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Abstract: In this paper, we generalize the scheme proposed by Ermakov and Kalitkin and present a
class of two-parameter fourth-order optimal methods, which we call Ermakov’s Hyperfamily. It is a
substantial improvement of the classical Newton’s method because it optimizes one that extends the
regions of convergence and is very stable. Another novelty is that it is a class containing as particular
cases some classical methods, such as King’s family. From this class, we generate a new uniparametric
family, which we call the KLAM, containing the classical Ostrowski and Chun, whose efficiency,
stability, and optimality has been proven but also new methods that in many cases outperform these
mentioned, as we prove. We demonstrate that it is of a fourth order of convergence, as well as being
computationally efficienct. A dynamical study is performed allowing us to choose methods with
good stability properties and to avoid chaotic behavior, implicit in the fractal structure defined by the
Julia set in the related dynamic planes. Some numerical tests are presented to confirm the theoretical
results and to compare the proposed methods with other known methods.

Keywords: nonlinear equations; iterative methods; Ermakov–Kalitkin scheme; dynamical analysis;
stability; order of convergence; optimal method

1. Introduction

Many problems in science, physics, economics, engineering, etc., need to find the roots
of nonlinear equations of the form f (x) = 0, where f : D ⊂ C → C is a real or complex
function with some characteristics.

Frequently, there is not an algorithm to obtain the exact solutions of these equations,
and we need to approximate them by means of iterative processes. One of the most widely
used iterative methods is Newton’s method. It has a second order of convergence, and its
iterative expression is (see, for example [1,2])

xk+1 = xk −
f (xk)

f ′(xk)
, k = 0, 1, . . . (1)

The convergence of Newton’s scheme depends on the initial estimate being “close
enough” to the solution, but there is no guarantee that this assumption holds when mod-
eling many real-world problems. In an attempt to address this problem, and to make
the convergence domain wider, Ermakov and Kalitkin [3] proposed a damped version of
Newton’s method for the equations with the general form

xk+1 = xk − λk
f (xk)

f ′(xk)
, k = 0, 1, . . . , (2)
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where λk is a sequence of real numbers determined by a certain rule or algorithm. One of
the forms that λk can take is the Ermakov–Kalitkin coefficient

λk =
| f (xk)|2

| f (xk)|2 +
∣∣∣ f(xk −

f (xk)
f ′(xk)

)∣∣∣2 , k = 0, 1, . . . (3)

We can classify iterative methods [4] according to the data needed to determine the
next value of the succession of approximations to the root. The method is memoryless if it
depends on the value of the last iterate, not the previous ones:

xk+1 = φ(xk); k = 0, 1, 2, . . .

However, if the method contains memory, then it will also be a function of one or more
of the iterates prior to the predecessor:

xk+1 = φ(xk, xk−1, xk−2, . . .); k = 0, 1, 2, . . . (4)

Iterative methods can also be classified [5,6] according to the number of steps in each
iteration. Therefore, we consider either one-step or multi-step methods. A one-step method
is in the form of the Equation (4), while a multi-step method is described by:

yk = ψ(xk)

xk+1 = φ(xk, yk), k = 0, 1, 2, . . .

For the study of the different iterative methods, we use the order of convergence as a
measure of the speed at which the sequence {xk}k≥0 generated by the method converges to
the root. If limk→∞|xk+1 − α|/|xk − α|p = C, where C and p are constants, then p represents
the order of convergence.

If p = 1 and C ∈ (0, 1), we have linear convergence, but if p > 1 and C > 0, the
method has convergence of order p (quadratic, cubic, . . . )

An iterative method is said to be optimal, if it achieves convergence order 2d−1, using
d functional evaluations at each iteration. According to the Kung–Traub conjecture [7],
the order of convergence of any multi-step method without memory cannot exceed 2d−1,
where d is the number of functional evaluations per iteration. Therefore, the order 2d−1 is
the optimal order.

When delving into the problem of nonlinear equations to find higher order iterative
methods of convergence, methods arise that require, in general, increasing the number of
functional evaluations, as well as the number of steps, thus obtaining multi-step methods
whose form is the one expressed in [5]. In the following, we present five iterative multi-step
procedures with a fourth order of convergence, four of them being optimal. We use them
in the numerical tests of this research to compare with some members of the KLAM family.

We consider, for later comparison purposes, Newton’s scheme (an optimal second-
order scheme), given by

xk+1 = xk −
f (xk)

f ′(xk)
; k = 0, 1, 2, . . . (5)

and Jarratt’s method, presented in [8], with convergence order four and iterative expression

yk = xk −
2
3

f (xk)

f ′(xk)
,

xk+1 = xk −
1
2

3 f ′(yk) + f ′(xk)

3 f ′(yk)− f ′(xk)

f (xk)

f ′(xk)
, k = 0, 1, 2, . . .

(6)
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The following schemes are two-step methods, the first one being Newton’s scheme:
we start with Ostrowski’s method, [9], with order of convergence four and whose second
step is:

xk+1 = yk −
f (xk)

f (xk)− 2 f (yk)

f (yk)

f ′(xk)
; k = 0, 1, 2, . . . (7)

Moreover, King’s family of fourth-order methods [10] is given by

xk+1 = xk −
f (xk)

f ′(xk)
− f (xk) + (β + 2) f (yk)

f (xk) + β f (yk)

f (yk)

f ′(xk)
; k = 0, 1, 2, . . . , (8)

where β ∈ R. For β = −2, Ostrowski’s scheme is obtained.
We also consider the fourth-order Chun method, [11],

xk+1 = xk −
f (xk)

f ′(xk)
−
[

1 + 2
f (yk)

f (xk)
+

f (yk)
2

f (xk)
2

]
f (yk)

f ′(xk)
; k = 0, 1, 2, . . . (9)

All these two-steps schemes are optimal according to the Kung and Traub conjecture.
For the numerical tests, in the final section, we denote these methods as N2, J4, Os4, K4,
and Ch4, respectively.

In order to improve Newton’s method, Budzko et al. in [12] proposed a triparametric
family of iterative methods with two steps, using a damped Newton method in the first step
(as a predictor). The second step (corrector) resembles the Ermakov–Kalitkin scheme (2), (3).
The resulting iterative procedure involves the evaluation of three functions at each iteration,

yk = xk − α
f (xk)

f ′(xk)
,

xk+1 = xk −
f (xk)

2

b f (xk)
2 + c f (yk)

2
f (xk)

f ′(xk)
, k = 0, 1, . . . ,

(10)

with α, b, and c, as complex parameters. Budzko et al. showed that if b = 1−α+2α2

2α2 , c =
1

2α2(α−1) , a one-parameter family of two-step iterative methods for solving nonlinear equa-
tions with a third order of convergence was obtained for values of the parameter α other
than 0 or 1. Through numerical tests, they showed that the numerical performance of
this family was better, in several problems, than that presented by Newton’s method. We
denote scheme (10) as the Budzco x-family or PM.

Cordero et al. in [13] carried out an in-depth study on the dynamics of the Budzco
family and determined the convergence properties that allow this method to have a stable
dynamical behavior for parameter values close to 0. They called the accelerating factor of

the second step,
f (xk)

2

b f (xk)
2 + c f (yk)

2 , the “Kalitkin-type factor”. This uniparametric family of

methods managed to improve Newton’s, both in order of convergence [12] and in providing
much larger basins of attraction. They showed that, for small values of the parameter, the
basins of attraction that did not correspond to the roots of the polynomial were indeed
small [13].

Our contribution is to present a new biparametric family of two-step iterative methods,
also based on the Ermakov–Kalitkin scheme (Section 2) that improves the third order of
Budzco’s family of methods and, hence, Newton’s, while keeping the same number of
functional evaluations. We obtain a class of fourth-order optimal methods, with low
computational cost. The dynamical analysis of the proposed family, with the stability of the
fixed points, the behavior of the critical points, etc., are presented in Section 3. We devote
Section 4 to the numerical tests and to comparing the proposed methods with other known
ones. With some conclusions and the references used, we finish this manuscript.



Fractal Fract. 2023, 7, 459 4 of 17

2. Design and Analysis of the Methods

We want to increase the order of convergence of the iterative methods of the form
given in (10) to the fourth order while maintaining the Kalitkin-type factor, and we achieve
this, as we show, by finding a weight function introduced in the corrector step:

yk = xk − α · g(xk),

xk+1 = xk −K(µk) · H(µk) · g(xk), k = 0, 1, . . .
(11)

We include the weight function H(µk) to increase the order of convergence of the
method, without adding new functional evaluations.

Theorem 1. Let ξ ∈ D be a simple zero of a function f of class C4, such that f : D ⊂ C −→ C in
a convex set D, and let x0 be an initial approximation close enough to ξ. The biparametric family
defined by (11) has a fourth order of convergence whenever α = 1, b 6= 0, for every weight function
H : R −→ R sufficiently differentiable, satisfying H(0) = H′(0) = b, H′′(0) = 2(2b + c),
and |H′′′(0)| < ∞. Moreover, the error equation is

ek+1 =

(
c3

2

(
5b + c− H′′′(0)

b

)
− c2c3

)
e4

k + O
(

e5
k

)
,

where ck = (1/k!) f (k)(ξ)
f ′(ξ) for k = 2, 3, . . . and ek = xk − ξ.

Proof. By using Taylor’s series developments around ξ, we have the expressions for f (x)
and f ′(x), respectively,

f (xk) = f ′(ξ)
[
ek + c2e2

k + c3e3
k + c4e4

k

]
+ O

(
e5

k

)
, (12)

f ′(xk) = f ′(ξ)
[
1 + 2c2ek + 3c3e2

k + 4c4e3
k

]
+ O

(
e4

k

)
. (13)

From (12) and (13), we can obtain the error made in the first step of scheme (11),

yk − ξ = (1− α)ek + αc2e2
k − 2

(
α
(

c2
2 − c3

))
e3

k + α
(

4c3
2 − 7c2c3 + 3c4

)
e4

k + O
(

e5
k

)
.

Taylor’s series of f (yk) around ξ gives

f (yk) = f ′(ξ)
[
(1− α)ek +

(
1− α + α2

)
c2e2

k −
(

2α2c2
2 +

(
−1 + α− 3α2 + α3

)
c3

)
e3

k

]
+ O

(
e4

k

)
,

and combining these equations, we obtain the expressions of µk and K(µk), respectively:

µk =
f (yk)

f (xk)
= (1− α) + α2c2ek − α2(3c2

2 + (−3 + α)c3)e2
k

+ α2(8c3
2 + 2(−7 + 2α)c2c3 + (6 + (−4 + α)α)c4e3

k + O(ek)
4,

K(µk) =
1

b + cµ2 = ρ−3
(

ρ2 + ρ
(

2γα2cc2

)
ek + α2c

[(
−b
(
−6 + 6α + α2

)
+ 3γ2

(
γ2 + 1

)
c
)

c2
2

− 2γ(α− 3)ρc3
]
e2

k

)
+O

(
e3

k

)
,

(14)

where ρ = b + (−1 + α)2c, and γ = −1 + α.
Given that µk tends to zero when xk tends to ξ, we develop in Taylor series H(µk)

around zero,

H(µk) ≈ H(0) + H′(0)µk +
H′′(0)

2
µ2

k +
H′′′(0)

6
µ3

k . (15)

Therefore, using Equations (14) and (15), we have the error made in the second step.
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ek+1 = xk+1 − ξ = xk − ξ −K(µk) · g(xk) · H(µk)

= (2ρ)−1(2ρ +−2H(0) + (2H′(0) + H′′(0)− H′′(0)α)γ
)
ek

+ (2ρ2)−1
[
cγ
(
−4H(0)α2 + 2(H(0) + H′(0))γ + 2H′(0)αγ2 + H′′(0)γ3

)
+ b
(

2H(0) + H′′(0)
(
−1 + α + 2α2

)
γ− 2H′(0)

(
α2 + γ

))]
c2e2

k

+ ρ−3
[(

ρα2(H′(0) + H′′(0)− H′′(0)α)(b + c + cα(−2 + (3− 2α)α))c2
2

)
+

1
2

ρ2α2
(
(6H′(0) + 6H′′(0)− H′′(0)α(6 + α))c2

2 + 2(−3 + α)(H′(0) + H′′(0)− H′′(0)α)c3

)
− 1

2
(2H(0) + (−2H′(0) + H′′(0)γ)γ)

((
2b2 + c2γ2(2 + α(−2 + 3α)(2 + (−2 + α)α))

−bc(−4 + α(8 + α(−12 + α(8 + α)))))c2
2 − 2ρ

(
b + cγ

(
−1 + α− 3α2 + α3

))
c3

)]
e3

k + O(e4
k).

(16)

Finally, if we require α = 1, b 6= 0, H(0) = H′(0) = b, H′′(0) = 2(2b + c), and
|H′′′(0)| < ∞, then we cancel the coefficients of ek, e2

k , and e3
k in expression (16), and we

obtain the error equation of the methods

ek+1 =

(
c3

2

(
5b + c− H′′′(0)

b

)
− c2c3

)
e4

k + O
(

e5
k

)
. (17)

Taking into account the convergence conditions of Theorem 1, by means of some
algebraic manipulations and using as weight function the cubic Taylor polynomial, we
obtain the iterative expression of the proposed method (11)

xk+1 = yk −
1 + 2µk + dµ2

k
1 + λµ2

k

f (yk)

f ′(xk)
, k = 0, 1, . . . , (18)

where yk is Newton’s scheme, and λ = c/b. This expression defines a family of two-
parameter methods, λ and d, which we call Ermakov’s Hyperfamily (EH4).

Taking d = 0 in (18), we obtain a uniparametric family

yk = xk − g(xk),

xk+1 = yk −
1 + 2µk

1 + λµ2
k

f (yk)

f ′(xk)
, k = 0, 1, . . . ,

(19)

which we call the KLAM family.

This family includes some known schemes as particular cases:

(i) If λ = −4, in the KLAM family, presented in (19), then we have Ostrowski’s classical
method, described in iterative expression (7).

(ii) If λ = −β2 and d = −β(β + 2) in the Ermakov Hyperfamily, presented in (18), then
we have King’s Family, described in iterative expression (8).

(iii) If λ = 0 and d = 1, in the Ermakov Hyperfamily, presented in (18), then we have
Chun’s fourth-order method, described in the iterative expression (9).

3. Dynamical Behavior of the KLAM Family

Complex dynamics has become, in recent years, a very useful tool to deepen the
knowledge of rational functions obtained by applying iterative processes on low-degree
polynomials p(z). This knowledge gives us important information about the stability of
the iterative method.

The tools of complex dynamics are applied to the rational function resulting from
acting an iterative scheme on the quadratic polynomial p(z) = (z− a1)(z− a2) = 0. When
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a parametric class of iterative algorithms is applied to p(z), a parametric rational function
is obtained. This analysis allows us to choose the members of the class with good stability
properties and avoid the elements with chaotic behavior.

We recall some concepts of complex dynamics. Extended information can be found
in [14].

Let R : Ĉ → Ĉ be a rational function, where Ĉ is the Riemann sphere. The or-
bit of a point z0 ∈ Ĉ is the set of successive images of z0 by the rational function{

z0, R(z0), R2(z0), . . . , Rn(z0), . . .
}

.
A point z0 ∈ Ĉ is a fixed point of R, if R(z0) = z0, and it is classified as attractor,

a repulsor, and neutral or parabolic, if |R′(z0)| < 1, |R′(z0)| > 1, and |R′(z0)| = 1,
respectively. When |R′(z0))| = 0, it is a superattractor. On the other hand, a point z0 ∈ Ĉ is
a periodic point of period p > 1, if Rp(z0) = z0 and Rk(z0) 6= z0, k < p. Finally, z0 ∈ Ĉ is a
critical point of R, if R′(z0) = 0.

The basin of attraction A(z̄) of a fixed point (or periodic) attractor z̄ ∈ Ĉ is formed by
the set of its pre-images of any order; that is, A(z̄) =

{
z0 ∈ Ĉ : Rn(z0)→ z̄, n→ +∞

}
.

The Fatou set is formed by those points whose orbits tend to an attractor. The Julia set
is the complementary set in the Riemann sphere of the Fatou set.

Theorem 2. (Julia and Fatou [15,16]) Let R be a rational function. The basin of attraction of a
periodic (or fixed) attractor point contains at least one critical point.

This last result has important consequences: by locating the critical points and calcu-
lating their orbits, we determine whether there can be other types of basins of attraction
other than the roots of the polynomial. It is useful to analyze the behavior of a critical
point used as the initial estimation of the iterative method; its orbit tends to a root of the
polynomial or to another attractor element.

On the other hand, the scaling theorem allows us to extend the stability properties
obtained for p(z) to any quadratic polynomial.

3.1. Rational Operator and Conjugacy Classes

We prove that the rational operator associated with the KLAM family, presented in
(19), on p(z) = (z− a1)(z− a2), satisfies the scaling theorem.

Theorem 3. (Scaling theorem of the KLAM family) Let g(z) be an analytic function, and let
A(z) = αz + κ, with α 6= 0, be an affine application. Let h(z) = γ(g ◦ A)(z), with γ 6= 0. Let
Bg(z) be the fixed point operator of the KLAM method on p(z). Then,

(A ◦ Bh)(z) =
(
Bg(z) ◦ A

)
(z);

that is, Bg and Bh are affine conjugate by A.

Proof. Let Bg : Ĉ → Ĉ be the fixed point operator of the KLAM family of methods,
presented in (19), on a function g(z); that is

Bg(z) = y(z)− 1 + 2ν(z)
1 + λν(z)2

g(y(z))
g′(z)

, (20)

where

y(z) = z− g(z)
g′(z)

, and ν(z) =
g(y)
g(z)

.

First, let us determine
(
Bg ◦ A

)
(z),

(
Bg ◦ A

)
(z) = A(y(z))− 1 + 2ν(A(z))

1 + λν(A(z))2
g(A(y(z)))

g′(A(z))
. (21)
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Now,

Bh(z) = y(z)− 1 + 2ν(A(z))
1 + λν(A(z))2

g(A(y(z)))
κg′(A(z))

. (22)

As A(m− n) = A(m)− A(n) + κ, then

(A ◦ Bh)(z) = A
[
(y(z))− 1 + 2ν(A(z))

1 + λν(A(z))2
g(A(y(z)))
αg′(A(z))

]
= A(y(z))− A

[
1
α

1 + 2ν(A(z))
1 + λ · ν(A(z))2

g(A(y(z)))
g′(A(z))

]
+ κ

= A(y(z))− 1 + 2ν(A(z))
1 + λν(A(z))2

g(A(y(z)))
g′(A(z))

.

(23)

So, it is concluded that the scaling theorem is satisfied by the KLAM family, presented
in (19).

Now, we analyze the dynamical behavior of the fourth-order parametric family (19),
studying the rational operator obtained to apply the family on the quadratic polynomial
p(z) = (z− a1)(z− a2). This operator depends on the roots of p(z) and parameter λ,

Bg(z, a1, a2, λ) =
N

D(−a1 − a2 + 2z)
, (24)

where

N = a5
1a2 + 5a4

1a2(a2 − 2z) + a3
1a2

(
λ(a2 − z)2 + 10(a2 − 2z)2

)
+ a2

1

(
5a4

2 − 2a3
2(λ + 20)z + 3a2

2(λ + 30)z2 − 60a2z3 − (λ + 5)z4
)

+ a1

(
a5

2 − 10a4
2z + a3

2(λ + 40)z2 − 60a2
2z3 + a2(20− 3λ)z4 + 2(λ + 7)z5

)
− z4

(
a2

2(λ + 5)− 2a2(λ + 7)z + (λ + 10)z2
)

,

and
D = a2

1a2
2λ− 2a1λz3 − 2a2λz3 − 32a1z3 − 32a2z3 + a2

1λz2 + a2
2λz2 + 4a1a2λz2

+ 24a2
1z2 + 24a2

2z2 + 48a1a2z2 − 2a1a2
2λz− 2a2

1a2λz− 8a3
1z− 8a3

2

− 24a1a2
2z− 24a2

1a2z + a4
1 + a4

2 + 4a1a3
2 + 6a2

1a2
2 + 4a3

1a2 + λz4 + 16z4.

In order to eliminate the dependence of a1 and a2, we apply the Möbius transformation

M(z) =
z− a1

z− a2
,

whose inverse is [M(z)]−1 = za2−a1
z−1 . So,

E(z, λ) = (M ◦ Bg(z, a1, a2, λ) ◦M−1)(z) =
z4(λ + z(z + 4) + 5)
z((λ + 5)z + 4) + 1

. (25)

The set of values of the parameter that reduces the expression of operator E(z, λ) is

{−10,−5,−4,−2,−1, 0}.

We analyze the dynamics of this operator.
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3.2. Stability Analysis of the Fixed Points

Both the number of fixed points and their stability depend on the parameter λ. We
need to determine an expression for the differential operator, for analyzing the stability of
the fixed points and to determine the critical points.

E ′(z, λ) =
2z3(λ2z2 + 2λ[z(z + 1)(z(z + 2) + 3) + 1] + 10(z + 1)4)

(z((λ + 5)z + 4) + 1)2 .

It is not difficult to verify that both z = 0 and z = ∞ are superattracting fixed points,
since they come from the zeros polynomial. However, the stability of the other fixed points
depends on the value of λ.

Proposition 1. The fixed points of rational operator E(z, λ) are the roots of equation E(z, λ) = z.
Then, for each value of λ, it has the next fixed points:

(a) z = 0 and z = ∞ are superattractor fixed points for any value of λ.
(b) z = 1 is a fixed point, if and only if λ 6= −10.

(c) The strange fixed points, ex1 ex2, ex3, and ex4 are 1
4

(
−φ±

√
φ2 ± 10φ + 9− 5

)
, where

φ(λ) =
√
−4λ− 7.

In the following result, we analyze the stability of z = 1.

Theorem 4. The character of the strange fixed point z = 1, where λ 6= −10, is as follows:

(i) z = 1 is an attractor, if and only if |λ + 18| < 4. It can be a superattractor for λ = −16.
(ii) z = 1 is a parabolic point in the circumference |λ + 18| = 4.
(iii) z = 1 is a repulsor, if and only if |λ + 18| > 4, λ 6= −10.

Proof. First let us apply the operator E ′(z, λ) in (3.2) on z = 1,

E ′(1, λ) =
2(λ + 16)

λ + 10
.

Let us analyze |E ′(1, λ)| < 1, taking λ = w + iy, and after some algebraic manipula-
tions, we have (w + 18)2 + y2 < 16, as shown in Figure 1. Then, the fixed point z = 1 is an
attractor, if and only if

|λ + 18| < 4.

Analogously, the rest of the statements of the theorem are satisfied.

Figure 1. Stability of the fixed point z = 1.

Now, we study the stability of the strange fixed points ex1, ex2, ex3, and ex4.
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Theorem 5. The character of the strange fixed points ex1 and ex2 is as follows:

1. If
∣∣∣λ + 1

32

(
−11
√

145 + 189
)∣∣∣2 + 1

1024

(
−11
√

145 + 133
)2

< 1
16

(
−11
√

145 + 133
)∣∣∣λ + 7

4

∣∣∣, then

ex1 and ex2 are attractors. They are superattractors for λ = 5
(√

7− 3
)

.

2. When
∣∣∣λ + 1

32

(
−11
√

145 + 189
)∣∣∣2 + 1

1024

(
−11
√

145 + 133
)2

= 1
16

(
−11
√

145 + 133
)∣∣∣λ + 7

4

∣∣∣,
ex1 and ex2 are parabolic points.

3. If
∣∣∣λ + 1

32

(
−11
√

145 + 189
)∣∣∣2 + 1

1024

(
−11
√

145 + 133
)2

> 1
16

(
−11
√

145 + 133
)∣∣∣λ + 7

4

∣∣∣, then
ex1 and ex2 are repulsors.

Proof. First, let us consider the stability function E ′(z, λ) on strange fixed points ex1 and
ex2:

E ′(ex1,2, λ) =
(M + φ + 5)3

(
M
(
φ3 + 27φ2 − 265φ + 45

)
+ φ4 + 32φ3 − 42φ2 − 1040φ + 153

)
4(M(φ2 − 8φ− 33) + φ3 + 17φ2 − 101φ− 93)2 , (26)

where M(φ) =
√

φ2 + 10φ + 9 and φ(λ) =
√
−4λ− 7.

Let us make λ = w + iy, and after some algebraic manipulations, we have∣∣E ′(ex1,2, λ)
∣∣ < 1,

if and only if((
w +

1
32

[
−11
√

145 + 189
])2

+ y2 +
1

1024

(
−11
√

145 + 133
)2
)2

<
1

256

(
−11
√

145 + 133
)2
[(

w +
7
4

)2
+ y2

]
,

(27)

as shown in Figure 2. Therefore, ex1,2 are attractors, if and only if∣∣∣∣λ +
1

32

(
−11
√

145 + 189
)∣∣∣∣2 + 1

1024

(
−11
√

145 + 133
)2

<
1

16

(
−11
√

145 + 133
)∣∣∣∣λ +

7
4

∣∣∣∣.
Analogously, the rest of statements of the theorem are satisfied.

Theorem 6. The character of the strange fixed points ex3 and ex4 is as follows:

(a) If
∣∣∣λ + 1

16

(
323 + 11

√
145
)∣∣∣ < 1/16

(
−29 + 11

√
145
)

, then ex3 and ex4 are attractors.

They are superattractors for λ = −5
(

3 +
√

7
)

.

(b) In the circumference
∣∣∣λ + 1

16

(
323 + 11

√
145
)∣∣∣ = 1

16

(
−29 + 11

√
145
)

, or for λ = − 7
4 ,

ex3 and ex4 are parabolic points.
(c) If

∣∣∣λ + 1
16

(
323 + 11

√
145
)∣∣∣ > 1/16

(
−29 + 11

√
145
)

, λ 6= − 7
4 , then ex3 and ex4 are

repulsors.

Proof. The stability function E ′(z, λ) on strange fixed points ex3 and ex4 is

E ′(ex3,4, λ) =
(P− φ + 5)3

(
φ2(−14M + 13P + 219) + φ(111M− 154P− 355)− (M + 17)φ3 + 9(5P + 17)

)
4(−φ(13M + 5P + 102) + (M + 9)φ2 + 33P + 93)2 , (28)

where P(φ) =
√

φ2 + 10φ− 9, M(φ) =
√

φ2 + 10φ + 9, and φ(λ) =
√
−4λ− 7.

Let us make λ = w + iy, and after some algebraic manipulations, we have∣∣E ′(ex3,4, λ)
∣∣ < 1,
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if and only if (
w +

1
16

(
323 + 11

√
145
))2

+ y2 < 1/256
(
−29 + 11

√
145
)2

,

as shown in Figure 2. Therefore, ex3,4 are attractors, if and only if∣∣∣∣λ +
1

16

(
323 + 11

√
145
)∣∣∣∣ < 1/16

(
−29 + 11

√
145
)

.

In analogous way, the rest of the Theorem is proved.

Figure 2. Stability of the fixed points ex1,2 and ex3,4.

The strange fixed points for the values of the parameter that reduce the operator are the
following:

(a) λ = −10 : ex1 = −5.1792, ex2 = −0.19308, ex3,4 = 0.186141± 0.98252523i;
(b) λ = −5 : z = 1, ex1 = −4.05624, ex2 = −0.246534, ex3,4 = −0.348612± 0.937267i;
(c) λ = −4 : ex3,4 = −0.5± 0.866025i;
(d) λ = −2 : z = 1, ex1 = −2.61803, ex2 = −0.381966, ex3,4 = −1;
(e) λ = −1 : z = 1, ex1,2 = −2.12196± 1.05376i, ex3,4 = −0.378036± 0.18773i;
(f) λ = 0 : z = −1, ex1,2 = −2.19428± 1.53703i, ex3,4 = −0.305725± 0.214151i.

3.3. Analysis of Critical Points

From the definition of the critical point, given in Section 3.1, it is easy to prove that
z = 0 and z = ∞ are critical points, for all values of the parameter. In addition, there are
other critical points that we call “free”.

Theorem 7. The rational operator has the following free critical points:

(i) z = −1, if λ 6= −10,

(ii) cr1,2 = − n
s +

√
−λm
s ± C(λ),

(iii) cr3,4 = − n
s −

√
−λm
s ± C(λ),

where
m = 2λ2 + 13λ + 20, n = 3λ + 20, n = λ + 5,

C(λ) =
√

2

√
−λ4 + 15λ3 + 80λ2 − 150λ− ns

√
−λm

s3 .
(29)

The free critical points in the values reducing the operator are cr1,2 = −2±
√

3 for
λ = −10; cr1,2 = 1

4 (−7±
√

33) for λ = −5; none for λ = −4; cr1,2 = 1
3 (−4−

√
7) for

λ = −2; cr1 = −2, cr3,4 = − 7
8 −

√
15
8 i for λ = −1; and z = −1 for λ = 0.

Let us note that if λ = −4, then the only fixed points are the roots of the polynomial,
without free critical points. We can observe that it is among the best values that we can
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assign to the parameter, because it reduces the rational operator to x4. So, with this value
our method has the most stable behavior.

3.4. Parameter Planes of Critical Points

Chicharro et al. in [14] contributed to the generalized study of dynamic planes and
parameter planes of families of iterative method. We conduct a similar study for the KLAM
family (19).

There is one parameter plane for each independent free critical point. It is obtained
by iterating the method taking as initial estimate each free critical point. We first define
the mesh for complex values of the parameter and then consider each of its nodes as an
element of the iterative method family. When iterating that method over the free critical
point used as the initial estimate, we represent the parameter plane by assigning the color
red or black, depending on whether that critical point converges to 0 or infinity, or not,
respectively. The elements used are meshing in the desired domain, 500× 500 points; the
maximum number of iterations is 80, with tolerance 10−3.

Let us now examine the two big regions that complete the study of the instability
of the KLAM family of methods, based on the attractiveness of the fixed points, shown
in Figure 3. The region where strangers 1 and 2 are attractors is very small and is not
visualized in this graph, even if we consider the interval where it is contained.

Some regions where the extraneous fixed points are attractors, indicated in Figure 3,
are the same in Figures 4 and 5 that do not lead to the solution.

Figure 3. Stability of the fixed points z = 1, ex3 and ex4.
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Figure 4. Parameter plane critical points cr1 and cr2.
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Figure 5. Parameter plane critical points cr3 and cr4.

3.5. Dynamical Planes

To draw the dynamic planes, as with the Section 3.5 about parameter planes, we base
our work on the contributions of Chicharro et al. in [14], applying the study to the KLAM
family.

To generate the dynamical planes, we proceed in a similar way as for the parameter
planes. In this case, parameter λ is constant, then the dynamical plane is related to a specific
element of KLAM family. Each point of the plane is considered as an initial point in the
iterative scheme, and different colors are used, depending on its convergence point.

To obtain the dynamical planes, we used a mesh of 1000× 1000 points of the complex
plane, and a maximum of 200 iterations. We have chosen the parameter values shown in
red in the parameter plane of the Figures 4 and 5. We represent the superattractor fixed
points with asterisk, the fixed points as circles, and the critical points as squares.

We took some values that simplified the parameter, as indicated in the Section 3.2,
among others −4, −5, −10, and −2. These were the best choices for λ. We obtained the
corresponding drawings in Figure 6.
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(a) λ = −4
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(b) λ = −5
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(c) λ = −10
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(d) λ = −2

Figure 6. Parameter values with stable behavior.

According to Theorems 4–6 about the strange fixed points, we knew the values of the
parameter for which they were attracting, repulsive, parabolic, or superattracting points.
We presented the dynamical planes with some values, where all strange fixed points were
repulsors, and we obtained the planes of the Figure 7. We noticed that only two basins
appeared, corresponding to the superattracting z = 0 and z = ∞. It can be seen that the
larger the absolute value of λ, the more the method tended to a single shape.

The closer we moved to zero, the wider the basin of z = 0, until it became compact at
λ = 0, where we had only two critical points, z = 0 and z = −1, while the strange fixed
points were z = 1, ex1,2 = −2.19428± 1.53703i, and ex3,4 = −0.30572525±−0.214151i. We
recall that with this value of λ, our scheme corresponded to Chun’s method.
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Figure 8 corresponds to values of the parameter where the strange fixed points were
neutral or superattactors. In all these cases, there were three or four basins of attraction.
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(l) λ = 1500

Figure 7. Good choices for parameter λ.
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Figure 8. Some poor parameter value choices.

4. Computational Implementation

We compared three of the most stable elements of the KLAM family, specifically for
λ ∈ {−5,−10,−2}, and three of the more unstable methods of the family, as indicated in
Theorems 4–6, where λ ∈

{
−22,−16,−5(

√
7 + 3)

}
, which we call KLAM5, KLAM10,

KLAM2, KLAM22, KLAM16, KLAM73, respectively; with the methods of Newton,
Jarratt, (6), Ostrowski, (7) , King (β = 1), (8), and Chun, (9). These last four schemes are
optimal methods of order four. We also compared our methods with the third-order
scheme PM (10).

We used MATLAB R2020a for each of the tests, in a computer with the following
specifications, Intel(R) Core(TM) i3-7100U CPU @2.40 GHz, 16 GB RAM.

The input parameters required for the programs of the iterative methods were the non-
linear function, the initial estimate previously deduced (approximated graphically), a toler-
ance of 10−15, and a maximum number of iterations. We worked with 2000-digit variable
precision arithmetic mantissa, and used as the stopping criterion |xk+1 − xk|+ | f (xk+1)|.
We provided as output the computational approximation of the order of convergence
ACOC, the error estimates |xk+1 − xk|, the total error |xk+1 − xk|+ | f (xk+1)|, the number
of iterations “iter”, the approximate solution, and the time elapsed in seconds.

The nonlinear equations that we solved numerically were

1. f1(x) = cos(x)− xex + x2 = 0, ξ ≈ 0.639154.
2. f2(x) = 10xe−x2 − 1 = 0, ξ ≈ 1.6796306104284499.
3. (Sphere floating in water) A sphere of density ρe and radius r was partially submerged

in water to a depth x, we calculated this depth:

ρax3 − 3rρax2 + 4ρer3 = 0, x0 = 11, ξ ≈ 11.8615,

considering the density of water was ρa = 1 g/cm3, the radius of the sphere was
r = 10 cm and the wooden sphere of density was ρe = 0.638 g/cm3.
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4. (Compression of a real spring) An object of mass m was dropped from a height h

onto a real spring, whose elastic force was Fe = −
(

k1x + k2x3/2
)

, where x was the
compression of the spring; we calculated the maximum compression of the spring:

mgh + mgx− 1
2

k1x2 − 2
5

k2x5/2 = 0, x0 = 0.2, ξ ≈ 0.1667,

considering that the gravity was g = 9.81 m/s2; the proportionality constants were
k1 = 40, 000 g/s2, k2 = 40 g/

(
s2 m0.5); the mass of the object was m = 95 g; and the

height was h = 0.43 m.

By plotting the nonlinear functions whose zero we are looking for, we observed an
initial estimate for the iterative process in each case.

Some numerical test results for various iterative schemes are presented in Tables 1–4,
where ek = |xk+1 − xk| and Ek = ek + |F(xk+1)|.

We must take into account that the approximate computational order of convergence
(ACOC), defined as

p ≈ ACOC =

(
ln
|xk+1 − xk|
|xk − xk−1|

)
/
(

ln
|xk − xk−1|
|xk−1 − xk−2|

)
.

We obtained the results detailed below.

1. Case 1: f1(x) = cos(x)− xex + x2, x0 = 1.99.
KLAM5 was better, requiring only four iterations. All the unstable representatives
diverged. The more stable ones behaved similarly and even better than the classical
ones, as shown in Table 1.

2. Case 2: f2(x) = 10xe−x2 − 1, x0 = 1.5.
This function had steep rises and falls. The only values that converged were the close
ones to the solution, for all methods. The best performance was the KLAM5 with three
iterations. All the other methods, even the unstable ones, converged and required, as
the classical ones, four iterations, except N2 that needed six, as show in Table 2.

3. Case 3: f3(x) = x3 − 30x2 + 2552, x0 = 13.8.
KLAM5 was better, requiring only three iterations. All others needed four, including
the most unstable members of the KLAM family. KLAM2 was better than others,
including classics. KLAM10 was behind Os4; but it was as J4, as shown in Table 3.

4. Case 4: f4(x) = 801,477
2000 + 18,639

20 x− 20, 000x2 − 16x2.5, x0 = 0.13.
For our last function, with real-world applications, KLAM5, KLAM2, and KLAM16
(unstable member) had the best performance with fewer iterations than all the others:
four. The other two unstable representatives behaved as the classics in this problem,
as shown in Table 4.

Table 1. f1(x) = cos(x)− xex + x2, x0 = 1.99.

Method Iter ek Ek ACOC Time

N2 8 3.41444 × 10−21 3.41444 × 10−21 2.0006 0.039454
Os4 5 1.83671 × 10−40 2.75506 × 10−40 4.0003 0.046839
J4 5 1.83671 × 10−40 2.75506 × 10−40 3.9973 0.043834
K4 5 6.97665 × 10−21 6.97665 × 10−21 3.9839 0.052808

Ch4 5 1.79197 × 10−26 1.79197 × 10−26 3.9957 0.047364
PM 5 2.48073 × 10−20 2.48073 × 10−20 3.0367 0.04878

KLAM5 4 3.78449 × 10−20 3.78449 × 10−20 3.9543 0.036386
KLAM10 4 3.78449 × 10−20 3.78449 × 10−20 3.9543 0.036547
KLAM2 5 3.20552 × 10−33 3.20552 × 10−33 3.99836 0.049646

KLAM22 - - - - -
KLAM16 - - - - -
KLAM73 - - - - -
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Table 2. f2(x) = 10xe−x2 − 1, x0 = 1.5.

Method Iter ek Ek ACOC Time

N2 6 1.2344 × 10−27 1.23445 × 10−27 2.0000 0.036938
Os4 4 0 3.67342 × 10−40 - 0.043133
J4 4 0 1.83671 × 10−40 - 0.04651
K4 4 3.6734 × 10−40 5.51013 × 10−40 3.9745 0.046658

Ch4 4 3.6734 × 10−40 7.34684 × 10−40 3.8100 0.054437
PM 4 1.7016 × 10−22 1.70159 × 10−22 2.9997 0.050942

KLAM5 3 4.911 × 10−16 4.91102 × 10−16 4.2273 0.05847
KLAM10 4 0 3.67342 × 10−40 - 0.062514
KLAM2 4 3.6734× 10−40 1.65304× 10−39 3.9983 0.047483

KLAM22 4 5.5615 × 10−31 5.5615 × 10−31 4.0032 0.046064
KLAM16 4 7.3990 × 10−36 7.3992 × 10−36 4.0016 0.048634
KLAM73 4 2.88944 × 10−27 2.88944 × 10−27 4.0057 -

Table 3. f3(x) = x3 − 30x2 + 2552, x0 = 13.8.

Method Iter ek Ek ACOC Time

N2 5 1.0736 × 10−19 1.07356 × 10−19 2.0000 0.02148
Os4 4 2.9387 × 10−39 7.55255 × 10−37 4.1218 0.030254
J4 4 5.8775 × 10−39 7.58194 × 10−37 4.1218 0.038625
K4 - - - -

Ch4 4 2.9387 × 10−39 1.50757 × 10−36 4.2012 0.034046
PM 4 4.6207 × 10−24 4.6207 × 10−24 3.0839 0.041648

KLAM5 3 4.0429 × 10−16 4.04291 × 10−16 4.0716 0.027226
KLAM10 4 5.8775 × 10−39 1.51051 × 10−36 4.2689 0.037735
KLAM2 4 0 1.5046 × 10−36 - 0.035880

KLAM22 4 2.9387 × 10−39 1.5076 × 10−36 4.5759 0.044499
KLAM16 4 2.9387 × 10−39 1.5076 × 10−36 4.6877 0.040360
KLAM73 4 2.9387 × 10−39 1.5076 × 10−36 4.5821 0.045410

Table 4. f4(x) = 801,477
2000 + 18,639

20 x− 20, 000x2 − 16x2.5, x0 = 0.13.

Method Iter ek Ek ACOC Time

N2 8 4.9684 × 10−22 4.96836 × 10−22 2.0000 0.052285
Os4 5 0 8.74274 × 10−38 - 0.056474
J4 5 0 1.00744 × 10−37 - 0.054038
K4 5 1.686 × 10−22 1.68602 × 10−22 3.9763 0.063776

Ch4 5 4.5335 × 10−27 4.53348 × 10−27 3.9906 0.066177
PM 6 8.2652 × 10−40 4.99388 × 10−36 2.9853 0.046459

KLAM5 4 1.0841 × 10−16 1.08407 × 10−16 4.7461 0.056326
KLAM10 5 2.0468 × 10−16 2.04679 × 10−16 4.9315 0.059874
KLAM2 4 9.18 × 10−41 8.75 × 10−38 4.2554 0.044578

KLAM22 6 0 1.0074 × 10−37 - 0.078946
KLAM16 4 5.15 × 10−20 5.15278 × 10−20 6.5817 0.053013
KLAM73 5 2.75 × 10−31 2.75289 × 10−31 4.0032 0.077310

5. Conclusions

The biparametric Ermakov Hyperfamily, presented in this paper, improves the uni-
parametric Budzco third-order family, thus achieving a significant improvement over
Newton’s method, since Budzco’s has wider regions of convergence and achieves a higher
order than the latter. Our new family provides fourth-order optimal methods. This implies
that many applied problems will be able to use our method, which is simple in its scheme
but more powerful than Newton’s scheme.

This new family generalizes some important classical schemes, such as King’s family
and Chun’s method, of proven application and reference for fourth-order methods. A new
class, as a particular case of the Ermakov Hyperfamily, is the uniparametric KLAM family,
also presented in this paper, whose dynamical behavior we have analyzed. It is a class of very
stable iterative schemes for any value of the parameters, except in a few cases where a black
region appears in the parameter plane, which is minuscule, compared to the stable region.
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We note that Ostrowski’s method is a particular case, with λ = −4, as it is Chun, with
λ = 0. The method performs very well with other values of the parameter λ ∈ {−5,−10,−2},
outperforming in many cases this and the other classical methods in numerical tests. The best-
performing representative in all the numerical tests was the KLAM5, corresponding to λ = −5,
which in the dynamical study for quadratic problems was higher than the fourth order.

The Ermakov Hyperfamily, with its subfamily KLAM, constitutes a significant contri-
bution to the scientific community. We consider that we have a very stable family that can
be extended to systems. If it behaves with similar stability in the vector case, we have a
family that could be a reference for fourth-order methods in the multidimensional case.
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