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Abstract: In the last years of the past century, complex correlation structures were empirically
observed, both in aggregated and individual traffic traces, including long-range dependence, large-
timescale self-similarity and multi-fractality. The use of stochastic processes consistent with these
properties has opened new research fields in network performance analysis and in simulation studies,
where the efficient synthetic generation of samples is one of the main topics. Nowadays, networks
have to support data services for traffic sources that are poorly understood or still insufficiently
observed, for which simple, reproducible, and good traffic models are yet to be identified, and it
is reasonable to expect that previous generators could be useful. For this reason, as a continuation
of our previous work, in this paper, we describe efficient and online generators of the correlation
structures of the generalized fractional noise process (gfGn) and the generalized Cauchy (gC) process,
proposed recently. Moreover, we explain how we can use the Whittle estimator in order to choose the
parameters of each process that give rise to a better adjustment of the empirical traces.

Keywords: generalized fGn process; generalized Cauchy process; M/G/∞ process; Whittle estimator;
efficient online generation

1. Introduction

Fundamental network algorithms and key performance metrics in telecommunication
networks and services, such as routing, delay, age of information, or buffer sizing, rely on
accurate statistical traffic models capable of replicating the temporal and spatial correlation
observable in many diverse packet streams [1,2]. Further, current networks have been
architected to support data services for traffic sources that are poorly understood or still
insufficiently observed, such as mMTC (massive machine-type communication) or URLLC
(ultra reliable low-latency communications) in 5G/6G, for which simple, reproducible,
and good traffic models are yet to be developed. Since, in the past, complex correlation
structures were empirically observed both in aggregated and individual traffic traces,
including long-range dependence (LRD) and large-timescale self-similarity (SS) [3–14],
it is reasonable to expect that novel or modified flexible stochastic processes have to be
analyzed for teletraffic and simulation analysis of such advanced communication services.
A similar research effort was made when queuing models with fractal correlated input
and the analysis of that on network performance [15–26] were thoroughly studied. These
works demonstrated that second-order statistics, and their extreme manifestations as LRD
and SS, lead to very slow decay of the queue backlogs, thus having a huge impact on
loss and delay.

Apart from the specific application in communications networks, long-range depen-
dent and self-similar processes appear in many other fields in science and engineering.
In [27], the authors show examples in physics, chemistry and biology. They are also of inter-
est in the analysis of several types of time series, such as meteorological and hydrological
data, stock markets data, rare events in finance and insurance, or biometric signals [28] and
recently in vehicular traffic data [29].
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There are, in the literature, several classes of stochastic processes with LRD and/or
SS properties which have been successfully used to model the complex time series of real
traffic. These include fractional Gaussian noise [15] (fGn) and its recent generalization [30];
alpha-stable processes [31]; the Cauchy process and its generalization [32]; fractional
ARIMA [33] (fARIMA); the sum of on–off sources with sojourn times following a heavy-
tailed distribution [7]; the state process of a M/G/∞ queuing system [34]; and wavelet
functions [35].

However, in addition to the analytical tractability and flexibility to give rise to different
correlation functions, an important feature with these advanced models is computational
efficiency in the numerical simulation of their sample paths, especially because when LRD
or SS are present, very long synthetic sample paths are necessary for accurate simulations.
In this regard, one major drawback of many direct generators is that these are efficient only
because of the application of an off-line algorithm for the creation of the traces.

To overcome this drawback, in our previous work [36,37], we leveraged the singular
properties of the occupancy process in the M/G/∞ queuing system to generate, at low
computational cost, arbitrarily long sequences with arbitrary covariance function. The key
idea is just to select the service time distribution of customers in the M/G/∞ according to a
suitable discrete probability mass function, and take advantage of the memoryless property
in the arrivals to implement a very fast discrete-event simulation of this elementary model.
In this paper, we show how to select the service time distribution of the M/G/∞ system in
order to obtain accurate and efficient generators of the generalized fGn process [38] and
the generalized Cauchy process [39], two classes of processes that provide a powerful way
to describe the multi-fractal phenomena of traffic [40] because they are indexed by two
independent parameters.

As an application, we use these efficient generators to reproduce the covariance
structure of a real traffic sequence. In order to estimate the parameters of the models, which
are the input that the simulator needs, we apply the Whittle estimator [41–43], a sufficient
and robust statistic that operates in the spectral domain.

The remainder of the paper is organized as follows. In Section 2, we review the main
concepts related to short-range dependence (SRD), LRD and self-similarity. The generalized
fGn process is presented in Section 3.1 and the generalized Cauchy process is Section 3.2.
The main properties of the M/G/∞ process used in this work are described in Section 4. In
Sections 5.1 and 5.2, we describe the improved M/G/∞-based generator of the correlation
structure of the gfGn and generalized Cauchy processes, respectively and in Section 5.3
we show some results related to the accuracy of the generators. In Section 6, we explain
how we can use the Whittle estimator for fitting empirical traffic. Finally, in Section 7, we
summarize the conclusions.

2. SRD, LRD and Self-Similarity

We briefly review in this section the definitions and main properties of self-similar
stochastic processes and long-range statistical correlation [44].

A stationary stochastic process X = (Xn)n≥0 is said to have short-range dependence
(SRD) whenever the sum of the covariance coefficients is convergent, i.e., ∑∞

k=0 rk < ∞,
where rk := E[Xk+iXi]/E[|Xi|2]. A class of processes having SRD is that wherein the
covariance series decays exponentially:

lim
k→∞

− log rk
k

= c ∈ (0, ∞). (1)

An equivalent condition to exponential decay is that the spectral density fX(ω)
:= ∑∞

k=0 rke−ωk is bounded at the origin. If the sum of the covariance series is not conver-



Fractal Fract. 2023, 7, 455 3 of 13

gent, the process X is termed long-range dependent (LRD). An example of LRD processes
is the broad class of processes having sub-exponential (e.g., hyperbolic) decay:

lim
k→∞

− log rk
log k

= α ∈ (0, 1) (2)

so rk = o(k−α). In this case, the spectral density of X has a singularity at the origin.
Self-similarity is defined based on the properties of the covariance function of the

aggregated process X(m) = (X(m)
j )j≥1 built from X when X has finite variance. This is the

average of X over non-overlapping blocks of length m

X(m)
j :=

1
m

jm

∑
k=(j−1)m+1

Xk. (3)

Then, X is called exactly second-order self-similar with similarity parameter H [45] if
m1−HX(m) has the same covariance function as X for all m. This means that the aggregated
process shows the same statistical correlation over time as the original process X. The
covariance function of a self-similar process is

rH
k =

1
2

[
(k + 1)2H − 2k2H + (k− 1)2H

]
∀k ≥ 1. (4)

Thus,

lim
k→∞

rH
k

k2H−2 = (2H − 1)H, (5)

that is, rH
k decays hyperbolically (as in (2)) with α = 2H − 2. Clearly, X possesses LRD

when H ∈ (0.5, 1). The covariance function (4) implies a spectral density given by

fH(ω) = c|eω − 1|2
∞

∑
i=−∞

|2πi + ω|−2H−1, ω ∈ [−π, π], (6)

where c is a normalization constant such that
∫ π
−π fH(ω)dω = Var[X].

When (4) holds asymptotically, and, in addition, the convergence condition limm→∞ =

r(m)
k = rH

k for all k ≥ 1 is satisfied, then the process is called asymptotically second-order
self-similar. Clearly, for asymptotic self-similarity, the spectral density converges to that of
a self-similar process limm→∞ fX(m)(ω) = fH(ω) for any ω ∈ [−π, π]. It is not hard to see
that a stationary process with a covariance function with hyperbolic decay, such as (2), is
asymptotically second-order self-similar.

Stationary Gaussian processes are not always exactly or asymptotically self-similar,
but it is known that they satisfy a property of local self-similarity as defined in [46]. The
covariance function function rk is

rk = 1− ckα
(
1 + O(kα)

)
(7)

for k→ 0, where 0 < α < 2 is the order of the process. The so-called fractal dimension is
δ = 2− α

2 . Therefore, the behavior of the covariance function near the origin determines
the local irregularity of the process, and larger values of δ imply more irregularity (or
burstiness) at small timescales.

3. Generalized Self-Similar Gaussian Processes
3.1. Generalized Fractional Gaussian Noise

Let BH(t) denote a fractional Brownian motion process [47]. Then, its sequence
of discrete increments Xn := BH(n) − BH(n − 1), n = 1, 2, . . . is an exactly self-similar
stationary Gaussian process, known as fractional Gaussian noise (fGn). Since self-similarity
is exact, its covariance function and spectral density are given by (4) and (6), respectively.
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Despite its fixed covariance structure, the fGn process is known to be a good approximation
of the aggregation of more complex LRD Gaussian and non-Gaussian processes [48,49].

In [38], the generalized fractional Gaussian noise (gfGn) is introduced, with parameters
0 < H < 1 and 0 < a ≤ 1. This is a Gaussian process with covariance function

rH,a
k =

1
2

[(
|ka|+ 1

)2H
+ ||ka| − 1|2H − 2|ka|2H

]
∀k ≥ 1, (8)

that can be approximated by rH,a
k ≈ H(2H − 1)|ka|2H−2, so the LRD condition is clearly

satisfied if 0.5 < H < 1. The spectral density function of gfGn is [50]

fH,a(ω) = sin(Haπ)Γ(2Ha + 1)|ω|−2Ha−1+

1
2

∞

∑
k=0

(
(−1)k − 1

)
Γ(2H + k)Γ(a(2H − k) + 1)
Γ(2H)Γ(1 + k)

sin
(

a(2H − k)π
2

)
|ω|−a(2H−k)−1, (9)

which can be approximated as

fH,a(ω) ≈ −H(2H − 1) sin(aπ(H − 1))Γ(2aH − 2a + 1)|ω|−2a(H−1)−1. (10)

The latter implies that fH,a(0)→ ∞, which is actually the LRD condition reflected in
the spectral domain. Figure 1 shows the analytical covariance function for different values
of the parameters. It is increasing in H (for fixed a), and decreasing in a (for fixed H).
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Figure 1. Covariance function (8) of the generalized fGn process with a = 0.5 (left) and
H = 0.75 (right).

3.2. Generalized Cauchy Process

The generalized Cauchy process XC = (Xn)n≥1 with parameters 0 < α ≤ 2 and β > 0
is a stationary Gaussian process with an autocorrelation function given by [39,51]

ρ
β,α
k = (1 + kα)

−β
α , ∀k ≥ 1. (11)

The covariance function ρ
β,α
k is positive-definite for the above ranges of α and β, and it

is completely monotone for 0 < α ≤ 1 and β > 0. When α = β = 2, one obtains the usual
Cauchy process. Since limk→∞ kβρ

β,α
k = 1, this process is LRD for 0 < β < 1. Notice that

H = 1− β
2 .
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Its spectral density function is [52]

fβ,α(ω) =
∞

∑
k=0

(−1)kΓ( β
α + k)

πΓ( β
α )Γ(1 + k)

I1(ω)
sin(ω)

ω

+
∞

∑
k=0

(−1)kΓ( β
α + k)

πΓ( β
α )Γ(1 + k)

[
π I2(ω)− I2(ω)

sin(ω)

ω

]
. (12)

Here,
I1(ω) = −2 sin

(
αk

π

2

)
Γ(αk + 1)|ω|−αk−1, (13)

and
I2(ω) = 2 sin

(
(β + αk)

π

2

)
Γ
(
1− (β + αk)

)
|ω|(β+αk)−1. (14)

Letting ω ≈ 0, the behavior of the spectral density function (12) is well approxi-
mated by

1
cos
(

β π
2
)
Γ(β)

|ω|β−1, (15)

so fβ,α(0)→ ∞. This is, again, the LRD condition reflected in the spectral domain. Figure 2
plots the analytical autocorrelation function for different values of α, β.
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Figure 2. Covariance function (11) of the generalized Cauchy process with α = 0.5 (left) and
β = 0.5 (right).

4. The M/G/∞ Process

The M/G/∞ process [53] is the stationary limit of the state of a M/G/∞ queuing
system, a queuing model with Poisson arrivals, general independent and identically dis-
tributed service times distributed as the random variable S, and an unlimited number of
servers. Instead of the usual view as a continuous-time process, it is more convenient in
our case to discretize time and look at the number of servers occupied at time t ∈ Z+ [36],
which can be written as

Xt =
∞

∑
i=1

At,i, (16)

where At,i denotes the number of arrivals at time t − i that are still in service at time t.
Note that At,i counts how many active customers have age i. For any fixed t, (At,i)i≥1,
form a collection of independent and identically distributed Poisson random variables
with parameter λP(S ≥ i), where λ is the average arrival rate. It is easy to calculate the
expectation and variance if Xt:

E(Xt) = Var(Xt) = λ
∞

∑
i=1

P(S ≥ i) = λE(S). (17)
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The discrete-time process (Xt)t≥0 is stationary and time reversible. Its covariance
function is

γk =
∑∞

i=k+1 P(S ≥ i)
E(S) , k = 0, 1, . . . (18)

Additionally, by (18), knowledge of the covariance function uniquely gives the proba-
bility mass function of the service time S because

P(S = k) = (γk−1 − 2γk + γk+1)E(S), k = 1, 2, . . . (19)

By (19), the autocovariance is non-negative and convex. Conversely, if a real-valued
sequence γk is non-negative, decreasing, and integer-convex, then it is a valid autocovari-
ance sequence for some M/G/∞ discrete-time process [34]. If the latter assumptions hold,
then limk→∞ γk = 0, and the probability mass function of S is exactly (19).

(Xt)t≥0 is stationary and ergodic under two assumptions:

A1 At start t = 0, the number A0,0 of customers in the system follows a Poisson probability
mass function with expected value λE(S).

A2 These A0,0 customers have a service time Ŝ given by a distribution

P(Ŝ = k) =
P(S ≥ k)
E(S) , (20)

which is that of the residual (or excess) life of S.

We have, as a consequence of this initial state, that (i) Xt is Poisson for all t, with an
expectation equal to λE(S), and (ii) the covariance function is γk = γ0P(Ŝ > k) ∀k ≥ 0.
Therefore, (Xt)t≥0 is LRD when S has infinite variance, for instance, whenever S has some
specific discrete heavy-tailed distributions. The latter means that P(S > k) ∼ ck−q as
k→ ∞.

5. M/G/∞-Based Generation of Covariance Functions
5.1. The gfGn Process

Denote by Ψ the service time in a M/G/∞ system, whose occupancy process has the
covariance structure of the gfGn process. We know that at any time t, the distribution of
Ψ is Poisson and converges weakly to a normal distribution when the mean goes to ∞.
Specifically, combining (18) and (19), the distribution function is

P(Ψ < k) = 1−
0.5
[
(|ka|+ 1)2H +

∣∣|ka| − 1
∣∣2H − 2|ka|2H

]

2− 22H−1

+
0.5
[
(|(k + 1)a|+ 1)2H +

∣∣|(k + 1)a| − 1|2H − 2|(k + 1)a|2H]

2− 22H−1 (21)

and the expected value is

E(Ψ) =
1

2− 22H−1 . (22)

The distribution function of the residual life is needed in order to initialize the process
in a steady state. It can be obtained from (18) and (20)

P(Ψ̂ < k) = 1− 0.5
[
(|ka|+ 1)2H +

∣∣|ka| − 1
∣∣2H − 2|ka|2H

]
. (23)

In Figure 3, we plot the analytical distribution function of the random variable Ψ for
different values of the parameters.
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Figure 3. Cumulative distribution function (21) of the generalized fractional Gaussian noise for
a = 0.5 (left) and H = 0.75 (right).

5.2. The Generalized Cauchy Process

Now, let Ξ be the service time in a M/G/∞ system with an occupancy process that
possesses the covariance structure of the generalized Cauchy process. By (11) and (18), the
cumulative distribution function of Ξ is given by

P(Ξ < k) = 1− (1 + kα)
−β
α − (1 + (k + 1)α)

−β
α

1− 2
−β
α

, (24)

and the expected value E(Ξ) is

E(Ξ) = 1

1− 2
−β
α

. (25)

For the excess life, the distribution function is, in this case,

P(Ξ̂ < k) = 1− (1 + kα)
−β
α . (26)

In Figure 4, we can see the analytical distribution function of the random variable Ξ
for different values of the parameters.
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Figure 4. Distribution function (24) of the generalized Cauchy process for α = 0.5 (left) and
β = 0.5 (right).

5.3. Accuracy

Since both distributions (21) and (24) have sub-exponential decay, the method that
we developed in [37] can be used. That technique relies on the elementary properties of
Poisson processes (decomposition and lack of memory) so that the M/G/∞ state process
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can be simulated very fast and sequentially. Moreover, the technique is flexible, i.e., valid
for any distribution of the service time with sub-exponential decay. Specifically, [37]
presents a fast tabular inversion method for generating the samples of Si, the service times
in the queuing systems. When this tabular inversion is combined with the geometric
(memoryless) interarrival times, the system state (16) can be calculated with only a few
elementary operations, without any function evaluations.

The tabular method used for inversion in [37] produces some loss of numerical preci-
sion in the tail of some heavy-tailed distributions. Ref. [54] describes an improvement of
the original method to solve this issue and also an extension to handle random variables
with long tails in both sides. In this way, the Poisson arrival process in the case of high
mean values can be also be generated using a better tabular method.

Figures 5 and 6 show the estimated autocorrelation function of several traces generated
with the proposed method for different values of the parameters of the generalized fGn
process and the generalized Cauchy process, respectively. We can see that the estimations
match well the analytical functions.
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6. Modeling Eempirical Traces

In this section, we explain a method to estimate the parameters of the previous
processes, gFGN and gCauchy, that give rise to a better adjustment of the spectral density
and therefore of the correlation structure of the empirical traffic. The method is based on
the Whittle estimator [41,42] that we describe briefly in the next section.

6.1. Whittle’s Estimator

Let fθ(λ) be the spectral density function of a zero-mean stationary Gaussian stochastic
process X = (Xn)n≥0, where θ = (θ1, . . . , θM) is a vector of unknown parameters to be
estimated from observations. Let

IX(ω) =
1

2πN

∥∥∥∥∥
N−1

∑
i=0

Xie−ωi

∥∥∥∥∥

2

(27)
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be the empirical periodogram obtained using N samples of the process X, where ‖·‖ is the
Euclidean norm. The Whittle estimator [41] is the vector θ̂ =

(
θ̂1, . . . , θ̂M

)
that minimizes

the statistic

θ̂ = arg min
θ

QX(θ) =
1

2π

(∫ π

−π

IX(ω)

fθ(ω)
∂ω +

∫ π

−π
log fθ(ω)∂ω

)
. (28)

Whittle’s estimator (28) approximates the Gaussian log-likelihood by means of the pe-
riodogram, using the latter in place of the unknown spectral density. Another information-
theoretic interpretation is that QX(θ) is the divergence between the periodogram IX(·)
and fθ(·).

Whittle’s estimator converges in probability to the true value θo. It holds that

lim
N→∞

P
(
‖θ̂ − θo‖ < ε

)
= 1 (29)

for any ε > 0, so θ̂ is a weakly consistent estimator. A second property is that it is also
asymptotically normal;

√
N(θ̂ − θo)→ ζ converges in distribution to ζ for large N, where

ζ is a zero-mean Gaussian vector with a matrix of covariances known. This asymptotic
normality allows the computation of confidence intervals for the estimated values.

It is also possible to choose a special scale parameter

θ1 = exp
(

1
2π

∫ π

−π
log fθ(ω)∂ω

)
=

σ2
ε

2π
(30)

such that fθ(ω) = θ1 f ∗ν (ω) and the second term in (28) is zero. In this case, σ2
ε is the optimal

one-step-ahead prediction error that is equal to the variance of the innovations in the AR(∞)
representation of the process, and Whittle’s function (28) simplifies to

QX(ν) =
∫ π

−π

IX(ω)

fν(ω)
∂ω. (31)

The approximate Whittle estimator is usually evaluated numerically via the integral
quadrature, replacing the integral by a sum over a discrete set of Fourier frequencies
ωk = kπ

n ; k = −n, . . . ,−1, 0, 1, . . . , n. In addition, it can be shown that the mean squared
error is σ̂2

ε = QX(ν), where ν is the minimizer of (31).
In the past, we proposed to use σ̂2

ε as a measure of the suitability of a model because
smaller values mean more accurate adjustment to the actual covariance function of the
sample and suggest a close match between the sample and the model. Moreover, we
used this value to compare the accuracy or convenience of different models. Specifically,
in [37], we presented a method for model selection based on fitting the spectral density and,
therefore, the empirical correlation function, and in [55], we tested the method numerically
for several classes of stochastic processes, namely Gaussian and non-Gaussian processes
with LRD, non-stationary processes and non-linear heteroscedastic models.

6.2. Examples

In this section, we show several examples that illustrate the suitability of these pro-
cesses to model different kinds of network traffic. In these examples, we consider empirical
traces that usually are used as examples of correlated traffic.

The capture of the trace of the first example was performed at the beginning of the
last decade of the previous century [56]. This trace contains 2000 samples of Ethernet data
lengths. The sample mean and variance are, approximately, µ̂ = 380 and σ̂2 = 180,100. In
this case, both gFGN and gCauchy processes are able to approximate this trace quite well.
The estimations of the parameters of each process, obtained via the Whittle estimator, are
as follows:
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1. gFGN process: Ĥ = 0.696 and â = 0.649.
2. gGauchy process: β̂ = 0.503 and α̂ = 0.321.

Figure 7 shows the correlation structure of this empirical trace versus the analytical auto-
correlation of each process, with the estimated parameters.

Version May 29, 2023 submitted to Fractal Fract. 10 of 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60

k 

gFGN
gCauchy
empirical

Figure 7. Adjustment of the correlation structure of the first empirical trace with the analytical
autocorrelation of each process.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60

k

gFGN
empirical

Figure 8. Adjustment of the correlation structure of the second empirical trace with the analytical
autocorrelation of the gFGN process.

6.2. Examples 238

In this Section we show several examples that illustrate the suitability of these pro- 239

cesses to model different kinds of network traffic. In these examples we consider empirical 240

traces that usually are used as examples of correlated traffic. 241

The capture of the trace of the first example was done at the beginning of the last 242

decade of the previous century [56]. This trace contains 2000 samples of Ethernet data 243

lengths. The sample mean and variance are, approximately, µ̂ = 380 and σ̂2 = 180100. In 244

this case both processes, gFGN and gCauchy, are able to approximate quite well this trace. 245

The estimations of the parameters of each process, obtained via the Whittle estimator, are 246
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The capture of the trace of the second example was performed in the middle of the
first decade of this century [57]. This trace contains 2000 samples of TCP data lengths. The
sample mean and variance are, approximately, µ̂ = 136 and σ̂2 = 46,750. In this case, only
the gFGN process approximates this trace well. The estimators of its parameters, obtained
via the Whittle estimator, are Ĥ = 0.661 and â = 0.961. Figure 8 shows the correlation
structure of this empirical trace versus the analytical autocorrelation of the gFGN process,
with the estimated parameters.
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Figure 8. Adjustment of the correlation structure of the second empirical trace with the analytical
autocorrelation of the gFGN process.
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As a third example, we consider one compressed VBR video trace generated at the
beginning of the second decade of this century [58]. This trace contains 2000 samples of
GoPs sizes of MPEG-4 encoded video. The sample mean and variance are, approximately,
µ̂ = 34,200 and σ̂2 = 5.421× 108. In this case, only the gCauchy process approximates
this trace well. The estimators of its parameters, obtained via the Whittle estimator, are
β̂ = 0.221 and α̂ = 1.962. Figure 9 shows the correlation structure of this empirical trace
versus the analytical autocorrelation of the gCauchy process, with the estimated parameters.
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β̂ = 0.221 and α̂ = 1.962. Figure 9 shows the correlation structure of this empirical trace 263

versus the analytical autocorrelation of the gCauchy process, with the estimated parame- 264

ters. 265

7. Discussion 266

In this paper, we have proposed accurate and efficient generators of the generalized 267

fractional Gaussian noise process and the generalized Cauchy process, two generaliza- 268

tions of previous processes that have been proposed and analysed in the last decade as 269

good candidates for modeling different types of empirical traces. From the correlation 270

functions, we have obtained the distribution functions of the random variables of the ser- 271

vice time of the M/G/∞ process, and the distribution functions of the residual life, needed 272

in order to initialize the processes in steady state. Some proofs presented show the accu- 273

racy of the proposed generators. Finally, we have explained how we can use the Whittle 274

estimator in order to choose the parameters of each model that give rise to a better ad- 275

justment of empirical traces and for comparison of the accuracy and suitability of each 276

model. 277
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7. Discussion

In this paper, we proposed accurate and efficient generators of the generalized frac-
tional Gaussian noise process and the generalized Cauchy process, two generalizations of
previous processes that were proposed and analyzed in the last decade as good candidates
for modeling different types of empirical traces. From the correlation functions, we ob-
tained the distribution functions of the random variables of the service time of the M/G/∞
process and the distribution functions of the residual life needed in order to initialize
the processes in steady state. Some proofs presented show the accuracy of the proposed
generators. Finally, we explained how we can use the Whittle estimator in order to choose
the parameters of each model that give rise to a better adjustment of the empirical traces
and for comparison of the accuracy and suitability of each model.
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