
Citation: Li, Y.; Li, D.; Jiang, Y.; Feng, X.

Solvability for the ψ-Caputo-Type

Fractional Differential System with

the Generalized p-Laplacian Operator.

Fractal Fract. 2023, 7, 450. https://

doi.org/10.3390/fractalfract7060450

Academic Editor: Ivanka Stamova

Received: 1 May 2023

Revised: 27 May 2023

Accepted: 30 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Solvability for the ψ-Caputo-Type Fractional Differential
System with the Generalized p-Laplacian Operator
Yankai Li 1,†, Dongping Li 2,*,† , Yi Jiang 3 and Xiaozhou Feng 2

1 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China;
liyankai@xaut.edu.cn

2 Department of Mathematics, Xi’an Technological University, Xi’an 710021, China; flxzfxz8@163.com
3 College of Electrical Engineering, Nanjing Vocational University of Industry Technology,

Nanjing 210023, China; 2021101294@niit.edu.cn
* Correspondence: li_dongping@126.com
† These authors contributed equally to this work.

Abstract: In this article, by combining a recent critical point theorem and several theories of the
ψ-Caputo fractional operator, the multiplicity results of at least three distinct weak solutions are
obtained for a new ψ-Caputo-type fractional differential system including the generalized p-Laplacian
operator. It is noted that the nonlinear functions do not need to adapt certain asymptotic conditions
in the paper, but, instead, are replaced by some simple algebraic conditions. Moreover, an evaluation
criterion of the equation without solutions is also provided. Finally, two examples are given to
demonstrate that the ψ-Caputo fractional operator is more accurate and can adapt to deal with
complex system modeling problems by changing different weight functions.
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1. Introduction

As a popular research object in recent years, fractional differential equations (FDEs) play
an important role in modeling many practical problems of science and engineering, such as
fluid flow, anomalous diffusion, viscoelastic mechanics, epidemiology, etc. (see [1–6]). There
are various definitions of fractional integration and differentiation, including the most widely
used classical definitions of Riemann–Liouville, Caputo, Hadamard and others (see [7–10]).
Currently, these classical definitions are employed in many fields, such as fractional boundary
and initial value problems (see [11–15]). In order to overcome the inconvenience arising from
a large number of definitions, Kilbas et al. advanced a new and more general form, called
the ψ-Caputo-type fractional derivative (cf. [7]). By drawing into the weight function ψ(t),
different definitional forms of fractional calculus were generalized and unified into a whole
expression. In 2017, Almeida [16] investigated the relevant properties of the new operator and
provided a theoretical basis for studying ψ-Caputo-type FDEs in depth.

When the weight function ψ(t) is specified as certain functions, the ψ-Caputo fractional
derivative can be degenerated into certain classical functions. Therefore, based on ψ-Caputo
fractional integration and differentiation, the modeling accuracy of practical problems is
greatly improved. Most recently, some existence results for ψ-Caputo FDEs were achieved
by applying fixed-point theorems in topological methods (see [17–20]). For instance, ref. [18]
considered the solvability of the ψ-Caputo-type FDE by taking advantage of a novel fixed-
point theorem. In [19], the authors derived the existence and uniqueness of solutions for a
ψ-Caputo fractional initial value problem by applying some standard fixed-point theorems.

However, so far as is known to the authors, there are few studies which have focused
on solvability for ψ-Caputo FDEs based on variational methods and critical point theory.
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In light of this point, in this paper, we consider a new ψ-Caputo-type fractional differential
system, including the generalized p-Laplacian operator.{

CDα,ψ
b− (Φp(CDα,ψ

a+ z(t))) + |z(t)|p−2z(t) = ξg(t, z(t)) + λ f (t, z(t)), t ∈ [a, b],
z(a) = z(b) = 0,

(1)

where 0 < α ≤ 1, 0 ≤ a < b < +∞, λ > 0, ξ ≥ 0, 1 < p < ∞, and the right and
left α-order ψ-Caputo fractional derivatives are CDα,ψ

b− and CDα,ψ
a+ . The weight function

ψ(t) ∈ C1[a, b] increases with ψ′(t) 6= 0 for all t ∈ [a, b]; the p-Laplacian operator is
defined by Φp(s) = |s|p−2s(s 6= 0) with Φp(0) = 0, f , g ∈ C([a, b]×R,R) and satisfying
f (t, 0) = g(t, 0) = 0 for every t ∈ [a, b].

What is particularly noteworthy is that the nonlinear functions f and g in this article do
not need to adapt certain asymptotic conditions; we can acquire the multiplicity of at least
three distinct solutions only by imposing algebraic conditions on the nonlinearities. This
work is a generalization of several results reported in the literature which are concerned
with classical fractional operators.

2. Fractional Calculus and Critical Point Theorem

In this section, we present the definitions of some kinds of fractional integrals and
differentials, as well as related properties, and one effective critical point theorem.

Definition 1 ([7,16]). Let −∞ < a < b < +∞, t ∈ [a, b], z(t) is integrable, ψ(t) ∈ C1[a, b]
is increasing with ψ′(t) 6= 0 for all t ∈ [a, b]. The left and right ψ-Riemann–Liouville fractional
integrals of a function z are defined, respectively, by

Iα,ψ
a+ z(t) =

1
Γ(α)

∫ t

a
z(ς)(ψ(t)− ψ(ς))α−1ψ′(ς)dς, ∀α > 0,

Iα,ψ
b− z(t) =

1
Γ(α)

∫ b

t
z(ς)(ψ(ς)− ψ(t))α−1ψ′(ς)dς, ∀α > 0.

Let n = [α] + 1 for α /∈ N, n = α for α ∈ N. The left and right ψ-Riemann–Liouville
fractional derivatives of a function z are, respectively, defined by

Dα,ψ
a+ z(t) =

(
1

ψ′(t)
d
dt

)n

In−α,ψ
a+ z(t)

=
1

Γ(n− α)

(
1

ψ′(t)
d
dt

)n ∫ t

a
z(ς)(ψ(t)− ψ(ς))n−α−1ψ′(ς)dς,

Dα,ψ
b− z(t) =

(
−1

ψ′(t)
d
dt

)n

In−α,ψ
b− z(t)

=
1

Γ(n− α)

(
− 1

ψ′(t)
d
dt

)n ∫ b

t
z(ς)(ψ(ς)− ψ(t))n−α−1ψ′(ς)dς.

Especially, for 0 < α < 1,

Dα,ψ
a+ z(t) =

(
1

ψ′(t)
d
dt

)
I1−α,ψ
a+ z(t) (2)

=
1

Γ(1− α)

(
1

ψ′(t)
d
dt

) ∫ t

a
z(ς)(ψ(t)− ψ(ς))−αψ′(ς)dς,

Dα,ψ
b− z(t) =

(
−1

ψ′(t)
d
dt

)
I1−α,ψ
b− z(t) (3)

=
1

Γ(1− α)

(
−1

ψ′(t)
d
dt

) ∫ b

t
z(ς)(ψ(ς)− ψ(t))−αψ′(ς)dς.
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Obviously, the classical Riemann–Liouville fractional derivative can be acquired by choosing the
weight function ψ(t) = t.

Definition 2 ([7,16]). Let −∞ < a < b < +∞, z(t), ψ(t) ∈ Cn[a, b], such that ψ is increasing
and ψ′(t) 6= 0. Define the left and right ψ-Caputo fractional derivatives of a function z by

CDα,ψ
a+ z(t) =In−α,ψ

a+

(
1

ψ′(t)
d
dt

)n

z(t)

=
1

Γ(n− α)

∫ t

a
(ψ(t)− ψ(ς))n−α−1ψ′(ς)

(
1

ψ′(ς)

d
dς

)n

z(ς)dς, ∀α > 0,

CDα,ψ
b− z(t) =In−α,ψ

b−

(
− 1

ψ′(t)
d
dt

)n

z(t)

=
(−1)n

Γ(n− α)

∫ b

t
(ψ(ς)− ψ(t))n−α−1ψ′(ς)

(
1

ψ′(ς)

d
dς

)n

u(ς)dς, ∀α > 0,

where n = [α] + 1 for α /∈ N, n = α for α ∈ N. Especially, for 0 < α < 1,

CDα,ψ
a+ z(t) = I1−α,ψ

a+

(
1

ψ′(t)
d
dt

)
z(t) =

1
Γ(1− α)

∫ t

a
z′(ς)(ψ(t)− ψ(ς))−αdς, (4)

CDα,ψ
b− z(t) = I1−α,ψ

b−

(
− 1

ψ′(t)
d
dt

)
z(t) =

−1
Γ(1− α)

∫ b

t
z′(ς)(ψ(ς)− ψ(t))−αdς. (5)

Obviously, the classical Caputo fractional derivative can be acquired by choosing the weight function
ψ(t) = t.

Property 1 ([16]). If z(t) ∈ Cn[a, b], −∞ < a < b < +∞, we have

CDα,ψ
a+ z(t) = Dα,ψ

a+

[
z(t)− Σn−1

k=0
1
k!
(ψ(t)− ψ(a))k

(
1

ψ′(t)
d
dt

)k

z(a)
]

, ∀α > 0,

CDα,ψ
b− z(t) = Dα,ψ

b−

[
z(t)− Σn−1

k=0
(−1)k

k!
(ψ(b)− ψ(t))k

(
1

ψ′(t)
d
dt

)k

z(b)
]

, ∀α > 0,

where n = [α] + 1 for α /∈ N, n = α for α ∈ N.

This paper deals mainly with the Caputo-type fractional derivative with the weight
function ψ. In what follows, an important and proper fractional derivative space is defined,
which is crucial for the system (1) to establish a variational structure.

Definition 3. Let 1
p < α ≤ 1, 1 < p < ∞. Define the ψ-Caputo fractional derivative space

H(α,ψ,p) by the closure of C∞
0 ([a, b],R) with weighted norm

‖z‖(α,ψ,p) :=
( ∫ b

a
| z(t) |p dt +

∫ b

a
ψ′(t) | CDα,ψ

a+ z(t) |p dt
) 1

p

. (6)

Apparently, H(α,ψ,p) is the space of z(t) ∈ Lp[a, b] with an α order ψ-Caputo fractional derivative
CDα,ψ

a+ z(t) ∈ Lp[a, b] and z(a) = z(b) = 0. The Banach space H(α,ψ,p) is separable and reflexive,
cf. [21].

Lemma 1. For any 0 < α ≤ 1, we have

CDα,ψ
a+ z(t) = Dα,ψ

a+ z(t), CDα,ψ
b− z(t) = Dα,ψ

b− z(t), ∀z(t) ∈ H(α,ψ,p).
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Proof. Due to Property 1 and z(a) = z(b) = 0, we can obtain the desired
conclusion directly.

Lemma 2 ([21]). For 1 ≤ p < ∞, 0 < α < 1 and z ∈ Lp([a, b],R), we have

‖ Iα,ψ
a+ z ‖Lp [a,t]≤

[ψ(t)]α maxa≤t≤b{ψ′(t)}
Γ(α + 1)

‖ z ‖Lp [a,t],

for all t ∈ [a, b].

Lemma 3 ([16]). Let function z(t) ∈ Cn[a, b] and α > 0, then

Iα,ψ
a+

CDα,ψ
a+ z(t) = z(t)−

n−1

∑
k=0

z[k]ψ (a)

k!
(ψ(t)− ψ(a))k,

Iα,ψ
b−

CDα,ψ
b− z(t) = z(t)−

n−1

∑
k=0

(−1)k
z[k]ψ (b)

k!
(ψ(b)− ψ(t))k,

where z[k]ψ (t) :=
(

1
ψ′(t)

d
dt

)k

z(t). Especially, Iα,ψ
a+

CDα,ψ
a+ z(t) = z(t) − z(a), Iα,ψ

b−
CDα,ψ

b− z(t) =

z(t)− z(b), for 0 < α < 1.

Lemma 4. Let 1 < p < ∞, 1
p < α ≤ 1. For any z(t) ∈ H(α,ψ,p), we have

‖z‖Lp ≤ [ψ(b)]α maxa≤t≤b{ψ′(t)}
Γ(α + 1)

( ∫ b

a
| CDα,ψ

a+ z(t) |p dt
) 1

p

. (7)

Additionally, if 1
p + 1

q = 1, then

‖z‖∞ ≤
(ψ(b)− ψ(a))α− 1

p

Γ(α)(q(α− 1) + 1)
1
q

( ∫ b

a
ψ′(t) | CDα,ψ

a+ z(t) |p dt
) 1

p

. (8)

Denote

L̃ =
(ψ(b)− ψ(a))α− 1

p

Γ(α)(q(α− 1) + 1)
1
q

, L̂ =
[ψ(b)]α maxa≤t≤b{ψ′(t)}

Γ(α + 1)
. (9)

Proof. For any z(t) ∈ H(α,ψ,p) with z(a) = z(b) = 0, using the Hölder inequality and
Lemma 3, yields

|z(t)| =|Iα,ψ
a+

CDα,ψ
a+ z(t)| = 1

Γ(α)

∣∣∣∣ ∫ t

a

CDα,ψ
a+ z(ς)(ψ(t)− ψ(ς))α−1ψ′(ς)dς

∣∣∣∣
≤ 1

Γ(α)

( ∫ b

a

∣∣∣∣(ψ(t)− ψ(ς))α−1(ψ′(ς))
1
q

∣∣∣∣qdς

) 1
q
( ∫ b

a

∣∣∣∣CDα,ψ
a+ z(ς)(ψ′(ς))

1
p

∣∣∣∣pdς

) 1
p

≤ (ψ(b)− ψ(a))α− 1
p

Γ(α)(q(α− 1) + 1)
1
q

( ∫ b

a
ψ′(t)|CDα,ψ

a+ z(t)|pdt
) 1

p

.

Uniting Lemmas 2 and 3, we can obtain the inequality (7) instantly.

Based on the inequality (7), we can observe that the norm (6) and norm ‖z‖(α,ψ,p) :=( ∫ b
a ψ′(t) | CDα,ψ

a+ z(t) |p dt
) 1

p

are equal in form.
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Lemma 5 ([21]). Let 1
p < α ≤ 1. Suppose that any sequence {zk} converges to z in H(α,ψ,p)

weakly. Then, zk → z in C[a, b] as k→ ∞, i.e., ‖zk − z‖∞ → 0 as k→ ∞.

Lemma 6. We mean by a weak solution of the system (1), for any z(t) ∈ H(α,ψ,p), such that

∫ b

a
ψ′(t)Φp(

CDα,ψ
a+ z(t))CDα,ψ

a+ y(t) + Φp(z(t))y(t)ψ′(t)dt (10)

= ξ
∫ b

a
ψ′(t)y(t)g(t, z(t))dt + λ

∫ b

a
ψ′(t)y(t) f (t, z(t))dt,

for any y(t) ∈ H(α,ψ,p).

Proof. Taking advantage of (3), (4), and the Dirichlet boundary value in system (1),
we obtain∫ b

a
Φp(

CDα,ψ
a+ z(t))CDα,ψ

a+ y(t)ψ′(t)dt

=
1

Γ(1− α)

∫ b

a

∫ t

a
Φp(

CDα,ψ
a+ z(t))(ψ(t)− ψ(ς))−αy′(ς)ψ′(t)dςdt

=
1

Γ(1− α)

∫ b

a

[ ∫ b

t
ψ′(ς)CDα,ψ

a+ z(ς)(ψ(ς)− ψ(t))−αdς

]
y′(t)dt

=
1

Γ(1− α)

[ ∫ b

t
ψ′(ς)Φp(

CDα,ψ
a+ z(ς))(ψ(ς)− ψ(t))−αdς

]
y(t) |t=b

t=a

− 1
Γ(1− α)

∫ b

a

d
dt

[ ∫ b

t
ψ′(ς)Φp(

CDα,ψ
a+ z(ς))(ψ(ς)− ψ(t))−αdς

]
y(t)dt

=− 1
Γ(1− α)

∫ b

a
y(t)ψ′(t)(

1
ψ′(t)

d
dt
)
∫ b

t
ψ′(ς)Φp(

CDα,ψ
a+ z(ς))(ψ(ς)− ψ(t))−αdςdt

=
∫ b

a
Dα,ψ

b− (Φp(
CDα,ψ

a+ z(t)))ψ′(t)y(t)dt.

Hence, owing to Lemma 1, we get

∫ b

a
ψ′(t)CDα,ψ

a+ y(t)Φp(
CDα,ψ

a+ z(t))dt =
∫ b

a
y(t)ψ′(t)CDα,ψ

b− (Φp(
CDα,ψ

a+ z(t)))dt. (11)

At this point, we multiply both sides of system (1) by ψ′(t)y(t), and then integrate both
ends from a to b simultaneously. Following (11), we can obtain the relationship (10).

Next, we recall an interesting and useful three critical points theorem provided by
Bonanno and Candito. This theorem provides the critical theory technology to obtain the
multiplicity results for system (1) in our work.

Let H be a nonempty set, and Φ, Ψ : H → R be two functions. For any ρ, ρ1, ρ2 >
infH Φ, ρ2 > ρ1, ρ3 > 0, we define

A(ρ) := inf
z∈Φ−1(−∞,ρ)

supy∈Φ−1(−∞,ρ) Ψ(y)−Ψ(z)

ρ−Φ(z)
,

B(ρ1, ρ2) := inf
z∈Φ−1(−∞,ρ1)

sup
y∈Φ−1(ρ1,ρ2)

Ψ(y)−Ψ(z)
Φ(y)−Φ(z)

,

D(ρ2, ρ3) :=
supz∈Φ−1(−∞,ρ2+ρ3)

Ψ(z)

ρ3
,

G(ρ1, ρ2, ρ3) := max{A(ρ1),A(ρ2),D(ρ2, ρ3)}.
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Theorem 1 ([22], Theorem 3.3). Let H be a reflexive real Banach space, and Φ : H → R be
a convex, coercive and continuously Gâteaux differentiable functional whose Gâteaux derivative
admits a continuous inverse on H∗ where H∗ is the dual space of H. Let Ψ : H → R be a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact, such that

(I) infH Φ = Φ(0) = Ψ(0) = 0;
(II) For any z1, z2 ∈ H, such that Ψ(z1) ≥ 0 and Ψ(z2) ≥ 0, one has

inf
0≤r≤1

Ψ(rz1 + (1− r)z2) ≥ 0.

Assume that there are three positive constants ρ1, ρ2, ρ3 with ρ1 < ρ2, ρ3 > 0, such that
(III) A(ρ1) < B(ρ1, ρ2);
(IV) A(ρ2) < B(ρ1, ρ2);
(V) D(ρ2, ρ3) < B(ρ1, ρ2).

Then, for each λ ∈] 1
B(ρ1,ρ2)

, 1
G(ρ1,ρ2,ρ3)

[, the functional Φ − λΨ exists at three distinct critical

points z1, z2, z3, such that z1 ∈ Φ−1(−∞, ρ1), z2 ∈ Φ−1(ρ1, ρ2) and z3 ∈ Φ−1(−∞, ρ2 + ρ3).

3. Multiplicity Results

Denote F(t, z) =
∫ z

a f (t, ς)dς and G(t, z) =
∫ z

a g(t, ς)dς. Firstly, we consider the
functionals F1,F2 : H(α,ψ,p) → R with

F1(z) :=
1
p

∫ b

a
|CDα,ψ

a+ z(t)|pψ′(t)dt +
1
p

∫ b

a
|z(t)|pψ′(t)dt, (12)

F2(z) :=
∫ b

a
ψ′(t)F(t, z(t))dt +

ξ

λ

∫ b

a
ψ′(t)G(t, z(t))dt. (13)

Obviously, F1,F2 ∈ C1(H(α,ψ,p),R) and

F ′1(z)(y) =
∫ b

a
ψ′(t)Φp(

CDα,ψ
a+ z(t))CDα,ψ

a+ y(t)dt +
∫ b

a
ψ′(t)y(t)Φp(z(t))dt, (14)

F ′2(z)(y) =
∫ b

a
f (t, z(t))ψ′(t)y(t)dt +

ξ

λ

∫ b

a
g(t, z(t))ψ′(t)y(t)dt, (15)

for any z(t), y(t) ∈ H(α,ψ,p).

Define F = F1 − λF2. It is not difficult to see that the critical point of the functional
F is consistent with the weak solution of system (1).

Lemma 7. The functional F1 is a continuously Gâteaux differentiable functional whose Gâteaux
derivative admits a continuous inverse on H∗(α,ψ,p).

Proof. In fact, consider the inequality in Lemma 4.2 of [23]

(| a1 |p−2 a1− | a2 |p−2 a2)(a1 − a2) ≥
{
| a1 − a2 |p, p ≥ 2,
|a1−a2|2

(|a1|+|a2|)2−p , 1 < p ≤ 2,
(16)

for any a1, a2 ∈ R. For p ≥ 2, according to (16), we have

∫ b

a
ψ′(t)

(
Φp(

CDα,ψ
a+ z1(t))−Φp(

CDα,ψ
a+ z2(t))

)
CDα,ψ

a+ (z1(t)− z2(t))dt (17)

≥
∫ b

a
| CDα,ψ

a+ (z1(t)− z2(t)) |p ψ′(t)dt = ‖z1 − z2‖
p
(α,ψ,p),
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and∫ b

a
(z1(t)− z2(t))ψ′(t)

(
Φp(z1(t))−Φp(z2(t))

)
dt ≥

∫ b

a
| z1(t)− z2(t) |p ψ′(t)dt. (18)

For 1 < p ≤ 2, from the Hölder inequality, this yields

∫ b

a
| CDα,ψ

a+ z1(t)− CDα,ψ
a+ z2(t) |p ψ′(t)dt

≤
( ∫ b

a

| CDα,ψ
a+ z1(t)− CDα,ψ

a+ z2(t) |2

(| CDα,ψ
a+ z1(t) | + | CDα,ψ

a+ z2(t) |)2−p
ψ′(t)dt

) p
2

×

( ∫ b

a
(|CDα,ψ

a+ z1(t)|+ |CDα,ψ
a+ z2(t)|)pψ′(t)dt

) 2−p
2

≤2
p(2−p)

2 (‖z1‖
p
(α,ψ,p) + ‖z2‖

p
(α,ψ,p))

2−p
2

( ∫ b

a

| CDα,ψ
a+ z1(t)− CDα,ψ

a+ z2(t) |2

(| CDα,ψ
a+ z1(t) | + | CDα,ψ

a+ z2(t) |)2−p
ψ′(t)dt

) p
2

,

Then, by means of (16), we derive

∫ b

a
ψ′(t)

(
Φp(

CDα,ψ
a+ z1(t))−Φp(

CDα,ψ
a+ z2(t))

)
CDα,ψ

a+ (z1(t)− z2(t))dt (19)

≥
∫ b

a
ψ′(t)

| CDα,ψ
a+ z1(t)− CDα,ψ

a+ z2(t) |2

(| CDα,ψ
a+ z1(t) | + | CDα,ψ

a+ z2(t) |)2−p
dt

≥2
p(p−2)

2 ‖z1 − z2‖2
(α,ψ,p)(‖z1‖

p
(α,ψ,p) + ‖z2‖

p
(α,ψ,p))

p−2
p .

Similarly,

∫ b

a
ψ′(t)

(
Φp(z1(t))−Φp(z2(t))

)
(z1(t)− z2(t))dt (20)

≥
( ∫ b

a
ψ′(t) | z1(t)− z2(t) |p dt

) 2
p
( ∫ b

a
ψ′(t)(|z1(t)|+ |z2(t)|)pdt

) p−2
p

.

Consequently, owing to (17)–(20), for all 1 < p < ∞, we have

∫ b

a
ψ′(t)

(
Φp(

CDα,ψ
a+ z1(t))−Φp(

CDα,ψ
a+ z2(t))

)
CDα,ψ

a+ (z1(t)− z2(t))dt (21)

+
∫ b

a
ψ′(t)

(
Φp(z1(t))−Φp(z2(t))

)
(z1(t)− z2(t))dt ≥ 0.

Hence, combining (14) with (21), we obtain

(F ′1(z1)−F ′1(z2))(z1 − z2)

=
∫ b

a
Φp(

CDα,ψ
a+ z1(t))ψ′(t)CDα,ψ

a+ (z1(t)− z2(t))dt +
∫ b

a
Φp(z1(t))ψ′(t)(z1(t)− z2(t))dt

−
∫ b

a
Φp(

CDα,ψ
a+ z2(t))ψ′(t)CDα,ψ

a+ (z1(t)− z2(t))dt−
∫ b

a
Φp(z2(t))ψ′(t)(z1(t)− z2(t))dt

=
∫ b

a

(
Φp(

CDα,ψ
a+ z1(t))−Φp(

CDα,ψ
a+ z2(t))

)
ψ′(t)CDα,ψ

a+ (z1(t)− z2(t))dt

+
∫ b

a

(
Φp(z1(t))−Φp(z2(t))

)
ψ′(t)(z1(t)− z2(t))dt ≥ 0,
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Obviously, the functional F ′1 is strictly monotone. Then, F ′1 possesses an inverse on H∗α,ψ,p,
which is continuous owing to Theorem 26.A(d) in [24].

For simplicity of discussion, we introduce some notations before describing the
main theorems.

For any ϑ > 0, denote Ω(ϑ) = {t ∈ R : |t|p ≤ ϑ}, and

F̂ϑ =
∫ b

a
ψ′(t) max

z∈Ω(ϑ)
F(t, z(t))dt, Ĝϑ =

∫ b

a
ψ′(t) max

z∈Ω(ϑ)
G(t, z(t))dt,

Q =
1

βp(b− a)p

{ ∫ a+β(b−a)

a
(t− a)(1−α)pdt (22)

+
∫ b−β(b−a)

a+β(b−a)
|(t− a)1−α − (t− (a + β(b− a)))1−α|pdt

+
∫ b

b−β(b−a)
|(t− a)1−α − (t− (a + β(b− a)))1−α − (t− (b− β(b− a)))1−α|pdt

}
,

σ(λ,G) = min
{

min
{ ϑ1

pL̃p − λF̂ϑ1

Ĝϑ1

,

ϑ2
pL̃p − λF̂ϑ2

Ĝϑ2

,

(ϑ3−ϑ2)

pL̃p − λF̂ϑ3

Ĝϑ3

}
,

1
p [1 + L̃P(b− a)]µpQ− λ(

∫ b−β(b−a)
a+β(b−a) F(t, Γ(2− α)µ)dt− F̂ϑ1)∫ b−β(b−a)

a+β(b−a) G(t, Γ(2− α)µ)dt− Ĝϑ1

}
, (23)

for 0 < β < 1
2 , µ > 0.

Theorem 2. Assuming that F is non-negative; there exist positive constants ϑ1, ϑ2, ϑ3, µ with
ϑ1 < L̃pµpQ, ϑ2 > L̃pµpQ[1 + L̃P(b− a)] and ϑ2 < ϑ3, such that

(H1)

max
{

F̂ϑ1

ϑ1
,

F̂ϑ2

ϑ2
,

F̂ϑ3

ϑ3 − ϑ2

}
<

1
pL̃p

∫ b−β(b−a)
a+β(b−a) F(t, Γ(2− α)µ)dt− F̂ϑ1

1
p [1 + L̃P(b− a)]µpQ

,

Then, for every

λ ∈
] 1

p [1 + L̃P(b− a)]µpQ∫ b−β(b−a)
a+β(b−a) F(t, Γ(2− α)µ)dt− F̂ϑ1

,
1

pL̃p
min

{
ϑ1

F̂ϑ1

,
ϑ2

F̂ϑ2

,
ϑ3 − ϑ2

F̂ϑ3

}[
and every non-negative function G, there exists σ(λ,G) > 0 presented in (23), such that, for
each ξ ∈ [0, σλ,G[, the system (1) possesses at least three distinct solutions z1, z2, z3 and satisfies
maxt∈[a,b] |z1(t)|p < ϑ1, maxt∈[a,b] |z2(t)|p < ϑ2, and maxt∈[a,b] |z3(t)|p < ϑ3.

Proof. Firstly, we consider the functional F1. It is easy to observe that F1 is coercive. For
any weakly convergent sequence {zk}∞

k=1, which converges to z in H(α,ψ,p). Using Lemma 5,
we have {zk} that is convergent uniformly to z in C([a, b],R). That is,

lim inf
k→∞

F1(zk) = lim inf
k→∞

{
1
p
‖zk‖

p
(α,ψ,p) +

1
p

∫ b

a
ψ′(t)|zk(t)|pdt

}
≥ 1

p
‖z‖p

(α,ψ,p) +
1
p

∫ b

a
ψ′(t)|z(t)|pdt = F1(z),

Thus, F1 is weakly lower semi-continuous. On the other hand, because of zk ⇀ z in
H(α,ψ,p) as k → ∞, i.e., zk → z on [a, b] uniformly. Since F, G ∈ C1([a, b] × R,R), then
F(t, zk) → F(t, z)(k → ∞) and G(t, zk) → G(t, z)(k → ∞). By means of the Lebesgue
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control convergence theorem, we have F2(zk)→ F2(z), i.e., F2 is strongly continuous on
Hα,ψ,p. Hence, F2 is a compact operator.

In view of (8) and (14), we have

1
p
‖z‖p

(α,ψ,p) ≤ F1(z) ≤
1
p
‖z‖p

(α,ψ,p) +
1
p
‖z‖p

∞(ψ(b)− ψ(a))

≤ 1
p
[1 + L̃P(ψ(b)− ψ(a))]‖z‖p

(α,ψ,p). (24)

For 0 < β < 1
2 , ψ(t) = t, define ν(t) by setting

ν(t) =


Γ(2−α)µ
β(b−a) (t− a), t ∈ [a, a + β(b− a)[,

Γ(2− α)µ, t ∈ [a + β(b− a), b− β(b− a)],
Γ(2−α)µ
β(b−a) (b− t), t ∈]b− β(b− a), b].

It can be obtained through simple calculation that

CDα,ψ
a+ ν(t) =



µ
β(b−a) (t− a)1−α, t ∈ [a, a + β(b− a)[,

µ
β(b−a) [(t− a)1−α − (t− (a + β(b− a)))1−α],

t ∈ [a + β(b− a), b− β(b− a)],
µ

β(b−a) [(t− a)1−α − (t− (a + β(b− a)))1−α − (t− (b− β(b− a)))1−α],
t ∈]b− β(b− a), b].

Then ∫ b

a
ψ′(t)|CDα,ψ

a+ ν(t)|pdt

=
µp

βp(b− a)p

{ ∫ a+β(b−a)

a
(t− a)(1−α)pdt

+
∫ b−β(b−a)

a+β(b−a)
|(t− a)1−α − (t− (a + β(b− a)))1−α|pdt

+
∫ b

b−β(b−a)
|(t− a)1−α − (t− (a + β(b− a)))1−α − (t− (b− β(b− a)))1−α|pdt

}
,

from (22), we can obtain that ‖ν‖p
(α,ψ,p) = µpQ. Combining (24) yields

1
p

µpQ ≤ F1(ν) ≤
1
p
[1 + L̃P(b− a)]µpQ. (25)

Choose ρ1 = 1
pL̃p ϑ1, ρ2 = 1

pL̃p ϑ2, ρ3 = 1
pL̃p (ϑ3 − ϑ2). From the conditions ϑ3 > ϑ2,

ϑ1 < L̃pµpQ and ϑ2 > L̃pµpQ[1 + L̃P(b− a)], we achieve

ρ1 < F1(ν) < ρ2, ρ3 > 0. (26)

By means of (8) and (24), we derive

F−1
1 (−∞, ρ1) ={z ∈ H(α,ψ,p),F1(z) < ρ1}

⊆{z ∈ H(α,ψ,p), ‖z‖
p
(α,ψ,p) ≤ pρ1}

⊆{z ∈ H(α,ψ,p), ‖z‖
p
∞ ≤ pL̃Pρ1}

={z ∈ H(α,ψ,p), ‖z‖
p
∞ ≤ ϑ1}.
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The same procedure can be easily adapted to obtain

F−1
1 (−∞, ρ2) ⊆ {z ∈ H(α,ψ,p), ‖z‖

p
∞ ≤ ϑ2},

F−1
1 (−∞, ρ2 + ρ3) ⊆ {z ∈ H(α,ψ,p), ‖z‖

p
∞ ≤ ϑ3}.

Hence, we get

sup
z∈F−1

1 (−∞,ρ1)

∫ b

a
F(t, z(t))ψ′(t)dt ≤

∫ b

a
ψ′(t) max

z∈Ω(ϑ1)
F(t, z(t))dt = F̂ϑ1 ,

sup
z∈F−1

1 (−∞,ρ2)

∫ b

a
F(t, z(t))ψ′(t)dt ≤

∫ b

a
ψ′(t) max

z∈Ω(ϑ2)
F(t, z(t))dt = F̂ϑ2 ,

sup
z∈F−1

1 (−∞,ρ2+ρ3)

∫ b

a
F(t, z(t))ψ′(t)dt ≤

∫ b

a
ψ′(t) max

z∈Ω(ϑ3)
F(t, z(t))dt = F̂ϑ3 .

Similarly,

sup
z∈F−1

1 (−∞,ρ1)

∫ b

a
G(t, z(t))ψ′(t)dt ≤

∫ b

a
ψ′(t) max

z∈Ω(ϑ1)
G(t, z(t))dt = Ĝϑ1 ,

sup
z∈F−1

1 (−∞,ρ2)

∫ b

a
G(t, z(t))ψ′(t)dt ≤

∫ b

a
ψ′(t) max

z∈Ω(ϑ2)
G(t, z(t))dt = Ĝϑ2 ,

sup
z∈F−1

1 (−∞,ρ2+ρ3)

∫ b

a
G(t, z(t))ψ′(t)dt ≤

∫ b

a
ψ′(t) max

z∈Ω(ϑ3)
G(t, z(t))dt = Ĝϑ3 .

Since F1(0) = F2(0) = 0 and 0 ∈ F−1
1 (−∞, ρ1), one has

A(ρ1) = inf
z∈F−1

1 (−∞,ρ1)

[supz∈F−1
1 (−∞,ρ1)

F2(z)]−F2(z)

ρ1 −F1(z)

≤
[supz∈F−1

1 (−∞,ρ1)
F2(z)]−F2(0)

ρ1 −F1(0)

=
supz∈F−1

1 (−∞,ρ1)
[
∫ b

a F(t, z(t))ψ′(t)dt + ξ
λ

∫ b
a G(t, z(t))ψ′(t)dt]

ρ1

≤ pL̃p

ϑ1
(F̂ϑ1 +

ξ

λ
Ĝϑ1).

Similarly,

A(ρ2) ≤
supz∈F−1

1 (−∞,ρ2)
F2(z)

ρ2

=
supz∈F−1

1 (−∞,ρ2)
[
∫ b

a F(t, z(t))ψ′(t)dt + ξ
λ

∫ b
a G(t, z(t))ψ′(t)dt]

ρ1

≤ pL̃p

ϑ2
(F̂ϑ2 +

ξ

λ
Ĝϑ2),
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and

D(ρ2, ρ3) =
supz∈F−1

1 (−∞,ρ2+ρ3)
[
∫ b

a ψ′(t)F(t, z(t))dt + ξ
λ

∫ b
a ψ′(t)G(t, z(t))dt]

ρ3

≤ pL̃p

ϑ3 − ϑ2
(F̂ϑ3 +

ξ

λ
Ĝϑ3).

Furthermore, for each z ∈ F−1
1 (−∞, ρ1), from (25) and (26), one has

B(ρ1, ρ2) = inf
z∈F−1

1 (−∞,ρ1)
sup

y∈F−1
1 (ρ1,ρ2)

F2(y)−F2(z)
F1(y)−F1(z)

≥

∫ b−β(b−a)
a+β(b−a) F(t, Γ(2− α)µ)dt− F̂ϑ1 +

ξ
λ (
∫ b−β(b−a)

a+β(b−a) G(t, Γ(2− α)µ)dt− Ĝϑ1)

1
p [1 + L̃P(b− a)]µpQ

.

Since ξ < σ(λ,G), we can easily get that

pL̃p

ϑ1
(F̂ϑ1 +

ξ

λ
Ĝϑ1) <

1
λ

,
pL̃p

ϑ2
(F̂ϑ2 +

ξ

λ
Ĝϑ2) <

1
λ

,
pL̃p

ϑ3 − ϑ2
(F̂ϑ3 +

ξ

λ
Ĝϑ3) <

1
λ

, (27)

and∫ b−β(b−a)
a+β(b−a) F(t, Γ(2− α)µ)dt− F̂ϑ1 +

ξ
λ (
∫ b−β(b−a)

a+β(b−a) G(t, Γ(2− α)µ)dt− Ĝϑ1)

1
p [1 + L̃P(b− a)]µpQ

>
1
λ

. (28)

Combining (27) with (28), we observe that

G(ρ1, ρ2, ρ3) < B(ρ1, ρ2).

Furthermore, assuming that z∗ and z∗∗ are two local minima of F , then, z∗ and z∗∗

are critical points of F ; namely, they are weak solutions of system (1). Since F and G
are assumed to be non-negative, for fixed ξ, λ > 0, one has F(t, τz∗ + (1 − τ)z∗∗)dt +
ξ
λ G(t, τz∗ + (1− τ)z∗∗) ≥ 0, which means that F2(τz∗ + (1− τ)z∗∗) ≥ 0 for all 0 ≤ τ ≤ 1.

Thus, uniting Lemma 7 and Theorem 1, for every

λ ∈
] 1

p [1 + L̃P(b− a)]µpQ∫ b−β(b−a)
a+β(b−a) F(t, Γ(2− α)µ)dt− F̂ϑ1

,
1

pL̃p
min

{
ϑ1

F̂ϑ1

,
ϑ2

F̂ϑ2

,
ϑ3 − ϑ2

F̂ϑ3

}[

and ξ ∈ [0, σ(λ,G)[, the functional F has three critical points z1, z2, z3 on H(α,ψ,p) and
satisfies F1(z1) < ρ1, F1(z2) < ρ2 and F1(z3) < ρ2 + ρ3. That is, maxt∈[a,b] |z1(t)|p < ϑ1,
maxt∈[a,b] |z2(t)|p < ϑ2, and maxt∈[a,b] |z3(t)|p < ϑ3. Then, consider the fact that the critical
points of the functional F are consistent with weak solutions of system (1), we obtain the
main conclusion.

Theorem 3. Assume f , g : [a, b] × R → R are non-negative. Then, the weak solutions of
system (1) obtained in the Theorem 2 are non-negative.

Proof. From Theorem 2, there exist at least three weak solutions z1, z2, z3 with

max
t∈[a,b]

|z1(t)|p < ϑ1, max
t∈[a,b]

|z2(t)|p < ϑ2, max
t∈[a,b]

|z3(t)|p < ϑ3,

for system (1). We claim that z1, z2, z3 are non-negative. In fact, let ẑ be a nontrivial weak
solution of system (1). We assume the set Θ = {t ∈ (a, b] : ẑ(t) < 0} is non-empty with the



Fractal Fract. 2023, 7, 450 12 of 15

positive measure. For any t ∈ [a, b], define y∗(t) = min{0, ẑ(t)}. Obviously, y∗(t) ∈ H(α,ψ,p)
and satisfies∫ b

a
ψ′(t)Φp(

CDα,ψ
a+ ẑ(t))CDα,ψ

a+ y∗(t) + ψ′(t)y∗(t)Φp(ẑ(t))dt (29)

− λ
∫ b

a
y∗(t) f (t, ẑ(t))ψ′(t)dt− ξ

∫ b

a
y∗(t)g(t, ẑ(t))ψ′(t)dt = 0, ∀ẑ(t) ∈ Θ.

Since f , g are non-negative, due to (29), one has

0 ≥
∫ b

a
ψ′(t)Φp(

CDα,ψ
a+ ẑ(t))CDα,ψ

a+ y∗(t)dt +
∫ b

a
ψ′(t)y∗(t)Φp(ẑ(t))dt

=
∫ b

a
ψ′(t)|CDα,ψ

a+ ẑ(t)|pdt +
∫ b

a
ψ′(t)|ẑ(t)|pdt

≥ ‖ẑ‖p
(α,ψ,p) ≥ 0, ∀ẑ(t) ∈ Θ,

which means that ẑ ≡ 0 in Θ, which is a contradiction. Therefore, we get the desired result.

Theorem 4. Assume that there exists a constant C0, such that

lim
z→0

λ f (t, z) + ξg(t, z)
|z|p−1 ≤ C0 (30)

uniformly in z ∈ R, t ∈ [a, b]. Then, the system (1) does not include any nontrivial weak solution.

Proof. We assume that system (1) exists in at least one nontrivial weak solution on H(α,ψ,p).
Let z0 ∈ H(α,ψ,p) be a nontrivial weak solution. Based on (30), there exists ε > 0, such that

λ f (t, z) + ξg(t, z) ≤ C0ε|z|p−1, ∀z ∈ R. (31)

Combining (14), (15) and (31) yields

0 =F ′(z0)(z0) = F ′1(z0)(z0)− λF ′2(z0)(z0)

=
∫ b

a
ψ′(t)|CDα,ψ

a+ z0(t)|p + ψ′(t)|z0(t)|pdt

−
∫ b

a
[λ f (t, z0(t)) + ξg(t, z0(t))]ψ′(t)z0(t)dt

≥‖z0‖
p
(α,ψ,p) −

∫ b

a
C0ε|z0(t)|pψ′(t)dt

≥‖z0‖
p
(α,ψ,p) − εC0[ψ(b)− ψ(a)]‖z0‖

p
∞

≥
(

1− εC0 L̃p[ψ(b)− ψ(a)]
)
‖z0‖

p
(α,ψ,p).

Choosing ε small enough, such that F ′(z0)(z0) > 0, we get a contradiction. Therefore, the
system (1) does not include any nontrivial weak solution on H(α,ψ,p).

4. Examples

Example 1. Let a = 0, b = 1, α = 0.6, p = 2, ψ(t) = et. Consider the following FDE{
CD0.6,et

1− (CD0.6,et

0+ z(t)) + z(t) = λ f (t, z) + ξg(t, z), t ∈ [0, 1],
z(0) = z(1) = 0.

(32)
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Define f (t, z) = 1
10

1
z2 e

−1
z . Choose β = 1

3 , µ = 1, ϑ1 = 0.01, ϑ2 = 0.2, ϑ3 = 0.3. By direct

calculation, we obtain that F(t, z) = 1
10 e

−1
z , L̃ ≈ 0.8, Q = 0.143, ϑ1 < L̃pµpQ = 0.09,

ϑ2 > L̃pµpQ[1 + L̃P(b− a)] = 0.15, ϑ2 < ϑ3, and

F̂ϑ1

ϑ1
=

∫ 1
0 et max|z|2≤ϑ1

{ 1
10 e

−1
z }dt

0.01
≈ 6× 10−46,

F̂ϑ2

ϑ2
=

∫ 1
0 et max|z|2≤ϑ2

{ 1
10 e

−1
z }dt

0.2
≈ 5.7× 10−3,

F̂ϑ3

ϑ3 − ϑ2
=

∫ 1
0 et max|z|2≤ϑ3

{ 1
10 e

−1
z }dt

0.1
≈ 6× 10−2.

Then

6× 10−2 = max
{

F̂ϑ1

ϑ1
,

F̂ϑ2

ϑ2
,

F̂ϑ3

ϑ3 − ϑ2

}
<

1
pL̃p

∫ 2
3

1
3

F(t, Γ(2− α)µ)dt− F̂ϑ1

1
p [1 + L̃P(b− a)]µpQ

= 0.15.

Therefore, according to Theorems 2 and 3, for every λ ∈]1.02, 13[, there exists σ(λ,G) > 0, such
that, for each ξ ∈ [0, σλ,G[, the system (33) possesses three distinct non-negative weak solutions
z1, z2, z3 > 0 with maxt∈[0,1] |z1(t)|2 < 0.01, maxt∈[0,1] |z2(t)|2 < 0.2 and maxt∈[0,1] |z3(t)|2
< 0.3.

Example 2. Let a = 0, b = 1, α = 0.75, p = 3, ψ(t) = t
1
2 . Consider the following FDE{

CD0.75,t
1
2

1− Φ3(
CD0.75,t

1
2

0+ z(t)) + |z(t)|z(t) = λ f (t, z) + ξg(t, z), t ∈ (0, 1],
z(0) = z(1) = 0.

(33)

Define f (t, z) =

{
4z3, z ≤ 1,
4
z , z > 1.

Then, F(t, z) =

{
z4, z ≤ 1,
4 ln(z), z > 1.

Choose β = 1
3 , µ = 1,

ϑ1 = 0.1, ϑ2 = 1, ϑ3 = 1.5. By direct calculation, we obtain that L̃ ≈ 0.8, Q = 1.08,
ϑ1 < L̃pµpQ = 0.512, ϑ2 > L̃pµpQ[1 + L̃P(b− a)] = 0.774, ϑ2 < ϑ3, and

F̂ϑ1

ϑ1
=

1
2

∫ 1
0 t−

1
2 max|z|3≤ϑ1

{z4}dt
0.1

= 0.64,

F̂ϑ2

ϑ2
=

1
2

∫ 1

0
t−

1
2 max
|z|3≤ϑ2

{z4}dt = 1,

F̂ϑ3

ϑ3 − ϑ2
=

1
2

∫ 1
0 t−

1
2 max|z|3≤ϑ3

{4 ln(z)}dt
0.5

≈ 1.08.

Then,

1.08 = max
{

F̂ϑ1

ϑ1
,

F̂ϑ2

ϑ2
,

F̂ϑ3

ϑ3 − ϑ2

}
<

1
pL̃p

∫ 2
3

1
3

F(t, Γ(2− α)µ)dt− F̂ϑ1

1
p [1 + L̃P(b− a)]µpQ

= 2.9.

Therefore, according to Theorem 2, for every λ ∈]0.2, 0.65[, there exists σ(λ,G) > 0, such that,
for each ξ ∈ [0, σλ,G[, the system (33) possesses three distinct weak solutions z1, z2, z3, satisfying
maxt∈[0,1] |z1(t)|3 < 0.1, maxt∈[0,1] |z2(t)|3 < 1, and maxt∈[0,1] |z3(t)|3 < 1.5.

5. Conclusions

This paper considered a new ψ-Caputo-type fractional differential system including
the generalized p-Laplacian operator. By means of a three critical points theorem given
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by Bonanno and Candito, and several properties of the ψ-Caputo fractional operator, the
existence of at least three distinct non-negative weak solutions was studied. Due to a mild
condition, an evaluation criterion for the equation without solutions was given. What is
noteworthy is that the nonlinear functions f , g do not need to adapt certain asymptotic
conditions—the multiplicity results were established only by imposing algebraic conditions
on nonlinear functions. This work represents a generalization of several results reported in
the literature which concern classical fractional operators.
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