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Abstract: The Wiener process was used to explore the (2 + 1)-dimensional chiral nonlinear Schrödinger
equation (CNLSE). This model outlines the energy characteristics of quantum physics’ fractional
Hall effect edge states. The sine-Gordon expansion technique (SGET) was implemented to extract
stochastic solutions for the CNLSE through multiplicative noise effects. This method accurately
described a variety of solitary behaviors, including bright solitons, dark periodic envelopes, solitonic
forms, and dissipative and dissipative–soliton-like waves, showing how the solutions changed as
the values of the studied system’s physical parameters were changed. The stochastic parameter
was shown to affect the damping, growth, and conversion effects on the bright (dark) envelope and
shock-forced oscillatory wave energy, amplitudes, and frequencies. In addition, the intensity of noise
resulted in enormous periodic envelope stochastic structures and shock-forced oscillatory behaviors.
The proposed technique is applicable to various energy equations in the nonlinear applied sciences.

Keywords: Wiener process; chiral NLSE; nonlinearity structures; stochastic solitons

1. Introduction

The important features of new solitonic envelopes form a foundation for the novel sci-
entific energy universe, which is of great importance for a number of disciplines, including
plasma physics, solid-state physics, telecommunications, superfluidity, quantum mechan-
ics, and astrophysical dynamics [1–6]. These types of solution have attracted particular
attention from physicists, mathematicians, and engineers [7–12]. Several new analytical

methods, such as the (G
′

G )—expansion approach, sub-equation approach, enhanced modi-
fied extended tanh-expansion approach have been used to obtain several nonlinear energy
structures, which have been used to investigate the influence of physical parameters on
energy and wave properties [13–15]. However, in recent decades there has been significant
interest in understanding energy equations via the study of nonlinear Schrödinger equation
dynamics in nature [16,17].

The investigation of chiral wave structures has a significant role in the developments
of quantum mechanisms, specially in Hall-effect applications. Biswas obtained topological
and nontopological solitons for a chiral NLSE model with time-dependent and constant
coefficients [18]. Alharbi et al. investigated the dynamical Brownian stochastic CNLSE in
two dimensions [19]. It was noted that the random noise parameter modulated the solitonic
structures. Moreover, the Brownian noise affected the solitary features and produced
distorted beak oscillatory shocks. Javid and Raza [20], explained the dark and singular
solitons obtained from the (1 + 2) CNLSE using an M-simple-equation and the exp(−ϕ(ξ))-
expansion methods. It was reported that the solution movements and phase shift mainly
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depended on the signs of the equation constants. Eslami [21] studied the (1 + 2) CNLSE so-
lutions using a trial solution technique. It was noted that, in this model, the stationary and
singular soliton were retrieved. In addition, the structures were produced via constraint con-
ditions for the equation coefficients.Recently, due to its increasingly widespread application,
numerous analytical and numerical techniques have been developed for deterministic and
stochastic NPDEs, such as the unified solver approach [22], Crank–Nicolson method [23],
improved modified extended tanh-function method [24], implicit meshless method [25],
finite difference method [26], adaptive moving mesh method [27], and operational matrix
method [28].

The dominant model considered in this work is the (2 + 1)-dimensional CNLSE using
a noise term. In this investigation, the nonlinear Schrödinger equations (NLSEs) were
restricted using random noise effects, which have important nonlinear energy applications
in superfluidity, quantum mechanics, plasma space, optical fibers, and other fields of science.
The NLSE is described as wave propagations affected by the Kerr effect, dispersion, and
group velocity. The solitonic solutions for NLSEs become important in nonlinearity energy
studies. Recently, the NLSEs forced or damped with random noises using stochastic soliton
solutions have become an important representative tool for explaining the propagations of
a wave in solid state physics, chemical engineering, fiber communications, nuclear physics,
and solid-state and energy physics [29–31].

We consider the (2 + 1)-dimensional CNLSE [20,21]:

iΨt + α(Ψxx + Ψyy) + i
(

c1Ψ(ΨΨ∗x −Ψ∗Ψx) + c2Ψ(ΨΨ∗y −Ψ∗Ψy)
)
− iσ Ψ Υt = 0, (1)

Ψ = Ψ(x, y, t) denotes a complex function in time t and the directions x, y, and α are the
coefficient of dispersion; c1 & c2 denote the coefficients of the nonlinear coupling terms;
and σ denotes the noise strength. Υt represents the time derivative of the Wiener process
Υ(t) [32]. Equation (1) cannot be integrated using the inverse scattering transform approach
because it fails the Painleve integrability condition. It is also worth noting that Equation (1)
is not invariant under Galilean transformation. There have been several studies carried out
for Equation (1) when there is no stochastic influence [21,33–36].

In the present research, by using the sine-Gordon expansion approach, we provide
some important stochastic solutions to the 2D CNLSE induced by multiplicative noise in
the Itô sense. The suggested technique offers a number of benefits, including the ability to
use freely physical parameters to deliver accurate solutions in an explicit form. Clarifying
the impact of the noise on the obtained solutions is one of the most intriguing points. We
also show how certain chosen stochastic solutions affected the nonlinear dynamics of the
model. To the best of our knowledge, no one has ever utilized the proposed technique to
solve the (2 + 1)-dimensional CNLSE in the Itô sense.

This paper is structured as follows: Section 2 introduces a description of the proposed
method and the Wiener process. Section 3 provides the stochastic solutions to the 2D
stochastic CNLSE. Section 4 presents an explanation of the gained stochastic solution. The
conclusions are summarized in Section 5.

2. Preliminaries

In this section we introduce the abbreviation of the sine-Gordon expansion approach [37]
and the Wiener process.

2.1. Description of the Method

Consider the sine-Gordon equation [37]

Ψxx −Ψtt = δ2 sin(Ψ), (2)

where Ψ(x, t) and δ is a non-zero real number. Utilizing the wave transform

Ψ(x, t) = Φ(ζ), ζ = x− wt. (3)
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Equation (2) is reduced to

Φ′′ =
δ2

1− w2 sin(Φ). (4)

Multiplying Φ′ on both sides of Equation (4) and integrating it one time yields[(
Φ
2

)′]2

=
δ2

1− w2 sin2(
Φ
2
) + K, (5)

K is the constant of integration. Setting K = 0, Φ
2 = ψ(ζ) and δ2

1−w2 = a2 into Equation (5)
yields

ψ′ = a sin(ψ). (6)

Choosing a = 1, Equation (6) becomes

ψ′ = sin(ψ). (7)

The solution of Equation (7) is given as follows:

sin(ψ) = sin(ψ(ζ)) =
2Keζ

K2 e2ζ + 1
|K=1= sech(ζ). (8)

cos(ψ) = cos(ψ(ζ)) =
K2e2ζ − 1
K2 e2ζ + 1

|K=1= tanh(ζ). (9)

Now, consider the following NPDEs:

H(Ψ, Ψx, Ψt, Ψxx, Ψxt, Ψtt, . . .) = 0. (10)

Using the wave transformation:

Ψ(x, t) = Φ(ζ), ζ = x− w t,

w is the wave speed, Equation (10) is reduced to the following ODE:

G(Φ, Φ′, Φ′′, Φ′′′, . . .) = 0. (11)

It is assumed that the solution Φ(ζ) of Equation (11) can be written as

Φ(ζ) =
N

∑
i=1

tanhi−1(ζ)[Bi sech(ζ) + Ai tanh(ζ)] + A0. (12)

Considering Equations (8) and (9), Equation (12) can be written as follows:

Φ(ψ) =
N

∑
i=1

cosi−1(ψ)[Bi sin(ψ) + Ai cos(ψ)] + A0. (13)

The value of N is determined by utilizing the homogeneous balance principle. Superseding
Equation (13) into Equation (11), and comparing the terms, yields a system of algebraic
equations. Solving these equations, gives the traveling wave solutions of Equation (10).

2.2. Wiener Process

A stochastic process is a mathematical model of the possible future manifestations
of a random phenomena when it first occurs [38]. The Wiener process is an example of a
continuous-time stochastic process. This process meets the following requirements:

(i) Υ(t) is a continuous functions of t ≥ 0,
(ii) For s < t, Υ(s)− Υ(t) is independent of increments,
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(iii) Υ(t)− Υ(s) has a normal distribution through mean 0 and variance t− s.

The distributional derivative of the Wiener process Υ̇ = Υt =
dΥ
dt is the white noise in

time. It is delta correlated in the sense that

E(Υ̇(t)Υ̇(r)) = δt−r,

δ is the Dirac mass. As the Dirac mass has a constant Fourier transform, the term “white
noise” was coined. White noise is frequently thought of as a mathematical idealization of
occurrences such as sudden, large fluctuations. It should be underlined that the Itô lemma
is used to calculate the time derivative of stochastic processes as follows:

dχ = χ(Υt+dt, t + dt) − χ(Υt, t),

where χ(Υt, t) represents the time derivative of stochastic processes, while χ(Υ, t) denotes
a differentiable function. Thus, this illustrates how χ has changed in a short amount of
time dt. The Itô lemma for the Wiener process is represented as

dχ(Υt, t) = ∂Υχ(Υt, t) dΥt +
1
2

∂2
Υ χ(Υt, t) dt + ∂t χ(Υt, t) dt.

One can construct the stochastic integral
∫ t

0 Ψ(θ)dΥ(θ) in a variety of ways. The most
familiar types of a stochastic integral are those by Itô and Stratonovich. When the integral
is calculated at the left-end point, it is said to have an Itô stochastic integral. When the
stochastic integral is calculated at the midpoint, it is referred to as a Stratonovich stochastic
integral [39].

3. The Stochastic Solutions for Equation (1)

Utilizing wave transformation [20]:

Ψ(t, x) = ψ(ρ)eiθ+σΥ(t)−σ2t, ρ = ρ1x + ρ2y− ρ3t, θ = θ1x + θ2y + θ3t + ε, (14)

θ1, θ2, denote the frequencies in x and y directions, θ3 and ε symbolize the soliton frequency
and phase constant. In addition, ρ1 and ρ2 are wave numbers in x and y directions and ρ3
is a traveling velocity.

Setting Equation (14) into Equation (1) produces

−σ2ψ + (−ρ3 + 2α(ρ1θ1 + ρ2θ2))ψ
′ = 0 (15)

for the imaginary part and
L ψ′′ + M ψ3 + N ψ = 0 (16)

for the real part, L = α(ρ2
1 + ρ2

2), M = 2(c1θ1 + c2θ2) and N = −(α(θ2
1 + θ2

2) + θ3).
Equation (16) provides the soliton solutions under the condition

ασ4
(

ρ2
1 + ρ2

2

)
e−

2ρσ2
2αθ1ρ1+2αθ2ρ2−ρ3 + 2(c1θ1 + c2θ2)(ρ3 − 2α(θ1ρ1 + θ2ρ2))

2 = 0. (17)

Balancing the highest order derivative term ψ′′ and highest nonlinear term ψ3 in Equation (16)
yields N = 1. Thus, the solution of Equation (16) takes the form:

ψ(ρ) = Λ0 + Λ1tanh(ρ) + Γ1sech(ρ). (18)

Substituting ψ, ψ′′, and ψ3 into Equation (16) and setting the coefficients of the hyperbolic
functions to zero produces a system of algebraic equations, which yields

Family I:
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The stochastic solutions of Equation (16) are

ψ1,2(x, y, t) = ±

√
−α(ρ2

1 + ρ2
2)

θ1c1 + θ2c2
tanh(ρ1x + ρ2y− ρ3t) . (19)

Thus, the stochastic dark solutions for Equation (1) are

Ψ1,2(x, y, t) = ±

√
−α(ρ2

1 + ρ2
2)

θ1c1 + θ2c2
tanh(ρ1x + ρ2y− ρ3t) ei(θ1x+θ2y+θ3t+ε)+σΥ(t)−σ2t , (20)

θ3 = −α(2(ρ2
1 + ρ2

2) + θ2
1 + θ2

2), θ1c1 + θ2c2 6= 0.
Family II:
The stochastic solutions of Equation (16) are

ψ3,4(x, y, t) = ±

√
α(ρ2

1 + ρ2
2)

θ1c1 + θ2c2
sech(ρ1x + ρ2y− ρ3t) . (21)

Hence, the stochastic bright solutions for Equation (1) are

Ψ3,4(x, y, t) = ±

√
α(ρ2

1 + ρ2
2)

θ1c1 + θ2c2
sech(ρ1x + ρ2y− ρ3t) ei(θ1x+θ2y+θ3t+ε)+σΥ(t)−σ2t , (22)

θ3 = −α(θ2
1 + θ2

2 − (ρ2
1 + ρ2

2)), θ1c1 + θ2c2 6= 0.
Family III:
The stochastic solutions of Equation (16) are

ψ5,6(x, y, t) = ±

√
−α(ρ2

1 + ρ2
2)

θ1c1 + θ2c2
(tanh(ρ1x + ρ2y− ρ3t) + i sech(ρ1x + ρ2y− ρ3t)). (23)

Hence, the stochastic combined dark-bright solutions for Equation (1) are

Ψ5,6(x, y, t)=±

√
−α(ρ2

1+ρ2
2)

θ1c1+θ2c2
(tanh(ρ1x+ρ2y−ρ3t)+i sech(ρ1x+ρ2y−ρ3t))ei(θ1x+θ2y+θ3t+ε)+σΥ(t)−σ2t , (24)

θ3 = − 1
2 α(2θ2

1 + 2θ2
2 + ρ2

1 + ρ2
2), θ1c1 + θ2c2 6= 0.

4. Results and Discussion

An effective and particular (2 + 1)-dimension CNLSE stochastic solution has been
achieved using SGET. Since CNLSE denotes the quantum fractional Hall-effect edge
states [40–42]. Thus, new solitary forms have been studied in view of the constants and
coefficients α, c1, c2 and the strength of noise σ. The perfect constitutional behaviors of
solutions obtained for Equation (1) are a dark envelope, periodic envelopes, solitons, lo-
calized super soliton, dissipative shock-like, symmetric solitons, oscillatory shocks, etc.
In neglecting noise effects, Equation (1) produces the following forms:

Ψ1,2(x, y, t) = ±

√
−α(ρ2

1 + ρ2
2)

θ1c1 + θ2c2
tanh(ρ1x + ρ2y− ρ3t) ei(θ1x+θ2y+θ3t+ε) . (25)

Ψ3,4(x, y, t) = ±

√
α(ρ2

1 + ρ2
2)

θ1c1 + θ2c2
sech(ρ1x + ρ2y− ρ3t) ei(θ1x+θ2y+θ3t+ε). (26)

Ψ5,6(x, y, t)=±

√
−α(ρ2

1+ρ2
2)

θ1c1+θ2c2
(tanh(ρ1x+ρ2y−ρ3t)+i sech(ρ1x+ρ2y−ρ3t))ei(θ1x+θ2y+θ3t+ε). (27)
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Here, the 3D solution profiles CNLSE have been informed by the physical values of α, c1
and c2 for the absence on σ. In view of Figures 1–10, a 3D plot of the obtained solitary
forms with x, y and t is given. Equation (25) describes the dark periodic envelopes, and
super and solitonic profiles, as in Figures 1–4. The dynamical behavior of Figure 1 shows
that a dark envelope is produced for the x axis and a pure periodic wave for the t axis.
In addition, a bright soliton wave is directed at the positive x axis generated in Figure 2.
In Figures 3 and 4 a plot of Equation (25) with the x and y axis is shown, and a narrow
dissipative wave with symmetric periodic waves in the x, y axis and a bright soliton which
is directed toward the negative x axis are given. For solution (26), some new physical
description solutions are introduced in Figures 5–8. A bright periodic envelope and a
positive solitonic structure directed toward the negative x axis are illustrated in Figures 5
and 6. Some important symmetric compressive-rarefactive solitons are produced for the x
and y axis, as shown in Figure 7. In Figure 8, a positive soliton directed at the positive x
axis is obtained. For solution (27), a combination of dissipative–soliton waves is created, as
seen in Figures 9 and 10. These dissipative behaviors are displayed in a symmetric manner
with a solitonic shape, as shown in Figure 9, and in the center of the periodic solitary waves,
as seen in Figure 10. The presented simulation diagrams for certain model solutions (1)
were produced using Matlab Release 18.

Figure 1. Real part of Ψ1(x, t) vs. x, t for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3,
θ1 = 0.2, θ2 = 0.3, ε = 0.05.
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Figure 2. | Ψ1(x, t) | vs. x, t for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3, θ1 = 0.2, θ2 = 0.3,
ε = 0.05.

Figure 3. Real part of Ψ1(x, t) vs. x, y for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3, θ1 = 0.2,
θ2 = 0.3, ε = 0.05.

Figure 4. | Ψ1(x, t) | vs. x, y for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3, θ1 = 0.2, θ2 = 0.3,
ε = 0.05.
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Figure 5. Imaginary part of Ψ3(x, t) vs. x, t for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3,
θ1 = 0.2, θ2 = 0.3, ε = 0.05.

Figure 6. | Ψ3(x, t) | vs. x, t for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3, θ1 = 0.2, θ2 = 0.3,
ε = 0.05.

Figure 7. Real part of Ψ3(x, t) vs. x, y for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3, θ1 = 0.2,
θ2 = 0.3, ε = 0.05.



Fractal Fract. 2023, 7, 461 9 of 13

Figure 8. | Ψ3(x, t) | vs. x, y for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3, θ1 = 0.2, θ2 = 0.3,
ε = 0.05.

Figure 9. Imaginary part of Ψ5(x, t) vs. x, t for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3,
θ1 = 0.2, θ2 = 0.3, ε = 0.05.

Figure 10. Real part of Ψ5(x, t) vs. x, y for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3, θ1 = 0.2,
θ2 = 0.3, ε = 0.05.

The effects of noise on the features of the solitary type solutions were investigated,
which may be damped or grow with t. Equation (20) changes with t and the noise amplitude
σ for a positive α value, as shown in Figure 11. It was shown that, by increasing σ, the dark
envelope amplitudes decrease for the positive t axis and increase for the negative t axis,
without changes of frequency, as seen in Figure 11.

For a negative α value, the same effect is produced with changes of the wave frequency,
as in Figure 12. Moreover, solution (22) is plotted with time t and σ for a positive α value,
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as shown in Figure 13. By increasing σ, the envelope solitary form was converted to a
shock-forced oscillatory wave. For a negative α value, the amplitudes increased and the
wave was converted to a huge bright periodic envelope wave, as in Figure 14.

Figure 11. Real stochstic solution (20) vs. t, σ for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3,
θ1 = 0.2, θ2 = 0.3, ε = 0.05.

Figure 12. Real stochstic solution (20) vs. t, σ for α = −1.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3,
θ1 = 0.2, θ2 = 0.3, ε = 0.05.

Figure 13. Real stochstic solution (22) vs. t, σ for α = 0.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3,
θ1 = 0.2, θ2 = 0.3, ε = 0.05.
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Figure 14. Real stochstic solution (22) vs. t, σ for α = −1.5, ρ1 = 0.7, ρ2 = 0.5, c1 = 0.4, c2 = 0.3,
θ1 = 0.2, θ2 = 0.3, ε = 0.05.

In view of the importance of the solutions found in this work, which give an accurate
description of many types of solitary behavior, such as dark periodic envelopes, solitonic
forms, bright solitons, and dissipative and dissipative–soliton-like waves, they demonstrate
the accuracy of the solutions with a change of the values of the physical parameters of
the studied system. This facilitates the process of comparison with previous studies. Our
results are consistent with the dark and bright solutions in [18] in the case of an equation
with constant coefficients, as well as the dark solutions and the dissipative solutions of [21].
In addition, our results are in agreement with [20], but the conception of the results in this
work gives a distinctive description of the change of wave behaviors between the solitons,
shocks, and the periodic forms for a change of system parameters, while neglecting noise
strength. On the other hand, the noise strength produces shock-forced oscillatory behaviors
and huge bright periodic envelope stochastic structures.

Remark 1.

1. The solver proposed in this study can be applied to large classes of nonlinear stochastic partial
differential equations (NSPDEs).

2. The suggested solver is simple to implement for solving stochastic fractional NPDEs.

Remark 2. Despite the fact that the suggested technique was implemented for all classes of NSPDEs
that were transformed to Equation (16), it failed to solve other classes of NSPDEs, which is regarded
as a drawback of the proposed approach.

5. Conclusions

A 2D stochastic CNLSE has been delivered using SGET. The CNLSE denoting the
quantum fractional Hall effect edge states was solved utilizing SGET to describe solitary
wave structures. New solutions for the absence of the noise term describe behaviors in the
form of bright and dark periodic envelopes, and dissipative and dissipative–soliton-like
waves, depending on the studied system’s physical parameters. These solutions could be
useful for quantum fractional Hall effect edge states. The effects of noise on the structural
behavior of energy waves were investigated.The noise parameter σ modulated the wave
attitude as amplitude variations, frequency fluctuations, and energy wave conversions.
The present results may be important for Hall effect studies in quantum physics.
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