamard-
type integral inequalities for convex functions using a parameter. Thus, a new quantum identity is
proven to be used as the main tool in the proof of our results. Consequently, in some special cases
several new quantum estimations for q-midpoints and q-trapezoidal-type inequalities are derived
with an example. The results obtained could be applied in the optimization of several economic
geology problems.
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1. Introduction

The field of mathematical inequalities and applications has seen great advancements in
the last three decades. This has a significant impact on areas such as physics, earth sciences,
engineering [1], statistics [2], economics [3] and approximation theory [4], information
theory [5] and numerical analysis [6,7]. “Mathematical inequalities have streamlined the
concept of classical convexity” [8]. It is known that “the scientific observations and calcu-
lations rely on convex functions and their relationship to mathematical inequalities” [8].
Integral inequalities represent a fundamental way to establish qualitative or quantitative
mathematical results. The strong correlation between different convexities and symmetric
functions, as well as between convex functions and integral inequalities, open a broad
framework for studying a large category of complex problems.

Convexity is a natural concept for solving many problems in mathematics with nu-
merous uses in industry, business and medicine. Various types of convexities have been
investigated, such as, h-convexity defined by Varosanec [9], exponentially convex functions
introduced by Bernstein [10] with covariance analysis applications, r-convex functions
studied by Avriel [11], convex functions on coordinates introduced by Dragomir [12],
h-convexity on coordinates introduced by Alomari et al. [13], exponentially h-convexity
defined by Rashid et al. [14], and exponential h-convex functions [15] on coordinates given
by W. Iqbal et al. On the other hand, Pal and Wong provided a base for exponential convex
functions in the fields of information theory [16] and optimization theory. An important
generalization of convexity was given in 1981 [17], by the introduction of invexity, due to
its importance in optimization. Studies on convex and pre-invex functions have potential
applications [18] in maximizing the likelihood [19] from multiple linear regressions [20]
involving Gauss–Laplace distributions.

Quantum calculus has various applications in the interdisciplinary field of quantum
information theory. This field contains many subfields, such as computer science, infor-
mation theory [21], philosophy, and cryptography. Quantum calculus (i.e., q-calculus)
is known as the study of calculus without limitations. This topic has become a reliable
instrument in many areas of physics [22] and mathematics in recent years. The quantum
integral inequalities are more useful and interesting than their classical equivalents. Jackson
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studied the quantum difference operator [23]. The first use of quantum calculus and the
difference equations [23] was in physics and chemistry problems. Siegel investigated string
theory [24] involving quantum calculus. Recently, new applications have been established
in various branches of physics and mathematics. In [25], in 1969, Agarwal studied q-
fractional derivatives for the first time. q-calculus concepts [26] on finite intervals was used
to find quantum analogues of known mathematical definitions and results. New quantum
analogues [27] of the Ostrowski inequalities [28], using first-order quantum differentiable
convex mappings, were presented by Noor et al. Several bounds for the left-hand side
(LHS) of quantum H–H inequalities [29] were established. New quantum analogues of
the classical Simpson’s inequality were presented [30] for pre-invex functions. These new
q-analogues of the (s, m) that generalized (s, m) pre-invex functions were given in [31] by
Deng et al. The mathematical field [32] of time scale calculus contains quantum calculus
as a subfield. “In studying quantum calculus, we are concerned with a specific time scale,
called the q-time scale, defined as: T = qN0 = {qt : t ∈ N0}”, see [32].

Many inequalities, especially the Hermite–Hadamard (H–H)-type inequalities, contain
a kind of symmetry, an important characteristic as symmetry commonly has a central
role [21] in finding the correct way to solve dynamic inequalities. This famous inequal-
ity [12] has had many improvements and extensions [13] during recent decades [33], see,
for example, [34], and nowadays, for quantum and post-quantum calculus, fractional calcu-
lus and fuzzy environment. Recently new generalizations and refinements of H–H-type
integral inequalities for quantum [29,31] and post-quantum calculus [35,36] have been
obtained, e.g., [37,38] and the references cited therein.

Motivated by [36], we aimed to obtain new parametrized q-H–H-type inequalities
for third-order q-differentiable functions using a new quantum identity, concerning the
third-order q-left and right derivatives. These results are different from the results of [39]
and are similar to the results of [36]. Our work represents the case when the functions
accept the third q-derivative instead of the first q-derivative, see [36], and the left term
of these inequalities contains two integrals defined as two new intervals, [a, λb + (1−
λ)a] and [λa + (1− λ)b, b], different from intervals [a, x] and [x, b] which appear in [39]
and [35]. The values of the parameter λ change these intervals in a different way, which is
advantageous. Furthermore, here new terms appear in the left term of these inequalities
with different coefficients of the third q-derivatives in the right term.

The paper is structured as four sections as follows. Section 2 provides a brief summary
of the fundamental definitions and properties regarding quantum calculus and the H–
H integral inequality. In Section 3, we state and prove our main results in Lemma 1,
Theorems 4–6. In these theorems and consequent new q-midpoints, trapezoidal and q-H–
H-type integral inequalities are established for three times differentiable convex functions.
Many consequences are formulated with a given example. Figure and several calculus in
Example 1 were performed using the Matlab R2023a software version. Applications to
special cases of real numbers are presented in Section 3 using the newly generated results.
In Section 4, a discussion and conclusions are drawn.

2. Preliminary on q-Calculus and Inequalities

The classical H–H inequality says that “if θ : [a, b]→ R is a convex function, then the
following inequality holds:

θ

(
a + b

2

)
≤ 1

b− a

∫ b

a
θ(x)dx ≤ θ(a) + θ(b)

2
. (1)

When θ is a concave function, then the previous inequality holds but in the opposite
direction”, see [40].

We assume that 0 < q < 1. Let [a, b] be a real interval, where a < b. We assume that
[n]q = 1−qn

1−q = 1 + q + . . . + qn−2 + qn−1, n ∈ N.
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Now we present some important definitions, remarks and lemmas of the q-calculus
which will be used throughout this paper.

Definition 1 ([36]). The right or qb-derivative of θ : [a, b]→ R at x ∈ [a, b] is expressed as:

bDqθ(x) =
θ(qx + (1− q)b)− θ(x)

(1− q)(b− x)
, x 6= b.

Definition 2 ([36,41]). The left or qa-derivative of θ : [a, b]→ R at x ∈ [a, b] is expressed as:

aDqθ(x) =
θ(x)− θ(qx + (1− q)a)

(1− q)(x− a)
, x 6= a.

Definition 3 ([36]). The right or qb-integral of θ : [a, b]→ R at x ∈ [a, b] is defined as:

∫ b

x
θ(t)bdqt = (1− q)(b− x)

∞

∑
n=0

qnθ(qnx + (1− qn)b) = (b− a)
∫ 1

0
θ(tb + (1− t)x)1dqt.

Definition 4 ([36]). The left or qa-integral of θ : [a, b]→ R at x ∈ [a, b] is defined as:

∫ x

a
θ(t)adqt = (1− q)(x− a)

∞

∑
n=0

qnθ(qnx + (1− qn)a) = (b− a)
∫ 1

0
θ(tx + (1− t)a)dqt.

Definition 5 ([36]). We have the equality for qa-integrals, defined as

∫ b

a
(x− a)α

adqx =
(b− a)α+1

[α + 1]q
,

for α ∈ R− {−1}.

The fundamental properties of these derivatives and integrals can be found in [41,42]. Re-
cently, new refinements and generalizations of q-H–H integral inequalities for q-differentiable
functions were given in [36].

Theorem 1 ([36]). “We assume that the conditions of Lemma 2 ([36]) hold. If |aDqθ| and |bDqθ|
are convex on [a, b], then the following inequality holds:

| 1
2λ(b− a)

(∫ λb+(1−λ)a

a
θ(t)adqt +

∫ b

λa+(1−λ)b
θ(t)bdqt

)
− θ(λb + (1− λ)a) + θ(λa + (1− λ)b)

2
|

≤ λq(b− a)
2[2]q[3]q

[([3]q − λ[2]q)[|bDqθ(b)|+ |aDqθ(a)|] + λ[2]q[|bDqθ(a)|+ |aDqθ(b)|]].”

Theorem 2 ([36]). “We assume that the conditions of Lemma 2 ([36]) hold. If |aDqθ|s and |bDqθ|s,
s > 1 are convex, then the following inequality holds:

| 1
2λ(b− a)

(∫ λb+(1−λ)a

a
θ(t)adqt +

∫ b

λa+(1−λ)b
θ(t)bdqt

)
− θ(λb + (1− λ)a) + θ(λa + (1− λ)b)

2
|

≤ λq(b− a)
2

(
1

[r + 1]q

) 1
r
[

(
[2]q − λ

[2]q
|bDqθ(b)|s + λ

[2]q
|bDqθ(a)|s

) 1
s

+

(
[2]q − λ

[2]q
|aDqθ(a)|s + λ

[2]q
|aDqθ(b)|s

) 1
s

],

where s−1 + r−1 = 1."
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Theorem 3 ([36]). “We assume that the conditions of Lemma 2 ([36]) hold. If |aDqθ|s and |bDqθ|s,
s ≥ 1 are convex, then the following inequality holds:

| 1
2λ(b− a)

(∫ λb+(1−λ)a

a
θ(t)adqt +

∫ b

λa+(1−λ)b
θ(t)bdqt

)
− θ(λb + (1− λ)a) + θ(λa + (1− λ)b)

2
|

≤ λq(b− a)
2[2]q

[

(
([3]q − λ[2]q)|bDqθ(b)|s + λ[2]q|bDqθ(a)|s

[3]q

) 1
s

+

(
([3]q − λ[2]q)|aDqθ(a)|s + λ[2]q|aDqθ(b)|s

[3]q

) 1
s

].”

3. Results

A new quantum identity is given below as the main tool in the proof of our results.
New estimates of parametrized q-H–H-type integral inequalities for three time quantum
differentiable functions are presented below starting from the results from [36]. In addition,
new consequent terms and applications, including an example, are given to illustrate the
investigated results.

Lemma 1. Let θ : [a, b] → R be a third-order q-differentiable function with aD3
qθ and bD3

qθ
continuous and q-integrable functions on [a, b], respectively. Thus, the following equality holds,

b
aPq(λ) =

λ3(b− a)3

2

∫ 1

0
q6t3[bD3

qθ((1− λt)b + λta)− aD3
qθ((1− λt)a + λtb)]dqt, (2)

where

b
aPq(λ) =

[2]q[3]q
2λ(b− a)

[
∫ b

λa+(1−λ)b
θ(t)bdqt +

∫ λb+(1−λa)

a
θ(t)adqt]

−
1− q[2]q[3]q(1− q)

2(1− q)2 [θ(λa + (1− λ)b) + θ(λb + (1− λ)a)]

−
q(1− q[3]q)

2(1− q)2 [θ(qλa + (1− qλ)b) + θ(qλb + (1− qλ)a)]

− q2

2(1− q)2 [θ(q
2λa + (1− q2λ)b) + θ(q2λb + (1− q2λ)a)].

Proof. Using Definition 1, Definition 3 and calculus, we obtain

I1 =
∫ 1

0
t3bD3

qθ((1− λt)b + λta)dqt

=
∫ 1

0

1
q3(1− q)3λ3(b− a)3 [θ(q

3λta + b(1− q3λt))− [3]qθ(q2λta + b(1− q2λt)

+ q[3]qθ(qλta + b(1− qλt))− q3θ(λta + (1− λt)b)]dqt

=
1

(b− a)3λ3q3(1− q)2 [
∞

∑
n=0

qnθ(qn+3λa + b(1− qn+3λ))

− [3]q
∞

∑
n=0

qnθ(qn+2λa + b(1− qn+2λ))

+ q[3]q
∞

∑
n=0

qnθ(qn+1λa + b(1− qn+1λ))− q3
∞

∑
n=0

qnθ(qnλa + b(1− qnλ))]

=
1− q

(b− a)3λ3q3(1− q)3 [
1
q3

∞

∑
n=3

qnθ(qnλa + b(1− qnλ))−
[3]q
q2

∞

∑
n=2

qnθ(qnλa + b(1− qnλ))
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+ [3]q
∞

∑
n=1

qnθ(qnλa + b(1− qnλ))− q3
∞

∑
n=0

qnθ(qnλa + b(1− qnλ))]

=
1− q

(b− a)3λ3q3(1− q)3 {
1
q3 [

∞

∑
n=0

qnθ(qnλa + b(1− qnλ))− θ(λa + b(1− λ))

− qθ(qλa + b(1− qλ))− q2θ(q2λa + b(1− q2λ))]

−
[3]q
q2 [

∞

∑
n=0

qnθ(qnλa + b(1− qnλ))− θ(λa + b(1− λ))− qθ(qλa + b(1− qλ))]

+ [3]q[
∞

∑
n=0

qnθ(qnλa + b(1− qnλ))− θ(λa + b(1− λ))]− q3
∞

∑
n=0

qnθ(qnλa + b(1− qnλ))]}

=
1

(b− a)4λ4q3(1− q)3

(
1
q3 −

[3]q
q2 + [3]q − q3

) ∫ b

λa+b(1−λ)
θ(t)bdqt

− 1
(b− a)3λ3q3(1− q)2

(
1
q3 −

[3]q
q2 + [3]q

)
θ(λa + b(1− λ))

− 1
(b− a)3λ3q5(1− q)2

(
1− q[3]q

)
θ(qλa + b(1− qλ))

− 1
(b− a)3λ3q4(1− q)2 θ(q2λa + b(1− q2λ)).

In the same way, from Definition 2, Definition 4 and calculus, we obtain

I2 =
∫ 1

0
t3

aD3
qθ((1− λt)a + λtb)dqt

=
∫ 1

0

1
q3(1− q)3λ3(b− a)3 [−θ(q3λtb + a(1− q3λt)) + [3]qθ(q2λtb + a(1− q2λt)

− q[3]qθ(qλtb + a(1− qλt)) + q3θ(λtb + (1− λt)a)]dqt

=
1

(b− a)3λ3q3(1− q)2 [−
∞

∑
n=0

qnθ(qn+3λb + a(1− qn+3λ))

+ [3]q
∞

∑
n=0

qnθ(qn+2λb + a(1− qn+2λ))

− q[3]q
∞

∑
n=0

qnθ(qn+1λb + a(1− qn+1λ)) + q3
∞

∑
n=0

qnθ(qnλb + a(1− qnλ))]

=
1− q

(b− a)3λ3q3(1− q)3 [−
1
q3

∞

∑
n=3

qnθ(qnλb + a(1− qnλ))

+
[3]q
q2

∞

∑
n=2

qnθ(qnλb + a(1− qnλ))− [3]q
∞

∑
n=1

qnθ(qnλb + a(1− qnλ))

+ q3
∞

∑
n=0

qnθ(qnλb + a(1− qnλ))]

=
1− q

(b− a)3λ3q3(1− q)3 {−
1
q3 [

∞

∑
n=0

qnθ(qnλb + a(1− qnλ))− θ(λb + a(1− λ))

−q θ(qλb + a(1− qλ))− q2θ(q2λb + a(1− q2λ))] +
[3]q
q2 [

∞

∑
n=0

qnθ(qnλb + a(1− qnλ))

− θ(λb + a(1− λ))− qθ(qλb + a(1− qλ))]
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− [3]q[
∞

∑
n=0

qnθ(qnλb + a(1− qnλ))− θ(λb + a(1− λ))] + q3
∞

∑
n=0

qnθ(qnλb + a(1− qnλ))]}

=
1

(b− a)4λ4q3(1− q)3

(
− 1

q3 +
[3]q
q2 − [3]q + q3

) ∫ λb+a(1−λ)

a
θ(t)adqt

+
1

(b− a)3λ3q3(1− q)2

(
1
q3 −

[3]q
q2 + [3]q

)
θ(λb + a(1− λ))

+
1

(b− a)3λ3q5(1− q)2

(
1− q[3]q

)
θ(qλb + a(1− qλ))

+
1

(b− a)3λ3q4(1− q)2 θ(q2λb + a(1− q2λ)).

By subtracting I2 from I1 and multiplying the result by λ3q6(b−a)3

2 , it follows that

λ3q6(b− a)3

2
(I1 − I2) =

[2]q[3]q
2λ(b− a)

[
∫ b

λa+(1−λ)b
θ(t)bdqt +

∫ λb+(1−λ)a

a
θ(t)adqt]

−
1− q[2]q[3]q(1− q)

2(1− q)2 [θ(λa + b(1− λ)) + θ(λb + a(1− λ))]

−
q(1− q[3]q)

2(1− q)2 [θ(qλa + b(1− qλ)) + θ(qλb + a(1− qλ))]

− q2

2(1− q)2 [θ(q
2λa + b(1− q2λ)) + θ(q2λb + a(1− q2λ))],

and thus, the proof is complete.

Theorem 4. We assume that the hypotheses of Lemma 1 are satisfied. If |aD3
qθ| and |bD3

qθ| are
convex on [a, b] then the following inequality holds:

|baPq(λ)| = |
[2]q[3]q

2λ(b− a)
[
∫ b

λa+(1−λ)b
θ(t)bdqt +

∫ λb+(1−λa)

a
θ(t)adqt]

−
1− q[2]q[3]q(1− q)

2(1− q)2 [θ(λa + (1− λ)b) + θ(λb + (1− λ)a)]

−
q(1− q[3]q)

2(1− q)2 [θ(qλa + (1− qλ)b) + θ(qλb + (1− qλ)a)]

− q2

2(1− q)2 [θ(q
2λa + (1− q2λ)b) + θ(q2λb + (1− q2λ)a)]|

≤ λ3q6(b− a)3

2[4]q[5]q
{([5]q − λ[4]q)[|bD3

qθ(b)|+ |aD3
qθ(a)|]

+λ[4]q[|bD3
qθ(a)|+ |aD3

qθ(b)|]}. (3)
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Proof. By using Lemma 1, we obtain

|baPq(λ)| = |
[2]q[3]q

2λ(b− a)
[
∫ b

λa+(1−λ)b
θ(t)bdqt +

∫ λb+(1−λa)

a
θ(t)adqt]

−
1− q[2]q[3]q(1− q)

2(1− q)2 [θ(λa + (1− λ)b) + θ(λb + (1− λ)a)]

−
q(1− q[3]q)

2(1− q)2 [θ(qλa + (1− qλ)b) + θ(qλb + (1− qλ)a)]

− q2

2(1− q)2 [θ(q
2λa + (1− q2λ)b) + θ(q2λb + (1− q2λ)a)]|

≤ λ3q6(b− a)3

2
{
∫ 1

0
t3|bD3

qθ((1− λt)b + λta)|dqt

+
∫ 1

0
t3|aD3

qθ((1− λt)a + λtb)|dqt}

and then with the help of convexity of |aD3
qθ| and |bD3

qθ|, we have

|baPq(λ)| ≤
λ3q6(b− a)3

2
{
∫ 1

0
t3[(1− λt)|bD3

qθ(b)|+ λt|bD3
qθ(a)|]dqt

+
∫ 1

0
t3[(1− λt)|aD3

qθ(a)|+ λt|aD3
qθ(b)|]dqt}

=
λ3q6(b− a)3

2
{[|bD3

qθ(b)|+ |aD3
qθ(a)|]

∫ 1

0
t3(1− λt)dqt

+ [|bD3
qθ(a)|+ |aD3

qθ(b)|]
∫ 1

0
t4λdqt}

=
λ3q6(b− a)3

2
{( 1

[4]q
− λ

[5]q
)[|bD3

qθ(b)|+ |aD3
qθ(a)|]

+
λ

[5]q
[|bD3

qθ(a)|+ |aD3
qθ(b)|]}.

Using calculus we obtain the desired inequality.

Remark 1. If we take λ = 1 in Theorem 4, the following trapezoid-type inequality is obtained:

|baPq(1)| = |
[2]q[3]q
2(b− a)

[
∫ b

a
θ(t)bdqt +

∫ b

a
θ(t)adqt]−

1− q[2]q[3]q(1− q)
2(1− q)2 [θ(a) + θ(b)]

−
q(1− q[3]q)

2(1− q)2 [θ(qa + (1− q)b) + θ(qb + (1− q)a)]

− q2

2(1− q)2 [θ(q
2a + (1− q2)b) + θ(q2b + (1− q2)a)]|

≤ q6(b− a)3

2[4]q[5]q
{([5]q − [4]q)[|bD3

qθ(b)|+ |aD3
qθ(a)|] + [4]q[|bD3

qθ(a)|+ |aD3
qθ(b)|]}.

Remark 2. If we assign λ = 1
2 in Theorem 4, then the following midpoint-type inequality is

obtained:
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|baPq(
1
2
)| = |

[2]q[3]q
(b− a)

[
∫ b

a+b
2

θ(t)bdqt +
∫ a+b

2

a
θ(t)adqt]−

1− q[2]q[3]q(1− q)
2(1− q)2 θ(

a + b
2

)

−
q(1− q[3]q)

2(1− q)2 [θ(
q
2

a + (1− q
2
)b) + θ(

q
2

b + (1− q
2
)a)]

− q2

2(1− q)2 [θ(
q
2

2
a + (1− q

2

2
)b) + θ(

q
2

2
b + (1− q

2

2
)a)]|

≤ q6(b− a)3

32[4]q[5]q
{(2[5]q − [4]q)[|bD3

qθ(b)|+ |aD3
qθ(a)|] + [4]q[|bD3

qθ(a)|+ |aD3
qθ(b)|]}.

Remark 3. If we assign λ = 1
[2]q

in Theorem 4, then the following inequality is obtained:

|baPq(
1
[2]q

)| = |
[2]2q[3]q
2(b− a)

[
∫ b

a+qb
[2]q

θ(t)bdqt +
∫ qa+b

[2]q

a
θ(t)adqt]−

1− q[2]q[3]q(1− q)
2(1− q)2 [θ(

a + qb
[2]q

)

+ θ(
qa + b
[2]q

)]−
q(1− q[3]q)

2(1− q)2 [θ(
qa + b
[2]q

) + θ(
qb + a
[2]q

)]

− q2

2(1− q)2 [θ(
q2a + b([2]q − q2)

[2]q
) + θ(

q2b + a([2]q − q2)

[2]q
)]|

≤ q6(b− a)3

2[2]4q[4]q[5]q
{([2]q[5]q − [4]q)[|bD3

qθ(b)|+ |aD3
qθ(a)|]

+ [4]q[|bD3
qθ(a)|+ |aD3

qθ(b)|]}.

Theorem 5. We assume that the conditions from Lemma 1 hold. If |aD3
qθ|s and |bD3

qθ|s are convex
functions when s > 1 then the following inequality holds:

|baPq(λ)| ≤
λ3q6(b− a)3

2

(
1

[3r + 1]q

) 1
r
{[
[2]q − λ

[2]q
|bD3

qθ(b)|s + λ

[2]q
|bD3

qθ(a)|s]
1
s

+ [
[2]q − λ

[2]q
|aD3

qθ(a)|s + λ

[2]q
|aD3

qθ(b)|s]
1
s },

where 1
s +

1
r = 1.

Proof. This time, the parameters will be applied to Holder’s inequality after being used
before the modulus properties in Theorem 4, obtaining:

|baPq(λ)| ≤
λ3q6(b− a)3

2
{
∫ 1

0
t3|bD3

qθ((1− λt)b + λta)|dqt

+
∫ 1

0
t3|aD3

qθ((1− λt)a + λtb)|dqt}

≤ λ3q6(b− a)3

2
[

(∫ 1

0
t3rdqt

) 1
r
(∫ 1

0
|bD3

qθ((1− λt)b + λta)|sdqt
) 1

s

+

(∫ 1

0
t3rdqt

) 1
r
(∫ 1

0
|aD3

qθ((1− λt)a + λtb)|sdqt
) 1

s
].

Now we use the convex functions |aD3
qθ|s and |bD3

qθ|s to obtain
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|baPq(λ)| ≤
λ3q6(b− a)3

2

(
1

[3r + 1]q

) 1
r
[

(∫ 1

0
(1− λt)|bD3

qθ(b)|sdqt +
∫ 1

0
λt|bD3

qθ(a)|sdqt
) 1

s

+

(∫ 1

0
(1− λt)|aD3

qθ(a)|sdqt +
∫ 1

0
λt|aD3

qθ(b)|sdqt
) 1

s
]

=
λ3q6(b− a)3

2

(
1

[3r + 1]q

) 1
r
{[
[2]q − λ

[2]q
|bD3

qθ(b)|s + λ

[2]q
|bD3

qθ(a)|s]
1
s

+ [
[2]q − λ

[2]q
|aD3

qθ(a)|s + λ

[2]q
|aD3

qθ(b)|s]
1
s },

which completes the proof.

Remark 4. If we assign λ = 1 in Theorem 5, then the following trapezoid-type inequality is
obtained:

|baPq(1)| = |
[2]q[3]q
2(b− a)

[
∫ b

a
θ(t)bdqt +

∫ b

a
θ(t)adqt]−

1− q[2]q[3]q(1− q)
2(1− q)2 [θ(a) + θ(b)]

−
q(1− q[3]q)

2(1− q)2 [θ(qa + (1− q)b) + θ(qb + (1− q)a)]

− q2

2(1− q)2 [θ(q
2a + (1− q2)b) + θ(q2b + (1− q2)a)]|

≤ q6(b− a)3

2

(
1

[3r + 1]q

) 1
r
{[
[2]q − 1
[2]q

|bD3
qθ(b)|s + 1

[2]q
|bD3

qθ(a)|s]
1
s

+ [
[2]q − 1
[2]q

|aD3
qθ(a)|s + 1

[2]q
|aD3

qθ(b)|s]
1
s }.

Remark 5. If we assign λ = 1
2 in Theorem 5, then the following midpoint-type inequality is

obtained:

|baPq(
1
2
)| = |

[2]q[3]q
(b− a)

[
∫ b

a+b
2

θ(t)bdqt +
∫ a+b

2

a
θ(t)adqt]−

1− q[2]q[3]q(1− q)
2(1− q)2 θ(

a + b
2

)

−
q(1− q[3]q)

2(1− q)2 [θ(
q
2

a + (1− q
2
)b) + θ(

q
2

b + (1− q
2
)a)]

− q2

2(1− q)2 [θ(
q
2

2
a + (1− q

2

2
)b) + θ(

q
2

2
b + (1− q

2

2
)a)]|

≤ q6(b− a)3

16

(
1
[2]q

) 1
s
(

1
[3r + 1]q

) 1
r
{[(2[2]q − 1)|bD3

qθ(b)|s + |bD3
qθ(a)|s]

1
s

+ [(2[2]q − 1)||aD3
qθ(a)|s + |aD3

qθ(b)|s]
1
s }.

Theorem 6. We assume that the conditions from Lemma 1 hold. If |aD3
qθ|s and |bD3

qθ|s are convex
functions for s ≥ 1, then the following inequality holds:

|baPq(λ)| ≤
λ3q6(b− a)3

2[4]q[5]
1
s
q

× {[([5]q − λ[4]q)|bD3
qθ(b)|s + λ[4]q|bD3

qθ(a)|s]
1
s

+ [([5]q − λ[4]q)|aD3
qθ(a)|s + λ[4]q|aD3

qθ(b)|s]
1
s }.
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Proof. By applying the properties of modulus and the power mean inequality we obtain,

|baPq(λ)| ≤
λ3q6(b− a)3

2
{
(∫ 1

0
t3dqt

)1− 1
s
(∫ 1

0
t3|bD3

qθ((1− λt)b + λta)|sdqt
) 1

s

+

(∫ 1

0
t3dqt

)1− 1
s
(∫ 1

0
t3|aD3

qθ((1− λt)a + λtb)|sdqt
) 1

s
}.

By using the convexity of the functions |aD3
qθ|s and |bD3

qθ|s we have,

|baPq(λ)| ≤
λ3q6(b− a)3

2
1

[4]1−
1
s

q

{
(∫ 1

0
(t3(1− λt))|bD3

qθ(b)|s + λt4|bD3
qθ(a)|s)dqt

) 1
s

+

(∫ 1

0
(t3(1− λt))|aD3

qθ(a)|s + λt4|aD3
qθ(b)|s)dqt

) 1
s
}

=
λ3q6(b− a)3

2
1

[4]1−
1
s

q

{[( 1
[4]q
− λ

[5]q
)|bD3

qθ(b)|s + λ

[5]q
|bD3

qθ(a)|s]
1
s

+ [(
1
[4]q
− λ

[5]q
)|aD3

qθ(a)|s + λ

[5]q
|aD3

qθ(b)|s)]
1
s }

=
λ3q6(b− a)3

2[4]q[5]
1
s
q

{[([5]q − λ[4]q)|bD3
qθ(b)|s + λ[4]q|bD3

qθ(a)|s]
1
s

+ [([5]q − λ[4]q)|aD3
qθ(a)|s + λ[4]q|aD3

qθ(b)|s)]
1
s }.

Therefore, the proof is complete.

Remark 6. If we take λ = 1 in Theorem 6, then the following trapezoid-type inequality is obtained:

|baPq(1)| = |
[2]q[3]q
2(b− a)

[
∫ b

a
θ(t)bdqt +

∫ b

a
θ(t)adqt]−

1− q[2]q[3]q(1− q)
2(1− q)2 [θ(a) + θ(b)]

−
q(1− q[3]q)

2(1− q)2 [θ(qa + (1− q)b) + θ(qb + (1− q)a)]

− q2

2(1− q)2 [θ(q
2a + (1− q2)b) + θ(q2b + (1− q2)a)]|

≤ q6(b− a)3

2[4]q[5]
1
s
q

{[([5]q − [4]q)|bD3
qθ(b)|s + [4]q|bD3

qθ(a)|s]
1
s

+ [([5]q − [4]q)|aD3
qθ(a)|s + [4]q|aD3

qθ(b)|s]
1
s }.

Remark 7. If we take λ = 1
2 in Theorem 6, then the following midpoint-type inequality holds:

|baPq(
1
2
)| = |

[2]q[3]q
(b− a)

[
∫ b

a+b
2

θ(t)bdqt +
∫ a+b

2

a
θ(t)adqt]−

1− q[2]q[3]q(1− q)
2(1− q)2 θ(

a + b
2

)

−
q(1− q[3]q)

2(1− q)2 [θ(
q
2

a + (1− q
2
)b) + θ(

q
2

b + (1− q
2
)a)]

− q2

2(1− q)2 [θ(
q
2

2
a + (1− q

2

2
)b) + θ(

q
2

2
b + (1− q

2

2
)a)]|

≤ q6(b− a)3

16[2]
1
s
q [4]q[5]

1
s
q

{[(2[5]q − [4]q)|bD3
qθ(b)|s + [4]q|bD3

qθ(a)|s]
1
s

+ [(2[5]q − [4]q)|aD3
qθ(a)|s + [4]q|aD3

qθ(b)|s]
1
s }.
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Example 1. Let us consider the convex function θ : [0, 1]→ R defined by θ(x) = x5 and λ = 1,
which satisfies the conditions of Theorem 4. Using calculus, under these assumptions, we obtain for
the left-hand side of inequality (3), the expression,

|
[2]q[3]q

2
[
∫ 1

0
θ(t)1dqt +

∫ 1

0
θ(t)0dqt]−

1− q[2]q[3]q(1− q)
2(1− q)2 [θ(0) + θ(1)]

−
q(1− q[3]q)

2(1− q)2 [θ(1− q) + θ(q)]− q2

2(1− q)2 [θ(1− q2) + θ(q2)]|

= |
[2]q[3]q

2
[
∫ 1

0
t51dqt +

∫ 1

0
t5

0dqt]−
1− q[2]q[3]q(1− q)

2(1− q)2

−
q(1− q[3]q)

2(1− q)2 [(1− q)5 + q5]− q2

2(1− q)2 [(1− q2)5 + q10]|

= |
[2]q[3]q

2
(1− q)[

∞

∑
0

qn(1− qn)5 +
∞

∑
0

q6n]−
1− q[2]q[3]q(1− q)

2(1− q)2

−
q(1− q[3]q)

2(1− q)2 [(1− q)5 + q5]− q2

2(1− q)2 [(1− q2)5 + q10]|

= |
[2]q[3]q

2
[1− 5

[2]q
+

10
[3]q
− 10

[4]q
+

5
[5]q

]−
1− q[2]q[3]q(1− q)

2(1− q)2

−
q(1− q[3]q)

2(1− q)2 [(1− q)5 + q5]− q2

2(1− q)2 [(1− q2)5 + q10]|.

Then, using calculus, the right-hand side of inequality (3) becomes:

q6

2[4]q[5]q
{([5]q − [4]q)[|1D3

qθ(1)|+ |0D3
qθ(0)|] + [4]q[|1D3

qθ(0)|+ |0D3
qθ(1)|]}.

Thus, in this case inequality (3) becomes,

|
[2]q[3]q

2
[1− 5

[2]q
+

10
[3]q
− 10

[4]q
+

5
[5]q

]−
1− q[2]q[3]q(1− q)

2(1− q)2

−
q(1− q[3]q)

2(1− q)2 [(1− q)5 + q5]− q2

2(1− q)2 [(1− q2)5 + q10]|

≤ q6

2[4]q[5]q
{([5]q − [4]q)[|1D3

qθ(1)|+ |0D3
qθ(0)|] + [4]q[|1D3

qθ(0)|+ |0D3
qθ(1)|]}. (4)

On the other hand we have, 0D3
qθ(x) = [5]q[4]q[3]qx2,; therefore, 0D3

qθ(0) = 0 and

0D3
qθ(1) = [5]q[4]q[3]q. Using this in our case gives,

1D3
qθ(x) =

(q3x + 1− q3)5 − [3]q(q2x + 1− q2)5 + q[3]q(qx + 1− q)5 − q3x5

q3(1− q)3(1− x)3

finding that 1D3
qθ(0) = q9 + 3q8 + 6q7 + 4q6− 4q5− 14q4− 11q3 + q2 + 8q+ 6 and 1D3

qθ(1) =
10(q3 + 2q2 + 2q + 1).

One can see the validity of inequality (4) in Figure 1, where the red line represents the left term
of inequality (4) and the right term is represented by the blue line in the figure.

The results could be used to optimise economic geology analyses; for example, in the study of
metal ore resources, fossil fuels, and other materials of commercial value.

Here the Matlab R2023a software version was utilized to create Figure 1 and perform partial
calculus operations of last two derivatives.
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Figure 1. An example for inequality (3) from Theorem 4.

Remark 8. If we consider the same convex function θ : [0, 1] → R defined by θ(x) = x5 and
λ = 1

2 , or λ = 1
[2]q

the analogue inequalities and figures can be analysed as in Example 1.

Some important applications to the special means of real numbers can be found in [38],
where the definitions of the arithmetic mean, harmonic mean and geometric mean are
discussed. Similar inequalities can be obtained in our case and we formulate these results
for the arithmetic mean.

Remark 9. If we assume |aD3
qθ| ≤ M and |bD3

qθ| ≤ M in Remark 1, we obtain

|
[2]q[3]q
2(b− a)

[
∫ b

a
θ(t)bdqt +

∫ b

a
θ(t)adqt]−

1− q[2]q[3]q(1− q)
2(1− q)2 [θ(a) + θ(b)]

−
q(1− q[3]q)

2(1− q)2 [θ(qa + (1− q)b) + θ(qb + (1− q)a)]

− q2

2(1− q)2 [θ(q
2a + (1− q2)b) + θ(q2b + (1− q2)a)]| ≤ Mq6(b− a)3

[4]q
.

Proposition 1. For a, b ∈ R, a < b we have,

|
[2]q[3]q
b− a

A(θ1, θ2)−
1− q[2]q[3]q(1− q)

(1− q)2 A(a5, b5)

−
q(1− q[3]q)
(1− q)2 A((qa + (1− q)b)5, (qb + (1− q)a)5)

− q2

(1− q)2A((q
2a + (1− q2)b)5, (q2b + (1− q2)a)5)| ≤ Mq6(b− a)3

[4]q
,

where

θ1 = (1− q)(b− a)
∞

∑
n=0

qn(qna + (1− qn)b)5

and

θ2 = (1− q)(b− a)
∞

∑
n=0

qn(qnb + (1− qn)a)5.

Proof. The inequality from Remark 9 used for the function θ(x) = x5 leads to the desired
result.
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Remark 10. If we assume |aD3
qθ| ≤ M and |bD3

qθ| ≤ M in Remark 2, we obtain

|
[2]q[3]q
(b− a)

[
∫ b

a+b
2

θ(t)bdqt +
∫ a+b

2

a
θ(t)adqt]−

1− q[2]q[3]q(1− q)
2(1− q)2 θ(

a + b
2

)

−
q(1− q[3]q)

2(1− q)2 [θ(
q
2

a + (1− q
2
)b) + θ(

q
2

b + (1− q
2
)a)]

− q2

2(1− q)2 [θ(
q
2

2
a + (1− q

2

2
)b) + θ(

q
2

2
b + (1− q

2

2
)a)]| ≤ Mq6(b− a)3

8[4]q
.

Proposition 2. For a, b ∈ R, a < b we have,

|
2[2]q[3]q

b− a
A(θ′1, θ

′
2)−

1− q[2]q[3]q(1− q)
(1− q)2 A5(a, b)

−
q(1− q[3]q)
(1− q)2 A(( q

2
a + (1− q

2
)b)5, (

q
2

b + (1− q
2
)a)5)

− q2

(1− q)2A((
q2

2
a + (1− q2

2
)b)5, (

q2

2
b + (1− q2

2
)a)5)| ≤ Mq6(b− a)3

8[4]q
,

where

θ
′
1 =

(1− q)(b− a)
2

∞

∑
n=0

qn(qnA(a, b) + (1− qn)b)5

and

θ
′
2 =

(1− q)(b− a)
2

∞

∑
n=0

qn(qnA(a, b) + (1− qn)a)5.

Proof. The inequality from Remark 10 used for the function θ(x) = x5 leads to the desired
result.

Proposition 3. For a, b ∈ R, a < b we have,

|
[2]q[3]q
2(b− a)

A(θ1, θ2)−
1− q[2]q[3]q(1− q)

(1− q)2 A(a5, b5)

−
q(1− q[3]q)
(1− q)2 A((qa + (1− q)b)5, (qb + (1− q)a)5)

− q2

(1− q)2A((q
2a + (1− q2)b)5, (q2b + (1− q2)a)5)| ≤ Mq6(b− a)3

[3r + 1]
1
r
q

,

where

θ1 = (1− q)(b− a)
∞

∑
n=0

qn(qna + (1− qn)b)5

and

θ2 = (1− q)(b− a)
∞

∑
n=0

qn(qnb + (1− qn)a)5.

Proof. The inequality from Remark 4 used for the function θ(x) = x5 leads to the desired
result.
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Proposition 4. For a, b ∈ R, a < b we have,

|
2[2]q[3]q

b− a
A(θ′1, θ

′
2)−

1− q[2]q[3]q(1− q)
(1− q)2 A5(a, b)

−
q(1− q[3]q)
(1− q)2 A(( q

2
a + (1− q

2
)b)5, (

q
2

b + (1− q
2
)a)5)

− q2

(1− q)2A((
q2

2
a + (1− q2

2
)b)5, (

q2

2
b + (1− q2

2
)a)5)| ≤ Mq6(b− a)32

1
s

8[3r + 1]
1
r
q

,

where

θ
′
1 =

(1− q)(b− a)
2

∞

∑
n=0

qn(qnA(a, b) + (1− qn)b)5

and

θ
′
2 =

(1− q)(b− a)
2

∞

∑
n=0

qn(qnA(a, b) + (1− qn)a)5.

Proof. The inequality from Remark 5 for function θ(x) = x5 leads to the desired result.

Analogue inequalities can be obtained if the function θ(x) = x5 is chosen in
Remarks 6 and 7.

4. Discussion and Conclusions

In this paper, several new parametrized q-H–H-type integral inequalities were given
for functions whose third left and right q-derivatives are convex. Some basic inequalities,
such as quantum Holder’s inequality and power mean inequality, were used to obtain
new bounds and an auxiliary quantum lemma was utilized in the demonstrations. Some
consequences and an example were presented to illustrate the generated results. Using
Matlab, Figure 1 confirms the results obtained in Section 3. Some interesting applications
to special means have been presented. Many consequences arise in certain special cases of
the parameter and an interesting problem to study may be to use these methods to prove q-
fractional inequalities and similar inequalities for different kinds of convexities. The present
study could be used to better guide the exploration of mineral resources. In our opinion this
research could be very useful in structural geology, stratigraphic optimization, economic
exploitation of mineral deposits, and building materials such as stones or gypsum.

We are confident that the ideas and techniques investigated here will inspire further
studies on functional analysis and statistics.
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