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Abstract: The current study presents a comprehensive Lie symmetry analysis for the time-fractional
Mikhailov-Novikov—Wang (MNW) system with the Riemann-Liouville fractional derivative. The
corresponding simplified equations with the Erdélyi-Kober fractional derivative are constructed by
group invariant solutions. Furthermore, we obtain explicit solutions with the help of the power series
method and show the dynamical behavior via evolutional figures. Finally, by means of Ibragimov’s
new conservation theorem, the conservation laws are derived for the system.
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1. Introduction

Over the last few decades, many researchers have focused on analyzing the propa-
gation of nonlinear waves on the ocean surface found in various areas, including ocean
engineering, plasma, hydrodynamics, and tsunami waves. In 1871, Boussinesq [1] pre-
sented a model that explained the propagation of long waves in shallow water. This
model has significant applications in the numerical simulation of nonlinear string vibra-
tion, plasma acoustic waves, coastal engineering, and shallow water waves [2]. In 2006,
Mikhailov, Novikov, and Wang [3] proposed a productively extended Boussinesq equation
known as the Mikhailov—-Novikov-Wang equation

Upp — Uyt — Syl — dlhyxtlp + 2UxUyyyy + dlhyxlyyy + 24”;25143()( =0. (1)

This is an integrable equation with dynamical behavior, and studying the solutions of
this model can help to understand many interesting nonlinear scientific phenomena [4].
Raza and others [5] used the singular manifold method, spread method, and generalized
projective Riccati equation method to acquire hyperbolic and trigonometric solutions
of the equation. Ray S et al. [6] employed the simplified Hirota method to examine
the twisted multiple soliton solutions and provided a graphical representation of the
findings. Additionally, Ray S [7] also utilized the Lie symmetry method to obtain similarity
reductions, conservation laws, and explicit exact solutions. Similarly, Demiray et al. [8] used
the GERFM method to solve the MNW equation and obtained trigonometric, hyperbolic,
and dark soliton solutions.

In the literature [3], Mikhailov and others introduced the MNW equation and revealed
a fully integrable fifth-order nonlinear partial differential system called the MNW system

{ut = Uyrxrx — 20Ul yyy — BO0UL UL + SOuzux + vy, 2

Ut = —6VUyyy — 2Ux Uy + 960UU + 16vxu2,

where the velocity function u(x, t) and the height function v(x, t) are differentiable func-
tions. Sergyeyev [9] presented a zero curvature representation of the MNW system in their

Fractal Fract. 2023, 7, 457. https:/ /doi.org/10.3390/ fractalfract7060457

https:/ /www.mdpi.com/journal/fractalfract


https://doi.org/10.3390/fractalfract7060457
https://doi.org/10.3390/fractalfract7060457
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract7060457
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7060457?type=check_update&version=2

Fractal Fract. 2023, 7, 457

20f19

paper and constructed multiple solitons and finite gap solutions using inverse scattering
transformations. Sierra [10] obtained the traveling wave solutions of the MNW system via
the extended tanh method. Similarly, ref. [11] applied the same methodology to obtain
solitary waves and periodic and soliton solutions of the system. Shan and others [12] used
the Lie algebra approach to demonstrate that the equations are integrable in the Lax sense
and possess Hamiltonian structures.

To date, research on the MNW system has only been considered integer orders. We
will study the system in time-fractional order to enable a more comprehensive study of the
MNW system

{ Dfu = ajtiyyxxx + a2Utlxxy + a3ty + a4u2ux + asvy, @)

Dfv = byUtyyy + oty vy + byouuy, + byvyu?,

where 0 < a < 1, Df denotes the Riemann-Liouville derivative operator, and a;, b]-,
i=1.--5j=1..-4are constants. The time-fractional MNW system is a new system
that scholars have not studied before. When we take a = 1, the system (3) degenerates
into the MNW system, a Boussinesq-type integrable system that describes nonlinear wave
phenomena. The time-fractional MNW system is an extension of the MNW system in
time, and it can be used to simulate the dynamic behavior of water wave propagation in
oceanography and atmospheric science. Therefore, it is vital to investigate its properties
and explicit solutions.

The fractional partial differential equation (FPDE) has garnered considerable attention
due to its broad usage in scientific and engineering fields [13-15]. It represents natu-
ral phenomena more accurately than the integer partial differential equation. Therefore,
finding effective methods to study the FPDE is of great significance [16]. To date, nu-
merical and analytical methods exist for solving the FPDE, including the finite difference
method [17,18], the homotopy analysis method [19], the sub-equation method [20,21], the
invariant subspace method [22-24], the Lie symmetry analysis method [25-29], and so
on. Lie symmetry analysis, in particular, offers a powerful technique for solving partial
differential equations and can yield vital symmetry properties such as invariant solutions
and conservation laws [30]. Implementing group invariant solutions can facilitate the
discovery of additional invariant subspaces about the relevant differential operators while
reducing the original equations’ complexity. Meanwhile, conservation laws play a critical
role in examining differential equations’ properties and verifying the solutions’ precision
and stability. In 2007, Gazizov et al. [31,32] extended Lie symmetry analysis to FPDEs, then
some researchers applied the Lie group method to study the FPDE and obtained many
vital solutions.

This study aims to use the Lie symmetry analysis method to solve the time-fractional
MNW system and present the conservation laws of the system by Ibragimov’s new conser-
vation theorem.

The remaining sections of this paper are structured as follows: Section 2 presents
the definition and property of the Riemann-Liouville fractional derivative. In the next
section, we introduce the application of classical Lie group theory to the time-fractional
partial differential system. The focus of Section 4 is to apply Lie symmetry theory to our
fractional MNW system to obtain Lie symmetry generating elements and the reduced
system. Next, Section 5 uses the power series method to solve the time-fractional ordinary
differential equations and analyze the solution’s convergence. In Section 6, we establish the
non-local conservation laws separately for each of the obtained Lie symmetries according
to Ibragimov’s new conservation theorem. Section 7 discusses the dynamical behavior of
the newly discovered power series solutions. Finally, the concluding remarks of this paper
are presented in the last section.
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2. Definition and Properties of the Riemann-Liouville Fractional Derivative
It is well known that there are various definitions of fractional derivatives, such as

Riemann-Liouville type, Caputo type, Weyl type, etc. In our research, we adopt the
Riemann-Liouville fractional derivative:

1 a" rt o f(t,x)
— | L _dr,n—-1<a<nncN,
Dif(t,x) = DI f(t,x) = { T(n—a) 307, (t— ettt s e @)

Dif(t, x), x=mn¢€ N,

where t > 4, and we denote the operator ,Df as D} throughout this paper.
The properties of the fractional derivative are

T(B+1)th~=

prp = LB DI
r(p—a+1)

B>a—1 @)

3. Lie Symmetry Analysis for the Time-Fractional Partial Differential System

Applying Lie symmetry group theory to the fractional partial differential system
is essential for comprehensively comprehending our system’s mathematical and phys-
ical meaning. Let us provide a concise overview of fundamental concepts and derive
the formula for the a-th extended infinitesimal of the Riemann—-Liouville time-fractional
derivative, which distinctly differs from the integer order states.

Consider a time-fractional partial differential system with independent variables of x
and t as follows

(6)

®
{ Dt u= F(xl t/ U, U, Uy, Uxx, Uxxx, Uxxxxx, 0, Ot, Ux)/

14
Dfv = G(x,t,u, ut, Uy, Uy, Uxxx, U, Vt, VUx).

Assume the system (6) is invariant under the one-parameter (¢) Lie infinitesimal
transformation group

x* =x+ef(x,tu,0) +O(82),
*=t+et(x, tuv) +O<82>,
u* =u+en(x,tuov) +O(82

)
v =v+ep(x,t,u,v)+0 82),

aa%: = g%l%—ent (x,t,u,0) —i—O(ez),

E;if: = g%) + e (x,t,u,v) + O<€2>, )
221 =35 +en*(x, t,u,0) +O(ez),
gz: = gj +e¢p*(x,t,u,v) + 0O 82),

gii: gzz +en™(x, t,u,v) + O(ez),

gi—lg = g% +en™(x, t,u,0) + O(sz),

Pu*  du

= o o[,
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where ¢ < 1 is a group parameter and ¢, 7, #, and ¢ are infinitesimals. Now, we give
several extended infinitesimals

7" = Dx(17) — uxDx(&) — utDy(7),
¢* = Dx(¢p) — vxDx (&) — v:Dx(7),
=D, (Ux) - uxxDx(‘:) - uXth(T)’ ®)
7% = Dy (1™) — txxxDx (&) — uxxtDx(T),
7 = Dy (1) — txxxxx Dx (&) — thxxxt Dx (T),

where the total derivatives of x and t are denoted as D, and D; and defined as

D —i+ui+vi+u.i+v4i+... =172
F ok TR u T Tk g kJau]- k’auj rI= s

where x* can be considered for both independent variables x and t as x! = x, x> = t.
The infinite generator V associated with the above group transformations is as follows

0 0 d 0
V =_¢(x, t,u,v)a +1(x, t,u,v)g +1(x, t,u,v)ﬁ + ¢(x, t,u,v)%. )

It is necessary to construct the invariance conditions of the system (6) under the point
transformations of Equation (7)

A=0 (10)

where

A = Dtﬂtu - F(x/ t, U, Us, Uy, Uxx, Uxxx, Uxxxxx, U, Ot, Ux)r
AZ = Dltxv - G(x/ t/ U, U, Uy, Uxx, Uxxx, 0, Ut, Ux).

As the lower limit of the integral in system (6) remains fixed, it maintains invariance
under the transformations outlined in Equation (7). Thus, the corresponding invariance
condition [33] becomes

T(x, t,1,0)|,_g = 0. (11)

The 7 and ¢} are the a-th extended infinitesimal related to the Riemann-Liouville
time-fractional derivative

{ n = D () + EDf (x) — Df (Guz) + Df (Di(t)u) — Df ' (zu) + 7D (u), (12)

r
¢ = DE(¢) + EDf (vx) — DF(§ox) + Df (Di(t)0) — DfH (10) + tDF 1 (0),

where the character D} represents the total time-fractional derivative operator.
To simplify Equation (12), we need the generalized Leibniz formula in the fractional
sense

DEf()g(1)] = f( ; )Df]’f(t)D{g(t), £>0, 13

=N/

o _ (=D lar(j—a)
where ( j ) = 7“1_“)“/“) .
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Substituting Equation (13) into the system (12), the following expression is obtained

aﬂt
i = Dy () — aDi(1) 57
2 (o Jpr@os e (0,5 ) oDy,
3o m=1 (14)

o = D (9) — aDy(0) 2
(o )or@prec £ (1,5, ) mnr )

m=1

On the other hand, we review the generalized chain rule for composite functions in
this form
d"g d" r -] 98(f)
dtm ZO Z()( ) )}"W [f(t)] r} df] : (15)
] r

Applying the chain rule (15) and the generalized Leibniz formula (13), let f(f) =
Then, the expression for Df (17) and Df(¢) in Equation (14) becomes

o o e Oy .
D?(i’]) = at“ +77uatél u ag( + Z < m > thlX m(u)—i—&,

otm
% ® 0 (PU (16)
mw=w+%w—9;+z( )W (o) + @,
where
R R () Pt B
o S S e AL n r )ji'T(m+1—ua) ot otrm=noul
o m n j—1 . m—u n m—n+
_ o m j\1 t 0 ) i
w_mX_JZn;]gr_()( m )( n )( r )j!l"(m—i—l—zx)( v)’ 8t"<v )atm nypi”
Thus, the explicit form of Equation (14) becomes
o* 0“u 8"‘
77? = atZ +(711/l _IXDt(T)) at“ al +5
S o a“’?u o m+1 a— m - a—my,
+Z_:Km)ata_<m+1>Df (7)| Dt Z_; ¢)D;
m=1 m=1 (17)

¢ Fo e,

9 = G T (@0~ D) g — oG Fw

+§1K:1)a;iv(mil)DTH(r)}D;‘m f;( ) £,

m=1

4. Lie Symmetry Analysis and Reduction

In the preceding section, we provided an overview of the preparatory work for
utilizing the Lie symmetry method when dealing with the time-fractional partial differential
system. In this section, we will apply the above Lie theory to present group invariant
solutions and reduced systems for the time-fractional MNW system.

Calculating

pridV(Ay)
preAV(Az)

=0 (18)
Ar=0
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we obtain the following linearization invariance conditions

ne = a4 n(aguiyry + 2a4uuy) + ¥ (ag,uxx + a4u2> + asn*uy + apy™ u 4 as¢*,

¢f = p(bruxxx + bauuy) + ¢* (bzuxx + b4u2> + 17 (b3vuy + 2bguvy) (19)
+ ban*ou + byn*rox + bin*o.

Substituting Equations (8) and (17) into Equation (19) and setting the coefficients of
the different derivatives of # and v to zero, we obtain an over-determined system satisfied
by ¢, T, 1, and ¢.

By using the Maple package program [34] to solve the overdetermined system uni-
formly, we get

¢ =ciax+cp, T =bcyt, y = —2c1au,¢p = —601000,
where ¢y, cp are arbitrary constants. Thus, we obtain the two-dimensional Lie algebra
spanned by
0 d 0 d d
Vi =ax e + 5t o au 5 6¢wav, %} e (20)

with [Vl, Vz} = —aVs.
Case 1:
The Lagrange system corresponding to symmetry generator V, is as follows

dx _dt_du_do

10 0 0 @)
solving the above system yields the corresponding invariants
u= f(t),0 = g(t). 22)
Substituting Equation (22) into the original system (3), we get
Dif(t) =0,
{D;*g(t) 0. )

By solving the fractional ordinary differential system (23), we obtain a set of solutions
for the time-fractional MNW system as

u=Ct* Lo=Ct*l, (24)

where C; and C; are arbitrary constants.
Case 2:
Now, let us focus on the symmetry V;. The corresponding Lagrange system is

dx dt du do
xx 5t  —2au  —6av’ (25)

Solving the Lagrange system (25), we obtain several similarity variables Xt ut%,
and vt % . Thus, we get the invariant solutions of system (3) as follows

u=t"5f(@),0=1t%g(), (26)

where & = xt~5.
Additionally, we utilize the invariants above to derive a reduced fractional ordinary
differential system and prove this case in the following theorem.
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Theorem 1. The similarity transformations u = t’%f(c:),v = t’%xg((:) with the similarity
variable & = xt~5 reduce the time-fractional MNW system (3) to the ordinary differential system

of fractional order
( Py % f) (2) = arf""(2) +a2f (E)f"(§) + asf' (@) f"(8) + asf2 (@) f'(2) + as8'(£),
: (27)
(P58 (@) = bugs (@) + baf (O (€) + bag (SO (€) + bug O5(0),
where Pg “ is the Erdélyi—Kober fractional differential operator defined by
n—1 d
Przx . KT+1xn 13 , 0, 0’ 0,
(P5*f) (@) = ]HO(T“ 505 ) (K5 ) @, ¢>0a>0p> N
B { [] +1, k¢ N,
T w, ke N,

and with the Erdélyi—Kober fractional integral operator defined as
1 /°° { a1, (t+a) ( 1)]
—_— u—1 u ub ) |du, a >0,
(K55) (@) = { G b (7Y e @)
f(&), x=0.

Proof of Theorem 1. For 0 < & < 1, according to the Riemann-Liouville fractional deriva-
tive, the fractional result of u concerning t (u = 3 f(&),&=xt"5)is

« ST A
ai ( ) 1—1x at/ ag=5u (xs_ﬁ)ds.

ot ot

Assume r = L, in this case, ds = —tr~2dr, then apply the Erdélyi-Kober fractional
integration operator. The above equation becomes

- % [t”s"‘ (K%Zg’l“f> (g)].

Since & = xt~5 and ¢ € C'(0, o), the following relation holds

12 9() =19/ (@) (5 )xt 7 = g/ (0)

Hence, we arrive at
o ()
7 7n 2 —K _ 7 8 —2 —u
— (=B ()0 - e ()@
o[- 3 ()l

Similarly, we obtain the Riemann-Liouville derivative of v(t, x) as follows

0“v -y 11,
at”‘ =t tx(PS > ag) (‘:)

o



Fractal Fract. 2023, 7, 457

8 of 19

Meanwhile,

2
A Uxxxxx T A2 UUxxx + A3UxUxx + A4U Ux + A5V

_ altfgzxf///// + azt—%zxff/// +a3t*%"‘f’f” —0—1141‘7%“](2]‘/ + tl5t7%“g/,
b10Uxxx + Doty Uy + b3vuuy + byoyu 2

= byt B g bt B g bt S g ff 4 bt S g

In summary, the reduced fractional ordinary differential system is

(30)

Thus, the proof of Equation (27) is complete. []

5. Power Series Solutions and Convergence Analysis

This section uses the power series method to deduce the solutions of reduced equa-
tions [28,35]. It is assumed that the power series solutions are in the following

&) =Y ik g(@) =Y ",
k=0 k=0

(31)
where ¢ and d; will be determined later, so
§(@) =Y (k+ D&, f(2) = Yo (k+ Degraék, (32)
k=0 k=0
F1(@) = Yo (ke + 1) (k+2)ci28", f7(2) = 1 (k+ 1) (k+2)(k+3)ckra",  (33)
k=0 k=0
fj k+1)(k+2) (k+3) (k+4) (k +5)cxp56" (34)

Consider the definition of Equation (29), we get

(K500 = gy [ 1)t g (et

- i dkﬁkr(ll_“) /100(5 — 1)—&57(271540(,%)615.

k=0

Since B(p, ) f xP~1(1 — x)7dx, and assume t = 1, we have

1 00
B(p.q) = /o P71 = x) T dx = /1 (t— 1)1 1 (PHa)gy

Thus,
6w g o0 B(1-%-%1_q o T(1-%-k
(KlS v ag)(g):kgd"gk ( iy ) kzodkr(( ?Zg))é"‘,
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and since n = [#] +1 =1, we get

Similarly,

l' 7 ki
44 44

Substituting Equations (31)—(36) into system (27), we get

o T(1-% - )
imor(1- e — k)

At =ty 2 2 (k+1—=p)(k+2—p)(k+3 = p)exs—pdpl"

ok o k P
+h Y Y (k+1—p)(k+2—=p)(p+ Decszpdpral +b3 Y, Y Y (k+1-p)
=0 p=0 k=0 p=0i=0
k 2 &
X Cpi1—pCpidi€ +bs Y Y Y (i + D)ckpop—idipa &,
k=0 p=0i=0

o T(1-2 ke
(55>ckg’< oy Y (k4 5) (k- 4) (K 3) (k 4+ 2) (k + 1) s

kgor(l ~R- k) =
+ay )’ Z (k+1—p)(k+2—p)(k+3— p)eers_pcpl* +as Y (k+ 1)djq 2
o k . o k P
+a3 ) ) (k+1=p)(k+2=p)(p+1)csopcpirl  +aa ) Y ) (k+1-p)
= k=0 p=0i=0

k
X Ck+lfpcp—ici§ .

Comparing the coefficients for k = 0 in Equations (37) and (38), we get

» T(1-%)e
1 I'(1-%)do
= ————— | 6bicsdy + bacrcody — ——2 |,
2bycy T bace? ( 1C3dg + b3c1c0d0 (1 %)

where ¢, 1, ¢2, c3,d are arbitrary constants. For k > 1, we obtain

(35)

(36)

(37)

(38)

(39)
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- 1 ri-%-% - ko1
Ck+5_(k+5)(k+4)(k+3)(k+2)(k+1)a1 (-2 %a Ck—ang%)( +1-p)

X (k+2=p)(k+3—=p)erzpcp—as ) (k+1—=p)(k+2—p)(p+ 1)k, (40)
p=0

kK p
X Cp+1 — a4 Z Z(k +1-— p)ck+1_pcp,ici — 115(k + 1)dk+1] ,

p=0i=0
1 r( _@_kﬂ) k
diyq = >S5 g —b k+1—
kol (k+1)(2b2cz+b4c5)[ ( _ﬂTw_%a) k 1,;)( P)

X (k+2—p)(k+3—p)ekiz—pdp — b3 Z Z (k+1—p)exy1—pcp—idi
p=0i=

k-1 k=1 p

by ) (k+1=p)(k+2=p)(p+V)errapdpsr —ba Y ) (i+1)ck
p=0 p=0i=0

(41)

k-1
X cp_idiy1 — by ) (i+ 1)C00k—idi+1] :
i=0

Therefore, the power series solutions of system (3) are

u(x,t) = t%mf(g) = cot% + clxt% + czxzt%m + e3Pt 4 C4x4t#

2 I'( _%)CO LIS C
6coc3ay + 2c1cpa3 + cjeras + dias — ——— t5
ri-7%)
o0 F(l 20( _ er)
+ a—kfaz +1-p)k+2—p)(k+3—p)
k_Zl{ [T(l 5 - ) Z (42)
k
X cpapp—a3 ) (k+1—p)(k+2—p)(p+1)ckr2 pCps1
p=0

© 120a;

kK p

—u(k+7)
—ag ) Y (k1= p)egia-pepici —as(k + l)dk+1] }Xkﬂt 5
p=0i=0

—ba —ba — 1

0(,) = 12 g(g) = dot
dp — by Z(k—l—l —p)k+2—p)

+
Z{k—f—l) r(l_llTlX_ktX> pIO
k-1

x (k+3—=p)exiaz—pdp — b3 Z Z(k +1=p)eks1pep-idi —b2 ), (k+1—p) (43)
p=0i=0 p=0

T(1-%)dy\ 7
+——— [ 6bycsdy + bscqcod —5)xt5
2b2€2+b4€%< 15350 3T1E0%0 F(l =4

F( —%‘"—k—"‘) k

x (k+2—=p)(p+1)crsa- p p+1 b422 (i+1)cx— pCp— idit1
p=0i=

k=1 i1, =)
—by Y (i4+1)cockidipr | g5,
i=0
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where
1

k+5)(k+4)(k+3)(k+2)(k+Da’’

In the following, we present a convergence analysis of the power series solutions.

ro-zB)| _ o r-g)
1,
F-Eg)|

o =

= (2b2C2 + b4C%).

| <1, we have

According to Equations (40) and (41), since (1= m moyy

k
ks < M| lexl + 35 (k+ 1= p)(k+2 = p) (k+3 = p)|cxssp|[es]
p=0
k
+ Y (k+1=p)(k+2=p)(p+1)|cksap|lepna] (44)
p=0
kK p
+ ) Y (k+1- ‘Ck+l—p‘|cpfi||ci| + (k+1)|dk+1|]f
p=0i=0

k
il < N[l + Y (k1= p)(k+2 = p)(k+3 = p)|cerap|ldy]

p=0

k p
+Z_j§;k+1f p)|exsaplep- 1!|d|+2 (k+1-p)k+2=-p)(p+1)  (45)

X [exia- pHd;H-l"“ZZ (i+1) ‘Ck p“cp 1||d1+1|+z (i+1)cr— 1||dz+1|1

p=0i=
where
M:max{lrazra:&r%}N ma{ ,b3,b21b460}_
ar| |ar| |a1| |m el'lp 0 0

Then, we describe the different forms of the power series as
=Y g6, R(0) = Y ",
k=0 k=0
Where qO = ‘CO|/ ’71 - |Cl|/ ‘12 = |C2|/ q3 = |C3|/ 114 = |C4|/ ro = |d0|/ and

k
gk + Y (k+1—p)(k+2—p)(k+3—p)dcis—pip
p=0

G5 =M )
k=0

+ Z (k+1—=p)(k+2—=p)(p+ 1)drro—pdp+1 + Z Z k+1-p)

p=0 p=0i=
X Gkt1—pdp—idi + (k+1D)repal,
00 k
1 =NY i+ ) (k+1=p)(k+2—p)(k+3—p)grrs—prp

kK P k—1
+ Y Y (k41— p)aisr—pap—iri + Z(k+1 —p)k+2-p)(p+1)
p=0i=0 p—

-1

X r2—pTp1+ Z Z (i+1)qr— pp—iti+1 + Z (i+D)qe_iriy1
p=0i= =0
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Therefore, it is evident that |c,,| < g, and |d,| < 1, forn =0,1,2,..., Q(#) and R(0)
are majority series for Equation (31). Next, we prove that the series Q(6) and R(6) have a
positive radius of convergence. We have

Q(0) = qo + 710 + 920% + 736° + 740" + Y 11505
k=0

k
g+ Y, (k+1=p)k+2—p)
p=0

={qo+ Q19 + Q292 + Q393 + Q494 + M Z
k=0

k
X (k43— )iz plp + Z (k+1—p)(k+2—p)(p+ ko pdps1 (46)

H M'@

o

= G0+ 10 + 026° + 330 + qu0* + M(Q +0"0+Q'0 +Q'Q*+ R’)95,

(k+1—p)grs1-pap—iqi + (k+ 1)7’k+1] ok+>

k
e+ Y, (k+1—p)(k+2—p)(k+3—p)

R(G) =710+ 2 Tk+19k+l =1+ N Z
k=0 p=0

k=0

kop k-1
X Gera—ptp+ 3 ), (k+1=p)gip1ppiri+ ), (k+1—p)(k+2—p)
p=0i=0 p=0 (47)

k-1 p k-1

X (p+1)qxs2- plp+1 T Z Z (i+1)qx— pp—iTi+1 + Z (i 4 1)qk—itita gFHl
p=0i= i=0

=70+ NO(R+Q "R+ Q QR+ Q'R — (245 +q0)R + (1 - q0)QR  + Q?R).

Consider the system with the independent variables 8, Q, and R

F(6,QR) = Q — 4o — 710 — 126° — 436° — 46"
-M(Q+Q"Q+Q"Q +QQ*+R)6°
G(6,Q,R) = R — 1o
—No (R + Q"R+ Q QR+ Q"R — (245 + q0)R’ + (1 — q0)QR’ + QZR’).

The functions F(0, Q, R) and G(6, Q, R) are analytic in the neighborhood of a point
(0,490, 10). Since F(0,490,79) = 0, G(0, go,79) = O, the Jacobi determinant is

J(F,G)
d(Q,R)

Then, using the implicit function theorem, we find that the series Q = Q(6) and
R = R(0) are convergent in a neighborhood of positive radius (0, 4o, 7). So, the series f({)
and g(¢) are convergent in a neighborhood of (0, 4o, 19), and the exact solutions acquired
through a Lie symmetry analysis exhibit strong convergence.

J= #0. (48)

6. Conservation Laws of the Time-Fractional MNW System

In this section, we construct several conservation laws for system (3) using the gener-
alization of the Noether operator and Ibragimov’s new conservation theorem [36,37]. The
time-fractional MNW system is represented as follows

{ k= D?u — A Uxxxxx — AQUUxxxy — A3UxUxx — a4u2ux —as5vx =0, (49)

F = Dfv — b10uyyy — batiyy0x — b3vuniy, — byvu® = 0.
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Since many equations do not have Lagrange functions, the universality of Noether’s
theorem cannot be guaranteed. Consequently, Ibragimov resolved this issue by introducing
a formal Lagrangian and the adjoint equations for the differential equation. According to
this approach, the formal Lagrangian for the system is established as

L=p(t,x)FL+q(tx)F
= P(t/ x) (Dt“u — A Uxxxxx — AQUUxxx — A3UxUxx — a4u2ux - a50x> (50)

+ q(t,x)( 80 — D10Uxyy — bollyy Uy — b3vUUy — b4vxu2),

where p(t,x) and ¢(t,x) are new adjoint variables. The Euler-Lagrange operators are
presented as follows

PR SR S-S 2
E_ﬂ'i'(Dt) W+S;( 1)°D;, Dlsm/ (51)
PR TP TR T 9

50 a0 T (DH) 8D$v+£( Ui - Digp— 42)

where (D{)" is the adjoint operator of Df. It is defined as (D¥)* = ;I% "D} and the right
Riemann-Liouville integral operator ;I * is defined as

0 = s [

(1, —a T— t)DL‘Fl*V

wherer —1 <a <randr € N.
The adjoint equations to (49) are given by

Ff = 5= (Df)"p — bavuxq — 2bgoxuq + a4u2px — A3UxxPx — A3UxPxx — D2Uxxxq
— 2b20xex - bzvx%cxx + Basuyx Py + 3a2Ux Py + A2UPxxx (53)
+ blvxqu + 3blvxex + 3blvx4xx + blU‘]xxx + A1 Pxxxxx = 0,

B = S0 = (D?) q—+ (bZ - bl)uxqu + (2b4 - b3)uuxq + aspx + botiyxqyx + b4u2%c =0.

Next, we use the adjoint equations and Ibragimov’s new conservation theorem to
construct conservation laws for the fractional MNW system (49). Based on the classical
definition of the conservation laws, a vector C = (Ct, Ccx ) is a conservation vector for the
governing equation if it satisfies the conservation equation [D;C' + D,C*]f, ,—0 = 0. The
conservation vector’s components are obtained using Noether’s theorem.

Therefore, we have

) )
prV—t—DtT-I—i—DxC-I:W”-(S—M—FW”-%—FDtNt—I—DxNX, (54)

where pr V is mentioned in Equation (10), Z is the identity operator, and W* =y — tuy —
Cuy, WY = ¢ — tu; — Cuy are the characteristics of the group generator V. We get the
Noether operators as follows

= 9 9
b _1\k pa—1—k 1\ yk _(_1\n u yn
N =+ B (0RoDE Dl s = (00" (W D s -
= 9 9
k pa—1—k v\ Mk n v N
+k=20(_1) ODt (W )Dt a(onU) - (_1) ](W ’ ta(OD;xv)>/
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d d d d d
I+W“( -D + D2 -D3 + D} )
=6 Juy g Ol xy * Ol xxx x O xxxx * O xxxxx
d d 0 d 0 d
W Dy=—— | + Dy (W" -D D? - D3
+ <avx * 0Uxyx > + X( ) (a”xx  Othyx OUyxx R OUxxxx * OUxxxxx >
0 d 0 d 0 (56)
+D wv( -D )+D2 wu< -D + D? )
g ( ) Uy g OVxxx X( ) Ollxxx g Ol xxxx * Ol xxxxx
d d d
+ D3 W“( -D )+D4 W”( )
X( ) Ol xxxx * Ol xxxxx X( ) Ol xxxxx
where n = [#] + 1 and ] is given by
7,x)g(6,x)
1.8) = Form) // A, M P08 D) joar. (57)
The components of the conserved vector are defined by
C'=N'L,C* = N*L.
Case1: V] = ax2 9 2 _ 2
: Vi = axg; +5t5 — 2aug; — 6avy;
Thus, the characteristics of V; are
WH" = —2au — 5tup — axuy, WY = —6a0 — 5t0; — axvy. (58)

Therefore, when 0 < a < 1, we derive the corresponding conserved vectors, respec-
tively, as follows

C' = poDf~H(W") + J(W*, p1) + qoDf ~ (W?) + J(W°, q1)
= —poD¥ 1 (2o + 5tuy + axuy) + J[(—2au — Stuy — axuy), pi] (59)
— qoD¥* 1 (6av + 5tvy + axvy) + J[(—6av — 5tvp — axvy), qe),

C* = W"[—agu®p + (a3 — 2a2)uxpx + (ba — b1)vaxq + (b2 — 2b1)vxqx

— Aalixxp — BUPxy — D1VGxx — 1 Prxxx] + WO [—a5p — bottxrq — byu’q]

+ Dx(W")[(a2 — a3)uxp + (b1 — ba)vxq + agupx + b1ogx + a1prrx]

+ D *(W*)[—agup — b1og — a1pxx] + D (W") [a1px] + D2* (W") [—a1p]

= AXA1 PxxxxUx — 20UA3PxUx + 20UTD1 Gy + 5ptu2a4ut + auaypyily — &XA1 Prxxxx

+ apxasvy — AXA1 PxUxxxx + AXA] PrxUpxx + 6aqu2b4 + 5qtu2b4vt + 60qUby Uy

+ 5qtbouy vt + 6apuastiyy + 4aquby iy, + Sptuasti + 5qtvbi iy — 5qtb1 vy

+ apxXa Upxxry + Optaguyiiyy — 30vb gyiy + Stob Gty + Stuapprxtty + Sptagutiy (60)
— 5toby qxtiyr — Stuagpxiby + 5qtbotiyivy — QUXAPyxliyy — KVXD] Gy llyx + XPXAZUL ULy
+ aquszwx + 20qxbytx Uy + apuxagUyyy + GUXbUyyy — XGXD1 UV + 20107 Pryxx
+ 5tay Pttt + 3aqbyiix vy + 2068y prx — 5ptasiiytize + €0Xby fuxtiy + KUXA) Prliy
+ ucpuzxa4ux — 3agbiuxvy + 60payyxxy + Sptag iyt + 6apvas + Sptasv;
— 5001 Priixxx — 5HA1 Prizaat + 4001 Prxline + 51 Prlizat + 20p1i>ay — 304 prxxiix
— 5tay prxxctixt + 2(2by — by)augyvy + 2(by — by)auqoyy + 5(2by — by)tqxurvy
+5(2ay — az)tpxusuy + 5(by — bp)tquivey + (201 — bo)axgyuix vy
+ (by — bo)aqxuyvyy + (2a3 — a3)axpyu + 3(az — ap)apu’.
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Case2: V, = aa—x.
The characteristics of V, are

WH = —uy, W2 = —0,.
Thus, when 0 < « < 1, we obtain the corresponding conserved vectors as follows

C' = poDy 1 (W") + J(WY, pt) + qoDf~H(W®) + J (W, q1)

(61)
= —poDf (ux) + J(=uux, pr) — qoDf " (0x) + J(—vx, qt),
C* = W"[—agu®p + (a3 — 2a2)uxpy + (by — by )vxxq + (b2 — 2b1)vxqy
— AQUxxP — A2UPxx — blvq:cx - ulpxxxx] + WU[—IZ5P - ququ - b4uzlﬂ
+ DX(WM) [(QZ - a3)uxp + (bl - bZ)qu + aupy + bﬂ”]x + alpxxx]
+ D * (W) [—agup — byog — a1px] 4+ Dx® (W") [a1px] + Du* (W") [—ayp] 62)

= Uy g1’ p + baquyu® + PUdyliyy + Paziixtixy + qOb1Uxyy — UAY Pxilxy

+ uaypxxtiy — b1qxtixx¥ + Ob1Gaxtly + Uxxxxx@1P + PA5Ux — Uxrxx1 P

+ 1 Prxlxxx — A1 Prxxtixe + 81 Prxxxtiy + (b2 — b1)quavay + (2by — by) quiexvx
+ (2a — a3) pxu2 + (2by — b)) Gy 0y

7. Graphical Illustrations of the Power Series Solutions

The following segment discusses the plots of newly discovered power series solutions
generated through Matlab. The graphs of solutions are helpful in studying exact solution
types with many free independent parameters. Selecting these parameters correctly enables
us to observe the structure of solutions accurately and provide a more comprehensive
explanation of the dynamical behavior for the time-fractional MNW system.

The power series solutions of the time-fractional MNW system are the following

(k+2)a (k+6)a
5

u(tx) = FF(Q) = ¥ et (0 = 150 = L a5, (69
k=0 k=0

where ¢, and dy are defined by Equations (39)—-(41) with arbitrary initial conditions
co = £(0), do = £(0), ¢1 = f'(0), c2 = L£"(0), c3 = & f"(0), and cs = & " (0).

In the following, we use different parameter values to represent our obtained power
series solutions. For a given initial condition ¢y, do, c1, ¢, ¢3, c4 = 1, these figures show that
the fractional order difference affects the velocity u(t, x) and height v(t, x) variation of the
free wave surface.

Figures 1 and 2 show the three-dimensional images of # and v at « = 0.25. We observe
the morphology of the free waves for the positive power series solution u and the negative
power series solution v. These plots were obtained by choosing the parameters b; = —6,
bz = -2, bg = 96, b4 =160, a = 1, ay = —20, asz = —-50, ag = 80, a5 = 1, and a = 0.25.

Figures 3 and 4 show the three-dimensional images of u and v at « = 0.95. They remain
constant in the positive and negative directions. These plots are obtained by choosing
parameters of by = —6,by = —2,b3 =96, by = 160,41 =1,a, = —20,a3 = —50, a4 = 80,
a5 = 1,and a« = 0.95.

Figures 5 and 6 show the two-dimensional images of # and v when « is taken at 0.25,
0.55,0.75, and 0.95 for t = 2. These images clearly show the variation of # and v for different
values of &, confirming that the wave around the cusp tends to flatten as « increases.
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Figure 1. Three-dimensional graphs of u(x, t) for « = 0.25.
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Figure 2. Three-dimensional graphs of v(x, t) for « = 0.25.

To summarize, through the observation of the three-dimensional and two-dimensional
images of the wave speed u(x,t) and height v(x,t), it is observed that as « increases,
the direction of the cusp and the amplitude remain unchanged and the overall solution
gradually converges. This enables us to gain a better understanding of the developmental
history of the obtained solution and validate the necessity of extending the integer-order
equation to the time-fractional-order equation. In other words, the time-fractional MNW
system is a more appropriate representation of the continuous trends observed in real-life
scenarios than the classical system.

0.5

(=
20
40

0

-20
0 -40 X

Figure 3. Three-dimensional graphs of u(x, t) for « = 0.95.
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Figure 4. Three-dimensional graphs of v(x, t) for « = 0.95.
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Figure 5. Two-dimensional graphs of u(x, t) for t = 2.

11
0 x10
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0
X
Figure 6. Two-dimensional graphs of v(x, t) for t = 2.

8. Conclusions

In this work, employing a Lie symmetry analysis, we established Lie symmetries
for the time-fractional MNW system within the interval 0 < &« < 1 and reduced the
system described in system (3) to a fractional ordinary differential system. Furthermore,
we obtained power series solutions for the simplified system and verified that the exact



Fractal Fract. 2023, 7, 457 18 of 19

solutions acquired through the Lie symmetry analysis exhibit a strong convergence. We
generated three-dimensional and two-dimensional graphs of the respective analytical
solutions to understand the physical characteristics of the power series solutions and the
influence of the fractional order « on said solutions. These graphs illustrate the dynamical
evolution at different values of a. Another significant achievement is presenting the
conservation laws for each of the Lie symmetries of the model through Ibragimov’s new
conservation law theorem.
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