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Abstract: This article investigates the approximate controllability of non-linear fractional stochastic
differential inclusions with non-local conditions. We establish a set of sufficient conditions for their
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1. Introduction

Fractional calculus is a branch of mathematics that deals with the generalization
of differentiation and integration to non-integer orders. Instead of dealing with whole
numbers, it involves fractions for which the order of differentiation or integration can
be a non-integer value. This theory has applications in various fields, such as physics,
engineering, and finance, where it can be used to describe complex systems that exhibit
fractional behavior including fractals and long-range dependence. Fractional calculus is
a relatively new and developing field that is still being explored and has the potential to
offer new insights into the behavior of complex systems [1] (Kilbas et al. [2], Zhou [3,4]).

Fractional differential inclusions play an important role in several fields, such as
physics [5], mechanics, and engineering. The reader should refer to the monograph [6]
and its references for information on the fundamentals of fractional differential equations
and exceptions. Many recent articles have investigated mild solutions and controllability
challenges for various types of differential inclusions; see [7] and the citations therein. We
direct the reader to [8–10] for one method of solving fractional differential equations in
impulsive stochastic functional differential systems with state-dependent delay in Hilbert
spaces. In pharmacotherapy, some of the kinetics of evolution processes are not adequately
captured by the effect of instantaneous signals. Consider a person’s circulatory equilibrium;
when drugs reach the bloodstream, they are absorbed gradually and continuously by
the system. Hernández and O’Regan [11,12] and Hernández, Pierri, and O’Regan [13]
introduced a new class of differential equations with non-instantaneous impulses. An
updated model was introduced by Wang and Feckan [14].

The extensive development of the controllability concept for abstract regular and
non-linear controlled systems in limited and unlimited dimensional areas was described
in [15–17]. Deterministic models also change due to environmental noise, which is random
and appears to be random. Therefore, it is crucial to change from a deterministic to a
stochastic system to enhance model performance. Stochastic differentiated equations are
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used in the design and analysis of problems in mechanical, electronic, and control engineer-
ing and other physical sciences. An impulse neutral stochastic functional differentiation
system with state-dependent delay has been shown to be approximately controllable in
Hilbert fields [18]. However, within the past 20 years, mathematicians, scientists, and
engineers have become fascinated with fractional differential equations because of their
applications in numerous fields of research and industry. Differential models of an arbi-
trary order may be used to describe the storage and heredity properties of a number of
crucial materials and processes. A mild solution to a class of impulsive fractional partial
semi-linear differential equations was proved by Shu et al. [19] via solution operators and
classical fixed-point theorems. For the category of fractional neutrality stochastic integro-
differential problems with indefinite delay, Cui and Yan [20] looked into the possibility of
mild solutions.

Furthermore, the issue of the existence of fractional differential inclusion methods
has been investigated by a number of authors for various types of dynamical processes,
since fractional differential inclusions have been used in the quantitative modeling of
several problems in both the economics and optimal control fields [21]. Yan and Zhang [22]
derived a collection of sufficient conditions for the presence of solutions to spontaneous
fractional partial neutral stochastic integro-differential inclusions in order to use the non-
linear substitute of the Leray–Schauder type for multi-valued maps based on O’Regan and
the characteristics of the solution operator.

Recently, Duan et al. [23] used the fixed-point theory of condensed multi-valued
mapping to study the exact stability of non-linear stochastic impulsive evolution differen-
tial inclusions with infinite delay. The approximate controllability of fractional stochastic
differential inclusions with non-local conditions has been studied in recent years. Balasub-
ramaniam et al. [24] investigated this issue in a Hilbert space with non-local circumstances
for fractional impulse integro-differential processes. Yan [25] demonstrated the approx-
imate controllability of control systems driven by a class of partial fractional neutrality
integro-differential inclusions with state-dependent delay. Sakthivel et al. [26,27] used
fixed-point techniques and fractional calculus to investigate the approximate controlla-
bility of fractional deterministic and stochastic differential systems. Abuasbeh et al. [28]
explored several existence and controllability theories for the Caputo order q ∈ (1, 2) of
delay and fractional functional integro-evolution equations (FFIEEs). Moumen et al. [29]
discussed the approximate controllability of a class of fractional stochastic evolution equa-
tions (FSEEs) in the Hilbert space using the Hilfer derivative. However, to the best of our
knowledge, the issue of approximate controllability for fractional stochastic differential
inclusions with non-local conditions has not yet been examined. In this article, we address
this gap by studying the approximate controllability of stochastic differential inclusions
with non-local conditions.{

cDβx(ζ) ∈ Ax(ζ) + Bu(ζ) + F(ζ, x(ζ)) + G(ζ, x(ζ)) dω(ζ)
dζ , ζ ∈ J = [0, b], 1 < β < 2,

x(0) + h(x) = x0, x′(0) = x1.
(1)

where cDβx(ζ) represents the Caputo fractional derivative of order β ∈ (1, 2), and A is
the infinitesimal generator defined on H, a separable Hilbert space with the inner product
(·, ·) and norm || · ||. Let k be another separable Hilbert space with the inner product
(·, ·)k. In 1960, Kalman initially brought forth the idea of controllability. The existence
of a controlling function that directs a system’s reaction from its initial state to ultimate
state was demonstrated by this concept, which was significant in the research on control
systems. Condensing mappings and compact semigroup concepts are typically applied to
investigate the management of evolution inclusions. If the compactness of the semigroup
is not taken for granted, one should use the fixed-point theorem while the appropriate
operator is neither compact nor condensing. Zhou et al. [30,31] explored the controllability
of fractional evolution inclusions/equations without presuming that the semigroup was
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compacted. The stability of fractional evolution equations under weak topology conditions
was only briefly discussed in their research.

2. Preliminaries

In this section, we provide some definitions and preliminary results that will be useful
for understanding this paper. Let a filtered complete probability space (w(ζ), f , { f }ζ≥0, P)
be a fulfilled condition, which means that the filtration is a continuous non-decreasing
family and f0 contains all P-null sets. Let a Q-Weiner process ω∗ = {ω∗(ζ)} be defined on
(w(ζ), f , { f }ζ≥0, P). We assume that ek, k ≥ 1, and there is a complete ortho-normal system

in K. Let the space of all Hilbert–Schmidt operators L0
2 = L2(Q

1
2 K, C) from Q

1
2 K to C. Let

the Banach space be L2(ω, f , C) for all fb measurable square integrable random variables
in C. Let C̃ be indicated by C([0, b], L2(ω, f , C)) and the Banach space of all the continuous
functions from [0, b] to L2(ω, f , C) fulfil the conditions supζ∈G F‖x(ζ)‖2 ≤ ∞.

Now, we present a few basic definitions and results for multiple-valued maps. For
further explanations regarding multiple-valued maps, see the books of Deimling [32] and
Hu and Papageorgious [33]. We use the notation P(C) for the family of all subsets of C
and denote

Pbd(C) = {Y ∈ P(C) : Y is bounded}, Pcl(C) = {Y ∈ P(C) : Y is closed},

Pcv(C) = {Y ∈ P(C) : Y is convex}, Pcp(C) = {Y ∈ P(C) : Y is compact}.

A multi-valued map f : C → P(C) has a closed valued if f (x) is closed for all x ∈ C. f
is bounded on bounded sets if f (C̃) =

⋃
x∈C̃ f (x) is bounded in C, i.e., supx∈C̃{sup{‖Y‖ :

Y ∈ f (x)}} ≤ ∞.

Definition 1 ([34]). The multi-valued map f : G × C → Pbd,cl,cv(C) is said to be l2 −
Caratheodory if
(i) For every υ ∈ C, ζ 7→ E(ζ, υ) is measurable;
(ii) For almost all ζ ∈ G, ζ 7→ F(ζ, υ) is u.s.c.;
(iii) For each n > 0, ζ there exists hn ∈ l1(G, L+) such that

||E(ζ, υ)||2 = supζ∈F(ζ,υ)F|| f̆ ||2 ≤ hn(ζ), f or all ||υ||2c ≤ n and f or a.e. ζ ∈ G.

Lemma 1 ([32]). Let C be a Hilbert space on a compact real interval G. Consider that J is an
l2 − Caratheodory multiple-valued map. For each u ∈ C̃, let Ψ be a linear continuous map from
l2(G, C) to C̃(G, C), i.e., a closed operator

Ψ◦RJ : C̃(G, C)→ Pcp,cυ(C̃(G, C)), x 7→ (Ψ◦RJ)(x) = Ψ(RJ,x),

in C̃(G, C)× C(G, C). The set RJ,x = {g ∈ l2(l(K, C)) : g(ζ) ∈ J(ζ, u(ζ)), f or a.e. ζ ∈ G} is
non-empty.

Definition 2 ([35]). For a function f : [0, ∞)→ S, the Caputo derivative of order β can be stated as

cDβ f (ζ) =
1

Γ(m− β)

∫ ζ

0
(ζ − ς)m−β−1 f (m)(ς)dς = Im−β f m(ζ),

for m− 1 < β < m, m ∈ M. If 0 < β ≤ 1, then

cDβ f (ζ) =
1

Γ(1− β)

∫ ζ

0
(ζ − ς)−β f ′(ς)dς

For order β > 0, the Laplace transform of the Caputo derivative is given below

L{cDβ f (ζ) : λ} = λβ f (λ)− Σm−1
k=0 λβ−k−1 f k(0); m− 1 < β < m.
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3. Main Results

In this section, we initially establish the mild solution for the system in (1). With the
hypothesis that the controllability operator has an induced inverse on a fraction space, we
specifically transformed the controllability problem into a fixed-point theorem. Further-
more, we demonstrated that the approximate controllability of (1) was indicated by the
approximate controllability of the associated linear system, subject to certain assumptions.
The following hypotheses were required in order to verify the results.
Set of Assumptions

Hypothesis 1. The operators Tq(ζ) and Rq(ζ) are compact when q ∈ (0, 1).

Hypothesis 2. The multiple-valued map E : J × C → Pbd,cl,cv(C) is an l2 − Caratheodory
function satisfying the following conditions:

(i) For every ζ ∈ G, the function E(ζ, .) : C → Pbd,cl,cv(C) is u.s.c., and for every x ∈ C, the
function F(., x) is measurable. Additionally, for every fixed x ∈ C̃, the set

RE,x = { f̆ ∈ l2(ω, C) : f (ζ) ∈ F(ζ, x)}

is non-empty.
(ii) For every non-negative k, there exists a non-negative function N f (k) that is unbounded on

K such that
supE||x||2≤K||F(ζ, x)||2 ≤ N f (k).

where ‖E(ζ, x)‖2 = sup f̆∈E(ζ,x)F|| f ||
2.

Hypothesis 3. The multiple-valued map J : G× C → Pbd,cl,cv(l(K, C)) is a l2 − Caratheodory
function satisfying the following conditions:

(i) For each ζ ∈ G, the function J(ζ, ·) : C → Pbd,cl,cν(l(K, C)) is u.c.s.; for every x ∈ C, the
function G(·, x) is measurable; and for each fixed x ∈ C, there exists the set

RJ,x = {g ∈ l2(l(K, H)) : g(ζ) ∈ J(ζ, x), }

(ii) For every non-negative k, there exists a non-negative function Ng(k) that is unbounded on
K in such a way that

sup
F||x||2≤k

||J(ζ, x)||2 ≤ Ng(k).

Hypothesis 4. The function h : C̃ → C is completely continuous, and there exist the positive
constants µ1 and µ2 such that

||h(x)||2 ≤ µ1||x||2C̃ + µ2.

Hypothesis 5. There exists a real number r > 0 such that

L1 + 4M2
S

b2q−1

2q−1 [bN f (r) + Tr(Q)Ng(r)](1 + 4
α2 N4

B M4
S

b4q−2

4q−3 )

1− L2
< r

where

L1 = 8M2
T(F||x0||2 + µ2) +

4
α2 N4

B M4
S

b4q−2

4q− 3
{8||Fxb||2 + 8

∫ b

0
F||φ(ς)||2l0

2
dς + 8M2

T(F||x0||2 + µ2)}

L2 = 8M2
Tµ1

(
1 +

4
α2 N4

B M4
S

b4q−2

4q− 3

)
.

In this section, we investigate a mild solution for a control problem monitored by
non-linear fractional stochastic evolution inclusions with non-local conditions.
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The system (1) is equivalent to the following integral equation:

x(ζ) = x(0) + x′(0)ζ +
1

Γ(β)

∫ ζ

0
(ζ − ς)β−1

[
Ax(ς) + Bu(ς) + F(ς, x(ς))

]
dς

+
1

Γ(β)

∫ ζ

0
(ζ − ς)β−1G(ς, x(ς)dω(ς). (2)

We introduce Mainardi’s Wright-type function Mq(ω),

Mq(ω) = 1

qω
(1+ 1

q )
v(ω

−1
z ) ≥ 0, q ∈ (0, 1),

vq(ω) = 1
π ∑∞

m=1(−1)m−1(ω)−qm−1 σ(mq+1)
n! sin(mπq).

Lemma 2. If integral Equation (2) holds, then for ζ ∈ J,

x(ζ) = Tq(ζ)(x0 − h(x)) + Sq(ζ)x1 +
1

Γ(q)

∫ ζ

0
Rq(ζ)(ζ − ς)q−1Bu(ς)dς +

1
Γ(q)

∫ ζ

0
Rq(ζ)(ζ − ς)q−1 f (ς, x(ς))dς

+
1

Γ(q)

∫ ζ

0
Rq(ζ)(ζ − ς)q−1g(ς, x(ς))dω(ς).

where
Tq(ζ) =

∫ ∞

0
Mq(ω)c(ζqω)dω

Sq(ζ) =
∫ ζ

0
Tq(ς)dς

Rq(ζ) =
∫ ∞

0
qωMqως(ζqω)dω

Proof. Let λ > 0; the Laplace transform is given as follows:

µ(λ) =
1
λ
(x0 − h(x)) +

1
λ2 x1 +

1
λβ

Aµ(λ) +
1

λβ
ν(λ),

where µ(λ) =
∫ ∞

0 e−λςx(ς)dς. ν(λ) =
∫ ∞

0 e−λς(Bu(ς)+ f (ς, x(ς))+ g(ς, x(ς))(ς)dω(ς))dς

This implies that, if λ > 0,

µ(λ) = λ
β
2−1

∫ ∞

0
e−λ

β
2 ζ

c(ζ)
(
x(0)− h(x)

)
dζ + λ−1λ

β
2−1

∫ ∞

0
e−λ

β
2 ζ

c(ζ)x1dζ

+
∫ ∞

0
e−λ

β
2 ζ

s(ς)µ(λ)dζ +
∫ ∞

0
e−λ

β
2 ζ

s(ς)ν(λ)dζ.

Consider the one-sided probability density function whose Laplace transform is∫ ∞

0
e−λω

φq(ω)dω = e−λq
. (3)

Let q = β
2 for q ∈ (

1
2

, 1); using Equation (3), we have
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λq−1
∫ ∞

0
e−λqζ

c(ζ)(x(0)− h(x))dζ =
∫ ∞

0
q(λζ)q−1e−(λζ)c(ζq)(x(0)− h(x))dζ

=
∫ ∞

0
(− 1

λ
)

d
dζ

( ∫ ∞

0
e−λζ φ(ω)dω

)
c(ζq)(x(0)− h(x))dζ

=
∫ ∞

0

∫ ∞

0
ωφq(ω)e−λζωc(ζq)(x(0)− h(x))dωdζ

=
∫ ∞

0
e−λζ

[ ∫ ∞

0
φq(ω)c(

ζq

ωq )(x(0)− h(x))dω
]
dζ

= L
[ ∫ ∞

0
Mq(ω)c(ζqω)(x(0)− h(x))dω

]
dζ

= L
[
Tq(ζ)(x(0)− h(x))

]
(λ). (4)

since L[H1(t)](λ) = λ−1.
Using the Laplace convolution theorem, we obtain

λ−1λq−1
∫ ∞

0
e−λqζ

c(ζ)x1dζ = L
[
H1(ζ)

]
(λ).L

[
Tq(ζ)x1

]
(λ)

= L
[
(H1 ∗ Tq)(ζ)x1

]
(λ). (5)

Similarly,∫ ∞

0
e−λqζ s(ζ)µ(λ)dζ =

∫ ∞

0
qζq−1e(−λqζ)s(ζq)µ(λ)dζ

=
∫ ∞

0

∫ ∞

0
qζq−ζ φq(ω)e−λqζs(ζq)µ(λ)dωdζ

= L
[ ∫ ∞

0
qζq−1Mq(ω)s(ζqω)dω

]
(λ).L

[
F(ζ, x(ζ)) + Gx(ζ) + Bu(ζ)

]
(λ)

= L
[ ∫ ζ

0
(ζ − ς)q−1Sq(ζ − ς)(F(ς, x(ς)) + Gx(ς)) + Bu(ς)

]
. (6)

Using Equations (4)–(6) in (2), we get

x(ζ) = Tq(ζ)(x0 − h(x)) + Sq(ζ)x1 +
1

Γ(q)

∫ ζ

0
Rq(ζ)(ζ − ς)q−1Bu(ς)dς +

1
Γ(q)

∫ ζ

0
Rq(ζ)(ζ − ς)q−1 f (ς, x(ς))dς

+
1

Γ(q)

∫ ζ

0
Rq(ζ)(ζ − ς)q−1g(ς, x(ς))dω(ς).

4. Approximate Controllability Theorems

Theorem 1. Assume that (H1)− (H5) are satisfied; then, the fractional control system (1) has a
mild solution on G .

Proof. For α > 0, we define the multi-valued operator Φ : C̃ → P(C̃) by

Φ(x) = {z ∈ C̃ : z(ζ) = Tq(ζ − ς)gi(ζi − ς) + Sq(ζ − ς)x1 +
∫ ζ

0
Rq(ζ − ς)Bxα

u(ς)dς

+
∫ ζ

0
Rq(ζ − ς) f (ς)dς +

∫ ζ

0
Rq(ζ − ς)g(ς)dω∗(ς)}.

The operator Φ will be shown as having a fixed point. There are numerous steps to
the verification.

Step 1 : For α > 0, Φ(u) is convex for each u ∈ C̃. In fact, if z1, z2 ∈ Φ(u), then there
exists f1, f2 ∈ RF,u and g1, g2 ∈ RJ,u such that for each ζ ∈ G, we have
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zi(ζ) = Tq(ζ − ς)gi(ζi − ς) + Sq(ζ − ς)x1 +
∫ ζ

0
Rq(ζ − ς) fi(ς)dς +

∫ ζ

0
Rq(ζ − ς)gi(ς)dω∗(ς)

+
∫ ζ

0
Rq(ζ − ξ)B

{
B∗R∗q(b− ξ)

[
(αI + Ψb

0)
−1[Eub − Tq(b)(u0 − h(u))] +

∫ ζ

0
(αI + Ψb

ς)
−1Φ(ς)dω(ς)

]
− B∗R∗q(b− ξ)

∫ b

0
(αI + Ψb

ς)
−1Rq(b− ς) fi(ς)dς

− B∗R∗q(b− ξ)−
∫ b

0
(αI + Ψb

ς)
−1ζRq(ζ − ς)gi(ς)dω∗(ς)

}
dξ.

Let λ ∈ [0, 1]; then, for each ζ ∈ G, we have

λz1(ζ) + (1− λ)z2(ζ) = Tq(ζ)(x0 − h(x)) + Sq(ζ − ς)x1

+
∫ ζ

0
Tq(ζ − ς)[λ f1(ς) + (1− λ) f2]dς +

∫ ζ

0
Rq(ζ − ς)[λg1(ς)

+ (1− λ)g2(ς)]dω∗(ς) +
∫ ζ

0
Rq(ζ − ξ)B{B∗R∗q(b− ξ)[(αI + Ψb

0)
−1[Eub − Tq(b)

× (u0 − h(u))] +
∫ b

0
(αI + Ψb

ς)
−1Φ(ς)dω(ς)]− B∗R∗q(b− ξ)

∫ b

0
(αI + Ψb

ς)
−1Rq

× (b− ς)[λ f1(ς) + (1− λ) f2(ς)]dς.

Since RE,x and RJ,x are convex, λ f1 + (1− λ) f2 ∈ RE,x, λg1 + (1− λ)g2 ∈ RG,x. Then,
λz1 + (1− λ)z2 ∈ φ(x).

Step 2: φ2 maps bounded sets into closed sets in C̃.
Consider a set Bk = {x ∈ C̃ : ‖x‖2

C̃ ≤ k, 0 ≤ ζ ≤ b}, where k is a non-negative constant.
Bk is definitely bounded and convex. There exists a positive constant L such that for each
z ∈ φ, x ∈ Bk, one has F‖z(ζ)‖2 ≤ L.

Let z ∈ φ2, x ∈ Bk. Then, there exist f̆ ∈ RE,x and g ∈ RJ,x such that for each ζ ∈ G,

z(ζ) = Tq(ζ)gi(ς, x(ζi − h(x)) + Sq(ζ))x1 +
∫ ζ

0
Rq(ζ − ς)Buα

x(ς)dς

+
∫ ζ

0
Rq(ζ − ς) f (ς)dς +

∫ ζ

0
Rq(ζ − ς)g(ς)dω∗(ς)}.

Next, we have

F||Uα
x (ζ)||2 ≤ 1

α2 N2
B M2

S(b− ζ)2q−2
{

4||Fxb +
∫ b

0
Φ(ς)dω∗(ς)||2 + 4F||Tq(b)(x0 − h(x))||2

+ 4F||
∫ b

0
Rq(b− ς) f (ς)dς||2 + 4F||

∫ b

0
Rq(b− ς)g(ς)dω∗(ς)||2

}
F||Uα

x (ζ)||2 ≤ 4
α2 N2

B M2
S(b− ζ)2q−2

{
2||Fb||2||+ 2

∫ b

0
F||Φ(ς)||2l0

2
dς + M2

T(2F||x0||2

+ 2F||h(x)||2) + bF
∫ b

0
||Rq(b− ς) f (ς)||2 + Tr(Q)F

∫ b

0
||Rq(b− ς)g(ς)||2dς

}
F||Uα

x (ζ)||2 ≤ 4
α2 N2

B M2
S

{
2||Exb||2 + 2

∫ b

0
F||Φ(ς)||2l0

2
dς + 2M2

T(F||x0||2 + µ1k + µ2)

+ bM2
S

b2q−1

2q− 1
M f (k) + Tr(Q)M2

S Mg(k)
b2q−1

2q− 1

}
F||Uα

x (ζ)||2 ≤ (b− ζ)2q−2NU ,

where
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NU =
4
α2 N2

B M2
S

{
2||Fxb||2 + 2

∫ b

0
F||Φ(ς)||2l0

2
dς + 2M2

T(F||x0||2 + µ1k + µ2) + bM2
S

b2q−1

2q− 1
M f (k)

+ Tr(Q)M2
S

b2q−1

2q− 1
Mg(k)

}
.

Now, we have

F||z(ζ)||2 ≤ 4F||Tq(ζ)(x0 − h(x))||2 + 4F||Sq(ζ − ς)x1||2 + 4F||
∫ ζ

0
Rq(ζ − ς)Bxα

x(ς)dς||2

+ 4F||
∫ ζ

0
Rq(ζ − ς) f (ς)dς||2 + 4F||

∫ ζ

0
Rq(ζ − ς)g(ς)dω∗(ς)||2

F||z(ζ)||2 ≤ 8M2
T(F||x0||2 + µ1k + µ2) + 4bN2

B M2
S

b4q−3

4q− 3
MU + 4bM2

S
b2q−1

2q− 1
M f (k)

+ 4Tr(Q)M2
S

b2q−1

2q− 1
Mg(k)

F||z(ζ)||2 = l.

Hence, Φ maps bounded sets into a closed set in C̃.
Step 3: Φ maps bounded sets into equi-continuous sets of C̃.
Let 0 < τ1 < τ2 ≤ b, ε > 0. For each z ∈ Φ(x) and x ∈ Bk, there exists f ∈ RE,x and

g ∈ RG,x such that

z(ζ) = Tq(ζ)(x0 − h(x)) + Sq(ζ))x1 +
∫ ζ

0
Rq(ζ − ς)Buα

x(ς)dς +
∫ ζ

0
Rq(ζ − ς) f (ς)dς

+
∫ ζ

0
(ζ − ς)Rq(ζ − ς)g(ς)dω∗(ς).

F||z(τ2)− z(τ1)||2 ≤ 10F||[Tq(τ2)− Tq(τ1)](x0 − h(x))||2 + 10F||Sq(τ2)− Sq(τ1)x1||2 + 10F||
∫ τ1−ε

0

× [Rq(τ2 − ς)− Rq(τ1 − ς)]Bxα
u(ς)dς||2 + 10F||

∫ τ1

τ1−ε
[Rq(τ2 − ς)− Rq(τ1 − ς)]Bxα

u(ς)dς||2

+ 10F||
∫ τ2

τ1

Rq(τ2 − ς)Bxα
u(ς)dς||2 + 10F||

∫ τ1−ε

0
[Rq(τ2 − ς)− Rq(τ1 − ς)] f (ς)dς||2

+ 10F||
∫ τ1

τ1−ε
[Rq(τ2 − ς)− Rq(τ1 − ς)] f (ς)dς||2 + 10F||

∫ τ2

τ1

Rq(τ2 − ς) f (ς)dς||2

+ 10F||
∫ τ1−ε

0
[Rq(τ2 − ς)− Rq(τ1 − ς)]g(ς)dω∗(ς)||2 + 10F||

∫ τ1

τ1−ε
[Rq(τ2 − ς)

− Rq(τ1 − ς)]g(ς)dω∗(ς)||2 + 10F||
∫ τ2

τ1

Rq(τ2 − ς)g(ς)dω∗(ς)||2dς

F||z(τ2)− z(τ1)||2 ≤ 10F||[Tq(τ2)− Tq(τ1)](x0 − h(x))||2 + ||Sq(τ2)− Sq(τ1)x1||2 + 10bN2
b MU

×
∫ τ1−ε

0
(b− ς)2q−2||Rq(τ2 − ς)− Rq(τ1 − ς)||2dς + 10εN2

B MU

∫ τ1

τ1−ε
(b− ς)2q−2

× ||Rq(τ2 − ς)− Rq(τ1 − ς)||2dς + 10(τ2 − τ1)N2
B MU

∫ τ2

τ1

(b− ς)2q−2||Rq(τ2 − ς)||2dς

+ 10bM f (k)
∫ τ1−ε

0
||Rq(τ2 − ς)− Rq(τ1 − ς)||2dς + 10εM f (k)

∫ τ1

τ1−ε
||Rq(τ2 − ς)

− Rq(τ1 − ς)||2dς + 10(τ2 − τ1)M f (k)
∫ τ2

τ1

||Rq(τ2 − ς)||2dς

+ 10Tr(Q)Mg(k)
∫ τ1−ε

0
||Rq(τ2 − ς)− Rq(τ1 − ς)||2dς

+ 10Tr(Q)Mg(K)
∫ τ1

τ1−ε
||Rq(τ2 − ς)− Rq(τ1 − ς)||2dς

+ 10Tr(Q)Mg(K)
∫ τ2

τ1

||Rq(τ2 − ς)||2dς.
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The right hand side of the inequality presented above converges as τ1 → τ2 with ε
being sufficient small. Thus, the compactness of Tq(ζ), Sq(ζ), and Rq(ζ), achieve continuity
in the uniform operator topology accordingly. Therefore, Φ is equi-continuous.

Step 4: We have to show that W(ζ) = {z(ζ) : z ∈ Φ(Bk)} is relatively compact for
ζ ∈ G. In this case, ζ = 0 is trivial.

Let ζ ∈ (0, b] be fixed for each ∈ (0, ζ). For each z ∈ Φ(x) and x ∈ Bk, there exist
f ∈ SF,x and g ∈ SJ,x such that

z(ζ) = Tq(ζ)(x0 − hx) + Sq(ζ)x1 +
∫ ζ

0
Rq(ζ − ς)Bxα

x(ς)dς +
∫ ζ

0
Rq(ζ − ς) f (ς)dς

+
∫ ζ

0
Rq(ζ − ς)g(ς)dω∗(ς).zF(ζ) = Tq(ζ)(x0 − h(x)) + Rq(ε)

∫ ζ−ε

0
Rq(ζ − ε− s)

× Bxα
x(ς)dς + Rq(ε)

∫ ζ−ε

0
Rq(ζ − ε− ς) f (ς)dς + Rq(ε)

∫ ζ−ε

0
Rq(ζ − ε− ς)g(ς)dω∗(ς).

F||z(ζ)− zF(ζ)||2 ≤ 3F||
∫ ζ

ζ−xi

Rq(ζ − ς)Bxα
x(ς)dς||2 + 3F||

∫ ζ

ζ−ε
Rq(ζ − ς) f (ς)dς||2

+ 3F||
∫ ζ

ζ−ε
Rq(ζ − ς)g(ς)dω∗(ς)||2

F||z(ζ)− zF(ζ)||2 ≤ 3bN2
B M2

S
ε4q−3

4q− 3
MU + 3bM2

S
ε2q−1

2q− 1
M f (K) + 3Tr(Q)M2

S
ε2q−1

2q− 1
Mg(K).

Since, ε→ 0, we can see that there are compact sets arbitrarily close to W(ζ) for every
ζ ∈ (0, b]. Thus, W(ζ) is relatively compact in X.

Step 5: Φ has a closed graph.
Let xm → x∗ and zm → z∗ as n → ∞. When z∗ ∈ Φ(x∗) is satisfied, there exist

f m ∈ RF,xm and gm ∈ RJ,xm such that for every ζ ∈ G,

zm(ζ) = Tq(ζ)(x0 − h(xm)) + Sq(ζ)x1 +
∫ ζ

0
Rq(ζ − ς) f mdς +

∫ ζ

0
Rq(ζ − ς)gm(ς)dω∗(ς)

+
∫ ζ

0
Rq(ζ − ξ)B{B∗R∗q(b− ξ)[(αI + Ψb

0)
−1[Fxb − T(b)(x0 − h(xm))]

+
∫ b

0
(αI + Ψb

ς)
−1Φ(ς)dω∗(ς)]− B∗R∗q(b− ξ)

∫ b

0
(αI + Ψb

ς)
−1Rq(b− ς) f m(ς)dς

− B∗R∗q(b− ξ)
∫ b

0
(αI + Ψb

ς)
−1Rq(b− ς)gm(ς)dω∗(ς)}dξ.

We must prove that there exist f ∗ ∈ RF,x∗ and g∗ ∈ RJ,x∗ such that for each ζ ∈ G,

z∗(ζ) = Tq(ζ)(x0 − h(x∗)) + Sq(ζ)x1 +
∫ ζ

0
Rq(ζ − ς) f ∗(ς)dς +

∫ t

0
Rq(ζ − ς)g∗(ς)dω∗(ς)

+
∫ ζ

0
Rq(ζ − ξ)B{B∗S∗q (b− ξ)[(αI + Ψb

0)
−1[Exb − T(b)(x0 − h(x∗))]

+
∫ b

0
(αI + Ψb

ς)
−1Φ(ς)dω∗(ς)]− B∗R∗q(b− ξ)

∫ b

0
(αI + Ψb

ς)
−1Rq(b− ς) f ∗(ς)dς

− B∗R∗q(b− ξ)
∫ b

0
(αI + Ψb

ς)
−1Rq(b− ς)g∗(ς)dω∗(ς)}dξ.

Since h is continuous, we obtain
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[‖zm(ζ)− z∗(ζ)‖2] =

∥∥∥∥(zm(ζ)− Tq(ζ)(x0 − h(xm)) + Sq(ζ)x1 +
∫ ζ

0
Rq(ζ − ξ)BB∗R∗q(b− ξ)[(αI + Ψb

0)
−1

× [Fxb − T(b)(x0 − h(xm))] +
∫ b

0
(αI + Ψb

s )
−1Φ(ς)dω∗(ς)]dξ)− (z∗(ζ)− Tq(ζ)

× (x0 − x(u)) +
∫ ζ

0
Rq(ζ − ξ)BB∗R∗q(b− ξ)[(αI + Ψb

0)
−1[Fxb − T(b)(x0 − h(x∗))]

+
∫ b

0
(αI + Ψb

ς)
−1Φ(ς)dω∗(ς)]dξ)

∥∥∥∥2

→ 0,

Consider the continuous operator Ψ : L2(Ω∗, C)× L2(L(K, G))→ C̃(G, C).

( f , g)→ Ψ( f , g)(ζ) =
∫ ζ

0
Rq(ζ − ς)[ f (ς) + BB∗R∗q(b− ς)(

∫ b

0
(αI + Ψb

r )
−1Rq(b− τ) f (τ)dτ)]dς

+
∫ t

0
Rq(ζ − ς)[g(ς) + BB∗R∗q(b− ς)(

∫ b

0
(αI + Ψb

τ)
−1Rq(b− τ)g(τ)dω∗(ς))]dω∗(ς)

× zm(ζ)− Tq(ζ)(x0 − h(xm)) +
∫ ζ

0
Rq(ζ − ξ)BB∗R∗q(b− ξ)[(αI + Ψb

0)
−1[Fxb − T(b)

× (x0 − h(xm))] +
∫ b

0
(αI + Ψb

ς)
−1Φ(ς)dω∗(ς)]dξ ∈ Ψ(RE, J, xm).

Since xm → x∗, it follows from (1) that

z∗(ζ)− Tq(ζ)(x0 − h(x∗)) +
∫ ζ

0
Rq(ζ − ξ)BB∗R∗q(b− ξ)[(αI + Ψb

0)
−1[Fxb − T(b)(x0 − h(x∗))]

+
∫ b

0
(αI + Ψb

ς)
−1Φ(ς)dω∗(ς)]dξ ∈ Ψ(RF, J, x∗).

This demonstrates that z∗ ∈ Φ(x∗). As a result, the graph for Φ is closed. Steps 1 to 5
together with the Arzela–Ascoli theorem result in Φ being a compact multiple-valued map
with convex closed values.

Step 6: The solution for the operator Φ is found.
Create an open ball with the coordinates B(0, r) ∈ C̃, where r meets the inequality.

As a result of the above procedures, we are aware that Φ satisfies every requirement of
the lemma. Therefore, if we can demonstrate that the second assumption of the lemma is
incorrect, we can show that the system in (1) has at least one mild solution. Let x ∈ C̃ be a
possible solution for λx ∈ Φx for some λ > 1 with F||x||2r = r. Then, we have

x(ζ) = λ−1Tq(ζ)(x0 − h(x)) + λ−1Sq(ζ)x1 + λ−1
∫ ζ

0
Rq(ζ − ς)Bxα

x(ς)dς + λ−1
∫ ζ

0
Rq(ζ − ς) f (ς)dς

+ λ−1
∫ ζ

0
Rq(ζ − ς)g(ς)dω∗(ς).

Next, using the assumption, we get

F||x(ζ)||2 ≤ 8M2
T(F||x0||2 + µ1F||x||2 + µ2) +

4
α2 bN4

B M4
S

∫ ζ

0
(b− ξ)4q−4{8||Fxb||}2 + 8

∫ b

0
F||φ(ς)||2L0

2
dς

+ 8N2
T(F||x0||2 + µ1F||x||2 + µ2) + 4bN2

S

∫ ζ

0
(b− ς)2q−2M f (F||x||2)dς

+ 4Tr(Q)M2
S

∫ ζ

0
(b− ς)2q−2Mg(F||x||2)dς}dξ + 4bM2

b

∫ ζ

0
(ζ − ς)2q−2M f (F||x||2)dς

+ 4Tr(Q)M2
S

∫ ζ

0
(ζ − ς)2q−2Mg(F||x||2)dς.
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Taking the supremum over ζ, we obtain

F||x||2 ≤ 8M2
T(F||x0||2 + µ1F||x||2 + µ2) +

4
α2 bN4

B M4
S

∫ ζ

0
(b− ξ)4q−4{8||Fxb||2 + 8

∫ ζ

0
F||φ||2L0

2
dς

+ 8M2
T(F||x0||2 + µ1F||x||2 + µ2) + 4bM2

S

∫ ζ

0
)ζ − ς)2q−2M f (F||x||2)dς

+ 4Tr(Q)M2
S

∫ ζ

0
(ζ − ς)2q−2Mg(F||x||2)dς}dξ + 4bM2

S

∫ ζ

0
(ζ − ς)2q−2M f (F||x||2)dς

+ 4Tr(Q)M2
S

∫ ζ

0
(ζ − ς)2q−2Mg(F||x||2)dς.

Substituting F||x||2γ = r

r ≤ 8M2
T(F||x0||2 + µ1r + µ2) +

4
α2 bN4

B M4
S

b4q−3

4q− 3
{8||Fxb||2 + 8

∫ ζ

0
F||φ||2L0

2
dς + 8M2

T(F||x0||2 + µ1r + µ2)

+ 4bM2
S

b2q−1

2q− 1
M f (r)dς + 4Tr(Q)M2

S
b2q−1

2q− 1
Mg(r)}+ 4bM2

S
b2q−1

2q− 1
M f (r) + 4Tr(Q)M2

S
b2q−1

2q− 1
Mg(r)

r ≤
l1 + 4M2

S
b2q−1

2q−1 [bM f (r) + Tr(Q)Mg(r)](1 + 4
α2 N4

B M4
S

b4q−2

4q−3 )

1− l2
,

which is contradiction. Thus, the operator inclusion x ∈ Φx has a solution in B[0, r].
Therefore, the fractional stochastic inclusion (1) has a mild solution on G.

Theorem 2. Assume that the functions E and J are uniformly bounded on their respective do-
mains and that the assumptions (H1)–(H5) are true. Additionally, the fractional stochastic
system in (1) is approximately controllable on J if the fractional linear differential inclusion is
approximately controllable.

Proof. Let xα be a fixed point on Φ. By the stochastic Fubini theorem, it is easy to see that

xα(b) = xb − α(αI + Ψb
0)
−1[Fxb − Tq(b)(x0 − h(xα)]− α

∫ b

0
(αI + Ψb

ς)
−1Φ(ς)dω∗(ς)

+ α
∫ b

0
(αI + Ψb

ς)
−1Rq(b− ς) f α(ς)dς + α

∫ b

0
(αI + Ψb

ς)
−1Rq(b− ς)gα(ς)dω∗(ς).

where
f α ∈ RF,xα = { f α ∈ l2(Ω∗, H) : f α(ζ) ∈ E(ζ, xα(ζ))},
gα ∈ RJ,xα = {gα ∈ l2(Ω∗, H) : gα(ζ) ∈ J(ζ, x)α(ζ)}.

Assuming that E and G are true, it follows that D exists in such a way that

|| f α(s)||2 + ||gα||2 ≤ D.

Then, there exists a subsequence indicated as { f α(ς), gα(ς)} converging to { f (ς), g(ς)}.
The compactness of Rq(ζ) implies that

Rq(b− ς) f α(ς)→ Rq(b− ς) f (ς), Rq(b− ς)gα(ς)→ Rq(b− ς)g(ς).
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From the above equation, we have

F||xα(b)− xb||2 ≤ 6||α(αI + Ψb
0)
−1[Fxb − Tq(b)(x0 − h(xα))]||2

+ 6F(
∫ b

0
||α(αI + Ψb

ς)
−1Ψ(ς)||2l0

2
dς)

+ 6F(
∫ b

0
||α(αI + Ψb

ς)
−1Rq(b− ς)[ f α(ς)− f (ς)]||dς)2

+ 6F(
∫ b

0
||α(αI + Ψb

ς)
−1Rq(b− ς) f (ς)||dς)2

+ 6F(
∫ b

0
||α(αI + Ψb

ς)
−1Rq(b− ς)g(ς)||2l0

2
dς).

For all 0 ≤ ς ≤ b, the operator α(αI + Ψb
ς)
−1 → 0 strongly as α → 0+ and ||α(αI +

Ψb
ς)
−1Ψ(ς)|| ≤ 1. Hence, according to the Lebesque dominated convergence theorem, we

obtain F‖xα(b)− x̄b‖2 → 0 as α→ 0+. This represents the approximate controllability of
the system in (1).

5. Example

Assume the following fractional stochastic partial differential equations with non-local
conditions of the form

∂
3
2

∂ζ 3
2

x(ζ, y) = xyy(ζ, y) + µ(ζ, y) + L1(ζ, x(ζ, y)) + L2(ζ, x(ζ, y)) dω∗(ζ)
dζ , ζ ∈ J = [0, 1]

x(ζ, 0) = x(ζ, 1) = 0
x(0, y) + Σn

i=1cix(ζi, y) = x0(y), 0 ≤ y ≤ 1,

(7)

where ω(ζ) indicates a standard cylindrical Wiener process on (Ω∗, ν, {νζ}, P); x0 ∈ l2(0, 1)
µ : [0, 1]× (0, 1)→ (0, 1) is continuous in ζ; l1, l2 : R→ P(R) is continuous; and ci > 0. Let
H = U = l2(0, 1) and define the operator A :→ H by Az = z′′ with domain D(A) = {z ∈
H, z, z′are absolutely continuous , z′′ ∈ H, z(0) = z(1) = 0}. Then, A generates an analytic
semi-group T(ζ) given by

T(ζ)z = Σ∞
n=1e−n2ζ(z, en)en, z ∈ H,

where en(z) =
√
(2)sin(nz), n = 1, 2, . . . is a complete ortho-normal set of eigenvectors of

A. From these expressions, it follows that {T(ζ), ζ > 0} is a uniformly bounded compact
semi-group, so that R(λ, A) = (λI − A)−1 is a compact operator for λ ∈ ρ(A).

Then,
Az = Σ∞

n=1n2(z, en)en, z ∈ H.

Let X(ζ)(z) = x(ζ, z) and define the bounded linear operator B : X → H by Bx(t)(y) =
µ(ζ, z), 0 ≤ z ≤ 1. Further, define (ζ, x(ζ))(z) = l1(ζ, x(ζ, z)) = e−1

1+e−1 sin(x(ζ, z)),

J(ζ, x(ζ))(z) = l2(ζ, x(ζ, z)) = e−1

1+e−1 sin(x(ζ, z)), and h(x)(z) = Σn
i=1cix(ζi, z). Then, the

conditions (H2)–(H4) are verified. On the other hand, the linear system is approximately
controllable. Therefore, with A, E, J, and B, the above system can be written in an abstract
form. Thus, all the conditions of the above theorem are satisfied. Hence, according to the
above theorem, the stochastic control system is approximately controllable on G.

6. Conclusions

In this paper, a mild solution for the approximate controllability system of fractional
stochastic differential inclusions with non-local conditions was identified with modifica-
tions and generalizations from the existing relevant literature. The following contributions
were made. A mild solution for a control problem governed by fractional stochastic evolu-
tion inclusions using the Caputo derivative with non-local conditions was obtained with
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the help of the fixed-point theorem of convex multiple-valued maps. We established a set of
sufficient conditions for their approximate controllability and provided results in terms of
controllability for the fractional stochastic control system. This solution was implemented
to show that the introduced stochastic control problem and cylindrical Wiener problem
had a convenient invariant set under linear perturbation.
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