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Abstract: A nonlinear mathematical model of COVID-19 containing asymptomatic as well as symp-
tomatic classes of infected individuals is considered and examined in the current paper. The largest
eigenvalue of the next-generation matrix known as the reproductive number is obtained for the model,
and serves as an epidemic indicator. To better understand the dynamic behavior of the continuous
model, the unconditionally stable nonstandard finite difference (NSFD) scheme is constructed. The
aim of developing the NSFD scheme for differential equations is its dynamic reliability, which means
discretizing the continuous model that retains important dynamic properties such as positivity of
solutions and its convergence to equilibria of the continuous model for all finite step sizes. The
Schur–Cohn criterion is used to address the local stability of disease-free and endemic equilibria for
the NSFD scheme; however, global stability is determined by using Lyapunov function theory. We
perform numerical simulations using various values of some key parameters to see more characteris-
tics of the state variables and to support our theoretical findings. The numerical simulations confirm
that the discrete NSFD scheme maintains all the dynamic features of the continuous model.

Keywords: COVID-19 model; reproduction number; NSFD scheme; Lyapunov function; Schur–Cohn
criterion; local and global stability

1. Introduction

Infectious diseases, earthquakes, destructive floods, climate change, and world
wars are just a few of the many challenges and difficulties that humanity has faced
throughout history. These events have a significant negative impact on people’s lives
and on civilizations. Among these difficulties, infectious diseases are major problem
for humanity and have a negative impact on the economies, education, and tourism
industry of many nations. The human immunodeficiency virus (HIV), hepatitis B virus
(HBV), Ebola, Lassa fever, cholera, influenza, malaria, smallpox, and most recently
COVID-19 are deadly diseases that have plagued human life [1–3]. In December 2019,
the Chinese city of Wuhan announced the first case of a new COVID-19, which is
exceedingly hazardous and contagious [4]. The virus immediately spread around the
world. COVID-19 [5–7] has spread swiftly around the globe, since it has been shown to
have a greater heightened level of infection and to be a greater pandemic danger than
SARS. The WHO classified the COVID-19 outbreak as a worldwide pandemic on March
11, due to the sudden increase in transmission. Some of the symptoms of COVID-19
include fever, cough, congestion, tiredness, vomiting, headache, diarrhea, dyspnea, and
lymphopenia [8]. The incubation period for COVID-19 persists for 5 days on average,
although it can last up to 14 days [9].
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Researchers are employing fractional- and integer-order mathematical models to
describe various physical phenomena [10–15]. Numerous researchers have developed a
wide variety of mathematical models to assess the dynamic behavior and transmission of
COVID-19 [16–20]. By using a mathematical model, we can focus on how an infectious
disease spreads throughout a population. These models may be utilized to enhance all of
their sources and to more successfully carry out control operations [21–23]. The authors
in [24] investigated the COVID-19 mathematical model combined with the resistive
compartment and quarantine class. The model is completely different from the previous
models that have been described in the literature, due to the quarantine and resistive
classes. Peter et al. [25] evaluated the COVID-19 disease model by focusing on real
data that evaluate the effect of various management techniques on the transmission of
COVID-19 in a human population. Researchers [26–28] have extensively studied the
novel COVID-19 through mathematical models from various perspectives. They focused
on local and global dynamics, numerical methods, and stability theory.

Recently, Sabir et al. [29] studied and analyzed a COVID-9 mathematical model by
focusing on the genuine information that appraises the contact of some administration
techniques on the transmission of COVID-19 in a human populace. The authors employed a
scaled conjugate gradient neural networks (SCGNNs) procedure to examine the numerical
presentation of a nonlinear COVID-19 mathematical model. In order to analyze biological
sustainability as well as various aspects of the model, the discrete NSFD scheme is devel-
oped for the continuous model. At present, the primary concern of the qualitative theory
of differential equations is to deal with persistent objects, i.e., equilibrium points and their
dynamic features such as stability and instability, as well as other global aspects such as do-
main invariance and variational structures. As a result, the notion of developing numerical
schemes does not focus on approximation issues, but instead deals with certain dynamic
information arising, leading to dynamic numerical schemes. The idea of an NSFD scheme
was, in fact, commenced by Mickens [30]. He used the term NSFD scheme to distinguish
the new numerical scheme from the old SFD (standard finite difference) schemes. The
SFD schemes cannot precisely retain the basic dynamic aspects of the differential models,
resulting in numerical solutions that differ from the solutions of the original systems. On
the other hand, the NSFD scheme is introduced to compensate for the weaknesses of the
SFD schemes. The positivity and boundedness properties of solutions are performed to
better comprehend the dynamics of the model. The local and global stability of disease-free
and endemic equilibria is discussed for the NSFD scheme by using a variety of theories
and criteria. The results demonstrate that the aforementioned scheme is unconditionally
stable and suitable for the continuous model, which produces incredibly accurate and
efficient results.

The following is the layout of the paper: in Section 2, the mathematical model
for the COVID-19 epidemic disease is presented. The equilibria of the model and the
most important basic reproduction number are explained in Section 3. In Section 4,
the discrete NSFD scheme is constructed and some basic properties, such as positivity
and boundedness, are explored in Section 4.1. Our results demonstrate that the NSFD
scheme is an efficient and potent method that clearly depicts the continuous model.
In Section 4.2, the local stability of both the equilibria is evaluated by using Schur–
Cohn criterion; however the theory of the Lyapunov function is utilized to discuss
global stability in Section 4.3. Numerical simulations are performed which confirm
our theoretical results. To summarize the whole manuscript, a Conclusion section is
provided at the end.
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2. Mathematical Model

The COVID-19 dynamic system [29], including six differential equations, is provided
as follows:

dS
dt = ∂− (p + δ)S− βSE

dE
dt = βSE− (θ + δ + u + $)E

dQ
dt = pS + θE− (ϕ + υ + δ)Q

dA
dt = $E + ϕQ− (δ + r1)A

dD
dt = uE + υQ− (ω + δ + r2)D

dR
dt = r1 A + r2D− δR.

(1)

Six classes are used to categories the entire population N(t), i.e., susceptible S(t),
exposed E(t), asymptotically diseased persons A(t), symptomatic diseased persons D(t),
quarantined Q(t) and recovered R(t), where N(t)= S(t) + E(t) + Q(t) + A(t) + D(t) + R(t).

Model (1) is given in the following Table 1.

Table 1. Parameters and their biological descriptions.

Parameters Parameters’ Description

β Rate of contact between susceptible and exposed people

∂ Recruitment rate of mortality

θ The rate of transmission from exposed to quarantined persons

υ The rate of transmission from quarantined to symptomatic persons

p The rate of transmission from susceptible to quarantined persons

ω The rate of mortality in symptomatic infected persons

δ The rate of natural fatality

ϕ The rate of transmission from quarantined to asymptomatic persons

u The rate of transmission from exposed to symptomatic persons

r1 The rate of recovered persons from asymptomatic disease

r2 The rate of recovered persons from symptomatic disease

$ Transfer rate of exposed persons to asymptomatic persons

Figure 1 is the flow chart for mathematical Model (1) which consists of the six afore-
mentioned categories, S(t), E(t), A(t), D(t), Q(t), and R(t).
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We assume that all of the parameters in Model (1) attain positive constant values. As
the first five equations of Model (1) are independent of R(t), therefore, for the upcoming
calculation, our focus of discussion will be the following reduced model.

dS
dt = ∂− (p + δ)S− βSE

dE
dt = βSE− (θ + δ + u + $)E

dQ
dt = pS + θE− (ϕ + υ + δ)Q

dA
dt = $E + ϕQ− (δ + r1)A

dD
dt = uE + υQ− (ω + δ + r2)D

(2)

3. Equilibria and Basic Reproduction Number (R0)
3.1. Equilibria of Model

The disease-free equilibrium (DFE) point is attained by equating the right side of
Model (2) to zero. If we represent DFE by E0 =

(
S0, E0, Q0, A0, D0) for Model (2), then it is

simple to determine DFE as E0 =
(

∂
p+δ , 0, 0, 0, 0

)
. The proposed Model (2) is simultane-

ously solved for the state variables S,E, Q, A, and D to find the disease endemic equilibrium
(DEE) point. If the DEE point is represented by E∗(S∗, E∗, Q∗, A∗, D∗), then model (2) yields
S∗ = βS∗E∗−∂

(p+δ)
, E∗ = βS∗E∗

(θ+δ+u+$)
, Q∗ = pS∗+θE∗

(ϕ+υ+δ)
, A∗ = $E∗+φQ∗

(δ+r1)
, and D∗ = (uE∗+υQ∗)

(ω+δ+r2)
.

3.2. Basic Reproduction Number (R0)

The spread of the disease, the size of the population, and the length of the sickness
period all have a direct impact on the transmissibility of secondary infections. Although
a precise estimate of secondary infections cannot be given, epidemiological studies can
yield an approximate estimate, known as the basic reproduction number [31]. To calculate
R0, we utilize the translation V(x) and transmission F(x) matrices, respectively. Let
x = (E, Q, A, D), then for System (2) these can be represented as

F(x) =


βSE

0
0
0

, and V(x) =


(θ + δ + u + $)E

−pS− θE + (ϕ + υ + δ)Q
−$E− φQ + (δ + r1)A
−uE− υQ + (ω + δ + r2)D

.

As R0 = ρ
(

FV−1), therefore, the simple calculation employs

R0 =
∂β

(p + δ)(θ + δ + u + $)

4. The NSFD Scheme

The NSFD scheme is used to provide a broad way of creating discrete models and find-
ing the numerical solution of ordinary as well as partial differential equations.
According to Shokri et al. [32], the investigation of the NSFD scheme depends on two
factors. First, how to approximate nonlinear terms in the most appropriate way, and sec-
ond, how to discretized the derivative. Usually, the first order derivative d f

dx is written as
f (x+h)− f (x)

h , where h stands for step size. According to Mickens [33,34], this term can be

written as f (x+h)− f (x)
ϕ(h) , where ϕ(h) is an increasing function known as the denominator

function. In order to better comprehend the dynamics of the COVID-19 disease, we will
focus on the simplest denominator function ϕ(h) = h in the current work, rather than the
general denominator functions that can be seen in [33,34].
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The numerical estimates of S(t), E(t), Q(t), A(t) and D(t) at t = nh for model (2) are
denoted as Sn, En, Qn, An, Dn, where n is a nonnegative integer and h specifies the time
step size, which should also be nonnegative [35]. Model (2) afterwards enables us to write

Sn+1−Sn
h = ∂− (p + δ)Sn+1 − βSn+1En

En+1−En
h = βSn+1En − (θ + δ + u + $)En+1

Qn+1−Qn
h = pSn+1 + θEn+1 − (ϕ + υ + δ)Qn+1

An+1−IAn
h = $En+1 + φQn+1 − (δ + r1)An+1

Dn+1−Dn
h = uEn+1 + υQn+1 − (ω + δ + r2)Dn+1

(3)

After simplification, the explicit form of the NSFD scheme (3) becomes

Sn+1 = h∂+Sn
1+h((p+δ)+βEn)

En+1 = En+hβSn+1En
1+h(θ+δ+u+$)

Qn+1 = h(pSn+1+θEn+1)+Qn
1+h(ϕ+υ+δ)

An+1 = h($En+1+ϕQn+1)+An
1+h(δ+r1)

Dn+1 = h(uEn+1+υQn+1)+Dn
1+h(ω+δ+r2)

(4)

4.1. Positivity and Boundedness of NSFD Scheme

We assume that the initial values of discrete scheme (4) are nonnegative, i.e.,
S0 ≥ 0, E0 ≥ 0, Q0 ≥ 0, A0 ≥ 0, D0 ≥ 0. These variables have estimated quantities which
are also nonnegative, due to the assumptions Sn ≥ 0, En ≥ 0, Qn ≥ 0, An ≥ 0, Dn ≥ 0.
Therefore, the solutions of the NSFD scheme (4) imply the positivity of scheme (4), i.e.,
Sn+1 ≥ 0, En+1 ≥ 0, Qn+1 ≥ 0, An+1 ≥ 0, Dn+1 ≥ 0. In order to discuss the boundedness
of the solutions of the NSFD system (4), we consider Tn = Sn + En + Qn + An + Dn. Then

Tn+1 − Tn

h
= ∂− (p + δ)Tn+1

i.e.,
(1 + (p + δ))Tn+1 = h∂ + Tn

Therefore, we obtain

Tn+1 ≤
h∂

(1 + h(p + δ))
+

Tn

(1 + h(p + δ))
⇔ h∇∑n

k+1

(
1

(1 + h(p + δ)

)k
+ T0

(
1

(1 + h(p + δ)

)n

If 0 < T(0) < ∂
p+δ , then by employing Gronwall’s inequality, we obtain

Tn ≤
∂

p + q

(
1− 1

(1 + h(p + δ))n

)
+ T0

(
1

(1 + h(p + δ)

)n
=

∂

p + δ
+

(
T0 −

∂

p + δ

)(
1

(1 + h(p + δ)

)n

Since
(

1
(1+h(p+δ)

)n
< 1, so we obtain Tn → ∂

p+δ as n→ ∞ . This shows that the
solutions of the system (4) are bounded, and the feasible region becomes

B =

{
(Sn + En + Qn + An + Dn) : 0 ≤ Sn + En + Qn + An + Dn ≤

∂

p + δ

}
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In order to verify the local stability of both equilibria for the NSFD scheme (4),
we consider

Sn+1 = h∂+Sn
(1+h((p+δ)+βEn))

= g1

En+1 = En+hβSn+1En
1+h(θ+δ+u+$)

= g2

Qn+1 = h(pSn+1+θEn+1)+Qn
1+h(ϕ+υ+δ)

= g3

An+1 = h($En+1+ϕQn+1)+An
1+h(δ+r1)

= g4

Dn+1 = h(uEn+1+υQn+1)+Dn
1+h(ω+δ+r2)

= g5

(5)

4.2. Local Stability of Equilibria

To prove that the DFE point is locally asymptotically stable, we will use the Schur–
Cohn criterion [36,37], stated in the following Lemma 1.

Lemma 1. The roots of Γ2 − BΓ + C = 0 guarantee
∣∣Γj
∣∣ < 1 f or j = 1, 2, if and only if the

requirements given in the following are fulfilled.

1. C < 1,
2. 1 + B + C > 0,
3. 1− B + C > 0, where B denotes trace and C indicates determinant of the Jacobian matrix.

Theorem 1. For all h > 0, the DFE point is locally asymptotically stable for the NSFD Model (4)
whenever R0 < 1.

Proof. Based on the information provided above, the Jacobian matrix can be expressed as

J(S, E, Q, A, D) =



∂g1
∂S

∂g1
∂E

∂g1
∂Q

∂g1
∂A

∂g1
∂D

∂g2
∂S

∂g2
∂E

∂g2
∂Q

∂g2
∂A

∂g2
∂D

∂g3
∂S

∂g3
∂E

∂g3
∂Q

∂g3
∂A

∂g3
∂D

∂g4
∂S

∂g4
∂E

∂g4
∂Q

∂g4
∂A

∂g4
∂D

∂g5
∂S

∂g5
∂E

∂g5
∂Q

∂g5
∂A

∂g5
∂D


(6)

where g1, g2, g3, g4 and g5 are provided in (5). We first perceive all the derivatives used
in (6) as follows:

∂g1
∂S = 1

(1+h((p+δ)+βEn))
, ∂g1

∂E = −h∂

(1+h((p+δ)+βEn))
2 , ∂g1

∂A = 0, ∂g1
∂D = 0, ∂g1

∂Q = 0, ∂g2
∂S = 0, ∂g2

∂E =

1+hβSn+1
1+h(θ+δ+u+$)

, ∂g1
∂A = 0, ∂g2

∂D = 0, ∂g2
∂Q = 0, ∂g3

∂S = hp
1+h(ϕ+υ+δ)

, ∂g3
∂E = hθ

1+h(ϕ+υ+δ)
, ∂g3

∂Q = 1
1+h(ϕ+υ+δ),

∂g3
∂A =

0, ∂g3
∂D = 0, ∂g4

∂S = 0, ∂g4
∂E = h$

1+h(δ+r1)
, ∂g4

∂Q = hφ
1+h(δ+r1)

, ∂g4
∂A = 1+h$

1+h(δ+r1)
, ∂g4

∂D = 0, ∂g5
∂S = 0, ∂g5

∂E =

hυ
1+h(ω+δ+r2)

, ∂g5
∂Q = hϕ

1+h(ω+δ+r2)
, ∂g5

∂A = 0, ∂g5
∂D = 1

1+h(ω+δ+r2)
.



Fractal Fract. 2023, 7, 451 7 of 16

Putting all the above derivatives in (6), we obtain

J =



1
(1+h((p+δ)+βEn))

−h∂

(1+h((p+δ)+βEn))
2 0 0 0

0 1+hβSn+1
1+h(θ+δ+u+$)

0 0 0

hp
1+h(ϕ+υ+δ)

hθ
1+h(ϕ+υ+δ)

1
1+h(ϕ+υ+δ)

0 0

0 h$
1+h(δ+r1)

hφ
1+h(δ+r1)

1+h$
1+h(δ+r1)

0

0 hυ
1+h(ω+δ+r2)

hϕ
1+h(ω+δ+r2)

0 1
1+h(ω+δ+r2)


(7)

At DFE point E0 =
(

∂
p+δ , 0, 0, 0, 0

)
, the matrix (7) becomes

J(E0) =



1
1+h(p+δ)

−h∂

(1+h(p+δ))2 0 0 0

0
1+hβ

(
∂

p+δ

)
1+h(θ+δ+u+$)

0 0 0

hp
1+h(ϕ+υ+δ)

hθ
1+h(ϕ+υ+δ)

1
1+h(ϕ+υ+δ)

0 0

0 h$
1+h(δ+r1)

hφ
1+h(δ+r1)

1+h$
1+h(δ+r1)

0

0 hυ
1+h(ω+δ+r2)

hϕ
1+h(ω+δ+r2)

0 1
1+h(ω+δ+r2)


In order to explain the eigenvalues, we assume

|J(E0)− ΓI| = 0

i.e.,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1+h(p+δ)

− Γ −h∂

(1+h(p+δ))2 0 0 0

0
1+hβ

(
∂

p+δ

)
1+h(θ+δ+u+$)

− Γ 0 0 0

hp
1+h(ϕ+υ+δ)

hθ
1+h(ϕ+υ+δ)

1
1+h(ϕ+υ+δ)

− Γ 0 0

0 h$
1+h(δ+r1)

hφ
1+h(δ+r1)

1+h$
1+h(δ+r1)

− Γ 0

0 hυ
1+h(ω+δ+r2)

hϕ
1+h(ω+δ+r2)

0 1
1+h(ω+δ+r2)

− Γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (8)

After simple calculations, (8) yields

(
Γ1 −

1
1 + h(ω + δ + r2)

)(
Γ2 −

1 + h$

1 + h(δ + r1)

)(
Γ3 −

1
1 + h(ϕ + υ + δ)

)∣∣∣∣∣∣∣
1

1+h(p+δ)
− Γ −h∂

(1+h(p+δ))2

0
1+hβ

(
∂

p+δ

)
1+h(θ+δ+u+$)

− Γ

∣∣∣∣∣∣∣ = 0 (9)
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The Equation (9) provides Γ1 = 1
1+h(ω+δ+r2)

< 1, Γ2 = 1+h$
1+h(δ+r1)

< 1 and

Γ3 = 1
1+h(ϕ+υ+δ)

< 1. To find other eigenvalues, we take

∣∣∣∣∣∣∣
1

1+h(p+δ)
− Γ −h∂

(1+h(p+δ))2

0
1+hβ

(
∂

p+δ

)
1+h(θ+δ+u+$)

− Γ

∣∣∣∣∣∣∣ = 0

i.e.,

Γ2 − Γ

 1
1 + h(p + δ)

+
1 + ∂hβ

p+δ

1 + h(θ + δ + u + $)

+
1 + ∂hβ

p+δ

(1 + h(p + δ))(1 + h(θ + δ + u + $))
= 0 (10)

Comparing Equation (10) with Γ2− BΓ+C = 0, we obtain B = 1
1+h(p+δ)

+
1+ ∂hβ

p+δ

1+h(θ+δ+u+$)

and C =
1+ ∂hβ

p+δ

(1+h(p+δ))(1+h(θ+δ+u+$))
. If R0 < 1, i.e., ∂β < (p + δ)(θ + δ + u + $).

1. C =
1+hβ

(
∂

p+δ

)
(1+h(p+δ))(1+h(θ+δ+u+$))

< 1.

2. 1 + B + C = 1 + 1
1+h(p+δ)

+
1+ ∂hβ

p+δ

1+h(θ+δ+u+$)
+

1+ ∂hβ
p+δ

(1+h(p+δ))(1+h(θ+δ+u+$))
> 0.

3. 1− B + C = 1− 1
1+h(p+δ)

−
1+ ∂hβ

p+δ

1+h(θ+δ+u+$)
+

1+ ∂hβ
p+δ

(1+h(p+δ))(1+h(θ+δ+u+$))
> 0.

As a result, whenever R0 < 1, all of the requirements of the Schur–Cohn criterion
mentioned in Lemma 1 are satisfied. Therefore, provided that R0 < 1, the DFE point E0 of
the discrete NSFD scheme (4) is locally asymptotically stable. �

Theorem 2. For all cases of h > 0, the DEE point is locally asymptotically stable for the NSFD
model (4) whenever R0 > 1.

Proof. We derive the Jacobian matrix similarly to Theorem 1, as follows:

J =



1
(1+h((p+δ)+βEn))

−h∂

(1+h((p+δ)+βEn))
2 0 0 0

0 1+hβSn+1
1+h(θ+δ+u+$)

0 0 0

hp
1+h(ϕ+υ+δ)

hθ
1+h(ϕ+υ+δ)

1
1+h(ϕ+υ+δ)

0 0

0 h$
1+h(δ+r1)

hφ
1+h(δ+r1)

1+h$
1+h(δ+r1)

0

0 hυ
1+h(ω+δ+r2)

hϕ
1+h(ω+δ+r2)

0 1
1+h(ω+δ+r2)


(11)
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By including DEE point E∗, Equation (11) becomes

J(E∗) =



1
(1+h((p+δ)+βE∗n))

−h∂

(1+h((p+δ)+βE∗n))
2 0 0 0

0
1+hβS∗n+1

1+h(θ+δ+u+$)
0 0 0

hp
1+h(ϕ+υ+δ)

hθ
1+h(ϕ+υ+δ)

1
1+h(ϕ+υ+δ)

0 0

0 h$
1+h(δ+r1)

hφ
1+h(δ+r1)

1+h$
1+h(δ+r1)

0

0 hυ
1+h(ω+δ+r2)

hϕ
1+h(ω+δ+r2)

0 1
1+h(ω+δ+r2)


To discuss the eigenvalues, we take

|J(E∗)− ΓI| = 0,

i.e.,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(1+h((p+δ)+βE∗n))

− Γ −h∂

(1+h((p+δ)+βE∗n))
2 0 0 0

0
1+hβS∗n+1

1+h(θ+δ+u+$)
− Γ 0 0 0

hp
1+h(ϕ+υ+δ)

hθ
1+h(ϕ+υ+δ)

1
1+h(ϕ+υ+δ)

− Γ 0 0

0 h$
1+h(δ+r1)

hφ
1+h(δ+r1)

1+h$
1+h(δ+r1)

− Γ 0

0 hυ
1+h(ω+δ+r2)

hϕ
1+h(ω+δ+r2)

0 1
1+h(ω+δ+r2)

− Γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (12)

After simplification, (12) yields

(
1

1 + h(ω + δ + r2)
− Γ

)(
1 + h$

1 + h(δ + r1)
− Γ

)(
1

1 + h(ϕ + υ + δ)
− Γ

)∣∣∣∣∣∣∣
1

1+h(p+δ)
− Γ −h∂

(1+h(p+δ))2

0
1+hγ

(
βS∗E∗−∂
(p+δ)

)
1+h(θ+δ+u+$)

− Γ

∣∣∣∣∣∣∣ = 0 (13)

The three roots of the Equation (13) are Γ1 = 1
1+h(ω+δ+r2)

< 1, Γ2 = 1+h$
1+h(δ+r1)

< 1 and

Γ3 = 1
1+h(ϕ+υ+δ)

< 1. To discuss other eigenvalues, we take

∣∣∣∣∣∣∣
1

1+h(p+δ)
− Γ −h∂

(1+h(p+δ))2

0
1+hγ

(
βS∗E∗−∂
(p+δ)

)
1+h(θ+δ+u+$)

− Γ

∣∣∣∣∣∣∣ = 0

i.e.,

Γ2 − Γ

 1
1 + h(p + δ)

+
1 + hβ

(
γS∗E∗−∂
(p+δ)

)
1 + h(θ + δ + u + $)

+
1 + hβ

(
βS∗E∗−∂
(p+δ)

)
(1 + h(p + δ))(1 + h(θ + δ + u + $))

= 0 (14)

Comparing (14) with (10), we obtain B =

(
1

1+h(p+δ)
+

1+hβ
(

βS∗E∗−∂
(p+δ)

)
1+h(θ+δ+u+$)

)
and

C =
1+hβ

(
βS∗E∗−∂
(p+δ)

)
(1+h(p+δ))(1+h(θ+δ+u+$))

. If R0 > 1, i.e., ∂β > (p + δ)(θ + δ + u + $), then
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1. C =
1+hβ

(
βS∗E∗−∂
(p+δ)

)
(1+h(p+δ))(1+h(θ+δ+u+$))

< 1.

2. 1 + B + C = 1 + 1
1+h(p+δ)

+
1+hβ

(
βS∗E∗−∂
(p+δ)

)
1+h(θ+δ+u+$)

+
1+hβ

(
βS∗E∗−∂
(p+δ)

)
(1+h(p+δ))(1+h(θ+δ+u+$))

> 0.

3. 1− B + C = 1− 1
1+h(p+δ)

−
1+hβ

(
βS∗E∗−∂
(p+δ)

)
1+h(θ+δ+u+$)

+
1+hβ

(
βS∗E∗−∂
(p+δ)

)
(1+h(p+δ))(1+h(θ+δ+u+$))

> 0.

As a result, whenever R0 > 1, all of the requirements of the Schur–Cohn criterion
stated in Lemma 1 are fulfilled. Therefore, provided that R0 > 1, the DEE point E∗ of the
discrete NSFD scheme (4) is locally asymptotically stable. �

4.3. Global Stability of Equilibria

To prove the global stability of the DFE and DEE points for the NSFD scheme (4), we
define the function H(x) ≥ 0 such that H(x) = y− ln y− 1 and, consequently ln y ≤ y− 1.

Theorem 3. For all cases of h > 0, the DFE point is globally asymptotically stable for the NSFD
model (4) whenever R0 ≤ 1.

Proof. Construct a discrete Lyapunov function

Pn(Sn, En, Qn, An, Dn) = S0H
(

Sn

S0

)
+ φ1En + φ2Qn + φ3 An + φ4Dn

where φi > 0 for all i = 1, 2, 3, 4. Hence, Pn > 0 for all Sn > 0, En > 0, Qn > 0, An > 0,
and Qn > 0. In addition, Pn = 0, if and only if, Sn = S0, En = E0, An = A0, Dn = D0, and
Qn=Q0. We take

∆Pn = Pn+1 − Pn

i.e.,

∆Pn = S0F
(

Sn+1
S0

)
+ φ1En+1 + φ2Qn+1 + φ3 An+1 + φ4Dn+1

−
(

S0F
(

Sn
S0

)
+ φ1En + φ3 An + φ4Dn + φ3Qn

)
= S0

(
Sn+1

S0 − Sn
S0 + ln Sn

Sn+1

)
+ φ1(En+1 − En) + φ2(Qn+1 −Qn) + φ4(Dn+1 − Dn)

(15)

Using the inequality ln y ≤ y− 1, (15) becomes

∆Pn ≤ Sn+1 − Sn + S0
(
−1 + Sn

Sn+1

)
+
(
−1 + En

En+1

)
φ1(En+1 − En) +

(
−1 + Qn

Qn+1

)
φ2(Qn+1−

Qn) +
(
−1 + An

An+1

)
φ3(An+1 − An) +

(
−1 + Dn

Dn+1

)
φ4(Dn+1 − Dn)

= −
(

1− S0

Sn+1

)
(Sn+1 − Sn)−

(
1− En

En+1

)
φ1(En+1 − En)−

(
1− Qn

Qn+1

)
φ2(Qn+1 −Qn)

−
(

1− An
An+1

)
φ3(An+1 − An)−

(
1− Dn

Dn+1

)
φ4(Dn+1 − Dn)

(16)

By utilizing system (3), (16) can be written as

∆Pn ≤ −
((

1− S0

Sn+1

)
(∂− (p + δ)Sn+1 − βSn+1En) +

(
1− En

En+1

)
φ1(βSn+1En − (θ + δ + u + $)En+1)

+
(

1− Qn
Qn+1

)
φ2(pSn+1 + θEn+1 − (ϕ + υ + δ)Qn+1)

(
1− An

An+1

)
φ3($En+1 + φQn+1 − (δ + r1)An+1)

+
(

1− Dn
Dn+1

)
φ4(uEn+1 + υQn+1 − (ω + δ + r2)Dn+1)

) (17)
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Let φi for i =1, 2, 3, 4 be selected so that

(∂− (p + δ)Sn+1 − βSn+1En) = φ1(βSn+1En − (θ + δ + u + $)En+1), φ2(pSn+1 + θEn+1 − (ϕ + υ + δ)Qn+1) =

φ3($En+1 + υQn+1 − (δ + r1)An+1), (uEn+1 + ϕQn+1 − (ω + δ + r2)Dn+1) = φ5(r1 An + r2Dn − δRn+1).

By including the above values, from (17) we obtain

∆Pn ≤ −
((

1− S0

Sn+1

)
(∂− (p + δ)Sn+1 − βSn+1En) +

(
1− En

En+1

)
φ1(βSn+1En − (θ + δ + u+

$)En+1) +
(

1− Qn
Qn+1

)
φ2(pSn+1 + θEn+1 − (ϕ + v + δ)Qn+1) +

(
1− An

An+1

)
φ3($En+1 + φQn+1−

(δ + r1)An+1) +
(

1− Dn
Dn+1

)
φ4(uEn+1 + vQn+1 − (ω + δ + r2)Dn+1)

)
.

Simple calculations yield

∆Pn ≤ −
((

1− S0

Sn+1

)(
∂ + φ1βSn+1En −

(
1− An

An+1

)
φ1(θ + δ + u + $)En+1

)
+ (1−

En
En+1

)
φ2 pSn+1 + φ2θEn+1 + φ3$En+1 + φ3φQn+1 +

(
1− Qn

Qn+1

)
φ3(δ + r1)An+1+

φ4uEn + 1 + φ4 ϕQn+1 +
(

1− Dn
Dn+1

)
φ4(ω + δ + r2)Dn+1

)
≤ −

((
1− S0

Sn+1

)(
∂−

(
1− An

An+1

)
φ1(θ + δ + u + $) +

(
1− En

En+1

)
φ2 pSn+1

−
(

1− Qn
Qn+1

)
φ3(δ + r1)An+1 +

(
1− Dn

Dn+1

)
φ4 ϕQn+1

))
(18)

As S0 = ∂
p+q , this implies S0(p + δ) = ∂. By substituting ∂ in (18), we obtain

∆Pn ≤ −
(

1− S0

Sn+1

)(
S0(p + δ)− (p + δ)Sn+1 −

(
1− An

An+1

)
φ1(θ + δ + u + $) +

(
1− En

En+1

)
φ2 pSn+1

−
(

1− Qn
Qn+1

)
φ3(δ + r1)An+1 +

(
1− Dn

Dn+1

)
φ4 ϕQn+1

)
=
−(p+δ)

Sn+1

((
Sn+1 − S0)2 −

(
1− An

An+1

)
φ1(θ + δ + u + $)En + φ2

p(p+δ)(θ+δ+u+$)
∂β R0

−φ3(δ + r1)An+1 + φ4 ϕQn+1)

(19)

Hence, if R0 ≤ 1, then from Equation (19) we employ ∆Pn ≤ 0 for all n ≥ 0. Consequently,
Pn is a non-increasing sequence. Therefore, there exists a constant P, such that limn→∞Pn = P,
which suggests that limn→∞(Pn+1 − Pn) = 0. From system (3) and limn→∞∆Pn = 0 we have
limn→∞Sn = S0. For the case R0 < 1, we have limn→∞Sn+1 = S0 and limn→∞En = 0, limn→∞ An = 0.
From system (3), we achieve limn→∞En = 0, limn→∞D = 0 and limn→∞Qn = 0. For the case
R0 = 1, we have limn→∞Sn+1 = S0. Thus, from System (3), we obtain limn→∞Rn = 0, limn→∞Qn =
0, limn→∞En = 0, limn→∞ An = 0 and limn→∞Dn = 0. Hence, E0 is globally asymptotically stable.

Figure 2a–d demonstrate that the solutions of the NSFD scheme (4) tend to the DFE point for any
step size whenever R0 ≤ 1. This demonstrates that the DFE point of the discrete NSFD scheme (4) is
unconditionally convergent. Also, see Figure 3. �
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Figure 3. Numerical simulation for model (2) using the NSFD scheme with (a) h = 0.001,
(b) h = 0.01, (c) h = 0.1, and (d) h = 0.5. Other parameters remain fixed: p = 0.001,
β = 0.1, ω = 0.14, θ = 0.15, u = 0.25, ϕ = 0.4, δ = 0.3, υ = 0.12, $ = 0.35, r1 = 0.35, r2 = 0.45,
and ∂ = 5.2.
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Theorem 4. For all cases of h > 0, the DEE point is globally asymptotically stable for the NSFD Model (4)
whenever R0 > 1.

Proof. Let us define

Vn(Sn, En, Qn, An, Dn) = S∗H
(

Sn

S∗

)
+ φ1E∗H

(
En

E∗

)
+ φ2Q∗H

(
Qn

Q∗

)
+ φ3 A∗H

(
An

A∗

)
+ φ4D∗H

(
Dn

D∗

)
where φi > 0, i = 1, 2, 3, 4 which we will select later. It is clear that Vn(Sn, En, Qn, An, Dn) > 0 for all
Sn > 0, En > 0, Qn > 0, An > 0, Dn > 0 and Vn(S∗, E∗, Q∗, A∗, D∗) = 0. Let us take

∆Vn = Vn+1 −Vn,

we obtain

∆Vn = S∗H
(

Sn+1
S∗

)
+ φ1E∗H

(
En+1
E∗

)
+ φ2Q∗H

(
Qn+1
Q∗

)
+ φ3 A∗H

(
An+1
A∗

)
+ φ4D∗H

(
Dn+1
D∗

)
−
[
S∗H

(
Sn
S∗

)
+

φ1E∗H
(

En
E∗

)
+ φ2Q∗H

(
Qn
Q∗

)
+ φ3 A∗H

(
An
A∗

)
+ φ4D∗H

(
Dn
D∗

)]

= S∗
(

Sn+1
S∗ −

Sn
S∗ + ln Sn

Sn+1

)
+ φ1E∗

(
En+1
E∗ −

En
E∗ + ln En

En+1

)
+ φ2Q∗

(
Qn+1
Q∗ −

Qn
Q∗ + ln Qn

Qn+1

)
+φ3 A∗

(
An+1
A∗ −

An
A∗ + ln An

An+1

)
+ φ4D∗

(
Dn+1
D∗ −

Dn
D∗ + ln Dn

Dn+1

) (20)

By employing inequality ln y ≤ y− 1, (20) can be written as

∆Vn ≤ S∗
(

Sn+1−Sn
S∗ + Sn

Sn+1
− 1
)

+φ1E∗
(

En+1−En
E∗ + En

En+1
− 1
)
+ φ2Q∗

(
Qn+1−Qn

Q∗ + Qn
Qn+1
− 1
)

+ φ3 A∗
(

An+1−An
A∗ + An

An+1
− 1
)
+ φ4 A∗

(
Dn+1−Dn

D∗ + Dn
Dn+1
− 1
)

=
(

1− S∗
Sn+1

)
(Sn+1 − Sn) + φ1

(
1− E∗

En+1

)
(En+1 − En)

+φ2

(
1− Q∗

Qn+1

)
(Qn+1 − Qn) + φ3

(
1− A∗

An+1

)
(An+1 − An) + φ4

(
1− D∗

Dn+1

)
(Dn+1

−Dn)

(21)

By utilizing system (3), (21) becomes

∆Vn ≤
(

1− S∗
Sn+1

)
(∂− (p + δ)Sn+1 − βSn+1En) + φ1

(
1− E∗

En+1

)
(βSn+1En − (θ + δ + u+

$)En+1) + φ3

(
1− A∗

An+1

)
($En+1 + φQn+1 − (δ + r1)An+1) + φ4

(
1− D∗

Dn+1

)
(uEn+

υQn+1(ω + δ + r2)Dn+1) + φ2

(
1− Q∗

Qn+1

)
(pSn+1 + θEn+1 − (ϕ + υ + δ)Qn+1)

(22)

By replacing ∂ = (p + δ)S∗ + ΓS∗E∗ in (22), we obtain
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∆Vn ≤
(

1− S∗
Sn+1

)
((p + δ)S∗ + βS∗E∗ − (p + δ)Sn+1 − γSn+1En)

+φ1

(
1− E∗

En+1

)
(βSE− (θ + δ + υ + $)E∗) ) + φ3

(
1− A∗

An+1

)
($E + φQ

−(δ + r1)A) + φ4

(
1− D∗

Dn+1

)
(υEn + ϕQn+1 − (ω + δ + r2)Dn+1)

+φ2

(
1− Q∗

Qn+1

)
(pS + θE− (ϕ + υ + δ)Q)

=
(

1− S∗
Sn+1

)
((p + δ)S∗ − (p + δ)Sn+1) + φ1

(
1− E∗

En+1

)
(βSE− (θ + δ + u + $)E∗))

+φ2

(
1− Q∗

Qn+1

)
(pS + θE− (ϕ + υ + δ)Q) + φ3

(
1− A∗

An+1

)
($E + φQ

−(δ + r1)A) + φ4

(
1− D∗

Dn+1

)
(uEn+1 + υQn+1 − (ω + δ + r2)Dn+1)

(23)

By substituting (p + δ)S∗ + βS∗E∗ = φ1(θ + δ + u + $)E∗, θE∗ = φ2(δ + r1)A∗, ωD∗ = φ3
(ω + δ + r2)D∗ in (23), we obtain

∆Vn ≤ −θ
Sn+1

(Sn+1 − S∗)2 +
(

1− S∗
Sn+1

)
(θ + δ + u + $)E∗ − (θ + δ + u + $)E∗ Sn+1Dn E∗

S∗En+1
+

−φ2θE∗ Sn+1Dn A∗
S∗D∗An+1

− φ1(p + δ)S∗ + βS∗E∗ A∗En+1
An+1E∗ + φ2(δ + r1)A∗ − φ3ωD∗ Sn+1DnQ∗

S∗Qn+1
+

φ3ωD∗ − φ2(δ + r1)A∗ D∗Dn+1
An+1D∗ − φ3ωA∗ D∗Q∗

Dn+1

=
−(p+δ)

Sn+1
(Sn+1 − S∗)2 − φ1D∗

(
H
(

S∗
Sn+1

)
+ H

(
Sn+1Dn E∗
S∗D∗En+1

)
+ H

(
A∗En+1
An+1E∗

)
+ H

(
D∗An+1
Dn+1 A∗

))
−

φ2θE∗
(

H
(

S∗
Sn+1

)
+ H

(
Sn+1Dn D∗
S∗D∗Dn+1

)
+ H

(
D∗Dn+1
Dn+1 A∗

))
− φ3ωA∗

(
H
(

S∗
Sn+1

)
+ H

(
Sn+1DnQ∗
S∗D∗Qn+1

)
+ H

(
Qn+1D∗
Q∗Dn+1

))
.

Thus, Vn is a non-increasing sequence and there is a constant V, such that limn→∞Vn = V.
Therefore, limn→∞ → Vn = 0 ,which implies limn→∞Sn = S∗, limn→∞En = E∗, limn→∞Qn = Q∗,
limn→∞ An = A∗, and limn→∞Dn = D∗.

Figure 3a–d shows that whenever R0 > 1, the solutions of the NSFD scheme (4) tend to the DEE
point for any step size. This proves the unconditional convergence of the DEE point for the discrete
NSFD scheme (4) whenever R0 > 1.

5. Conclusions
A nonlinear mathematical model of the COVID-19 disease that includes asymptomatic as well as

symptomatic classes of infected individuals is employed and analyzed in the current work. In order
to properly investigate the stability of the DFE and DEE points, the critical threshold quantity R0 is
obtained for the continuous model. The NSFD scheme is developed, which offers accurate results
for all finite step sizes while maintaining key aspects of the continuous model. The boundedness
and positivity of solutions for the discrete NSFD scheme are thoroughly examined. For the NSFD
scheme, multiple conditions and criteria have been devised to check the local and global stability
of the equilibria. It is demonstrated that the proposed discrete NSFD scheme [38,39] has the same
dynamics as the continuous model, irrespective of the time step size. The outcomes present the
fact that the spread of the COVID-19 epidemic disease can be effectively monitored by utilizing the
NSFD scheme. The information offered in this research is useful for humanity and for the area of
medicine as well. The results provided in the present paper can be used as a useful tool to forecast
the emergence of the COVID-19 epidemic disease. All the aforementioned qualitative features are
also verified by numerical simulations.

In our future study, we intend to investigate additional generalized epidemic models with
characteristics comparable to the one under consideration in order to gain a deeper understanding of
disease transmission dynamics. The dynamic behavior of the epidemic models will be investigated
using the Euler, RK-4, and NSFD numerical schemes.
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