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Abstract: In this paper, we discuss the existence of solutions for a hybrid cubic delayed integral
inclusion with fractal feedback control. We are seeking solutions for these hybrid cubic delayed
integral inclusions that are defined, continuous, and bounded on the semi-infinite interval. Our
proof is based on the technique associated with measures of noncompactness by a given modulus
of continuity in the space in BC(R+). In addition, some sufficient conditions are investigated to
demonstrate the asymptotic stability of the solutions of that integral inclusion. Finally, some cases
analyzed are in the presence and absence of the control variable, and two examples are provided in
order to indicate the validity of the assumptions.
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1. Introduction and Background

In the last few years, many researchers have focused their work on some cubic integral
equations. They have extended their results for quadratic integral equations to a specific
set of cubic integral equations on a bounded interval, for example, Refs. [1–5]. The cubic
integral equations can be considered as a generalization of quadratic integral equations,
which are applicable to many real-world problems. Furthermore, in [6], the authors investi-
gated some findings for the existence of solutions to a cubic functional integral equation
related to a control variable; this has broader implications than those discussed in [2–5].

The investigations in [2–5] are on bounded intervals. However, in this article, we
establish our results on unbounded intervals.

Caballero et al. [1] provided the first contribution to the solvability of the cubic in-
tegral equations; they proved the existence of nondecreasing solutions to Urysohn cubic
integral equations.

The importance of dealing with problems involving control variables is due to the
unforeseen factors that continually upset ecosystems in the actual world, which may result
in modifications to biological traits such as rates of survival. Ecology has a practical interest
in the question of whether an ecosystem can withstand those unpredictable disruptive
events that continue for a short period of time. In the context of control variables, the
disturbance functions are what we refer to as control variables.

Cichoń (1996) initiated abstract control problems for differential conclusions [7]. His
results were also applied to a semilinear optimal control problem.
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In [8], Chen established some averaging conditions for a nonautonomous Lotka–
Volterra system that is regulated via feedback by producing a suitable Lyapunov function
(Lyapunov functional).

A class of feedback-controlled nonlinear functional-integral equations exist, are asymp-
totically stable, and are globally attractive, as found by Nasertayoob, using the measure
of noncompactness in conjunction with Darbo’s fixed point theorem [9]. Moreover, under
appropriate circumstances, the authors of [10] investigated whether a nonlinear neutral
delay population system with feedback control has a positive periodic solution. The proof
depends on the strict-set-contraction operators’ fixed-point theorem [10].

A functional integral equation incorporating a control parameter function that fulfils
a constraint functional equation is the subject of El-Sayed et al.’s research [11]. Addi-
tional findings of existence may be found in [12], where researchers looked at a nonlinear
functional integral equation restricted by a functional equation with a parameter.

In this article, we demonstrate that solutions exist and are asymptotically stable for a
class of nonlinear functional-integral inclusions

x(r)− f1(r, x(φ1(r)))

f2(r, x(φ2(r)))
∈ G

(
r, v(r), x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(φ4(ς))) dς

)
, r ∈ R+ = [0, ∞); (1)

with the fractal feedback control

dv(r)
drβ

= −αv(r) + f3(r, x(r)), v0 = v(0), α ≥ 0, β ∈ (0, 1),

where d
drβ is the fractal derivative of order β (see [13,14]) and fi (i = 1, 2, 3) and h satisfy

some conditions and G is a Lipschitzian set-valued map.
This is the first attempt to discuss a class of nonlinear functional-integral inclusions

with fractal feedback control. the nonlinear problem affected by an external source is
studied in R+. The existence of a control variable v that satisfies the fractal derivation
equation is established. We study the existence and the stability of solutions for the hybrid
cubic functional integral inclusion (1) in BC(R+).

The basic tools used in our research are the fixed point theorem of the Darbo type [15]
and the strategy of measure of noncompactness.

The measure of noncompactness and Darbo’s fixed point theorem are beneficial meth-
ods and techniques to study the nonlinear functional–integral equations that arise in some
real-world problems [16–20].

Banaś in [16–22] successfully used the method connected to a measure of noncompact-
ness in the Banach space BC(R+) (which consists of all bounded and continuous functions
on R+) to determine the existence of asymptotically stable solutions to some integral and
quadratic integral equations (see [18,19]). Furthermore, for the solvability of some problems
in the half-line axis, see [23–27].

To be able to recall the definitions of the keywords’ global attractivity, local attractivity,
and asymptotic stability of the solution, see [18,27,28].

What follows in the article is arranged as follows: In Section 1, we outline some previ-
ous results to explain our motivation and the innovation of the work. Section 2 states and
demonstrates the existence of a result for a single-valued problem by a direct application of
Darbo’s fixed point theorem [15]. Additionally, the asymptotic stability of the solution to
our problem will be studied. Next, we extend our results to the multi-valued problem in
Section 4. Finally, in Section 4, we will provide an illustration of our main result with two
examples and with some special cases of the studied problem.
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2. Single Valued Problem

To achieve our aims, we initially study the single-valued problem corresponding to a
class of nonlinear functional-integral inclusions (1) using a fractal feedback control

x(r) = f1(r, x(φ1(r))) + f2(r, x(φ2(r))) (2)

. g
(
r, vx, x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(φ4(ς)))) dς

)
, r ≥ 0

vx(r) = v(0)e−αrβ
+ β

∫ r

0
e−α(rβ−ςβ) ςβ−1 f3(ς, x(ς))dς,

depending on the following conditions:

(i) Given continuous functions φi : R+ → R+ (for i = 1, 2, 3, 4) , with φi → ∞ as r→ ∞.
(ii) The functions ψ : R+ → R+ are continuous, non-decreasing, and ψ(r) ≤ r.
(iii) f1 : R+ × R → R and f2 : R+ × R → R\{0} are continuous functions, and there

exists a continuous function ηi(r) (i = 1, 2) such that

| fi(r, µ)− fi(r, ν)| ≤ ηi(r) |µ− ν|.

for each r ∈ R+ and for all µ, ν ∈ R. Moreover, the function r→ fi(r, 0) belongs to
the space BC(R+), and we have

| fi(r, µ)| ≤ ηi|µ|+ Ni,

where ηi = sup
r∈R+

|ηi(r)| < 1, Ni = sup
r∈I
|{ fi(r, 0)| : r ∈ R+} < ∞.

and limr→∞ ηi(r) = 0, limr→∞ fi(r, 0) = 0.
(iv) f3 : R+ × R → R is a Carathéodory function that is measurable in r ∈ R+, ∀µ ∈ R

and continuous in µ ∈ R; ∀r ∈ R+, there are two integrable functions a, b : R+ →
such that

| f3(r, µ)| ≤ a(r) + b(r)|µ|, r ∈ R+.

(v) Let g(r, µ, ν) : R+ × R+ × R+ → R+ be a Lipschitz function with a Lipschitz constant
l > 0 such that

|g(r, µ1, µ2)− g(r, ν1, ν2)| ≤ l
(
|µ1 − ν1|+ |µ2 − ν2|

)
,

∀ r ∈ R+ and ∀ µi, νi ∈ R, i = 1, 2. In addition, r → g(r, 0, 0) belongs to the space
BC(R+), and we obtain

|g(r, µ1, µ2)| ≤ l (|µ1|+ |µ2|) + M, where M = sup
r∈I
|{g(r, 0, 0)| : r ∈ R+} < ∞.

(vi) The function h : R+ × R → R+, is a Carathéodory function that is measurable in
r ∈ J, ∀ µ, ∈ R and continuous in µ ∈ R, ∀ r ∈ J, and there exist measurable and
bounded functions k1, k2 : R+ × R+ → R+, such that

|h(r, ς, µ)| ≤ k1(r, ς) + k2(r, ς)|µ|, r, ς ∈ [0, ∞),

and
sup

r∈[0,T]

∫ r

0
k1(r, ς)dς = k1, lim

r→∞

∫ r

0
k1(r, ς)dς = 0,

sup
r∈[0,T]

∫ r

0
k2(r, ς)dς = k2, lim

r→∞

∫ r

0
k2(r, ς)dς = 0.
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(vii) The following equation has a positive solution r. A positive solution to what follows
the equation is r

η2 l k2r3 +
[
(k1η2 + k2N2 + η2V2)l

]
r2

+
[
η1 + η2M + lN2(k1 + V2) + η2l(V + V1) − 1

]
r + N1 + N2M + N2l(V + V1) = 0,

such that

η1 + η2
[
M + l(V + V1 + V2 r) + lr[k1 + k2r]

]
+ l[N2 + η2 r][k1 + k2r] ≤ 1.

Remark 1. For any function x belonging to BC(R+), the solution to a fractal feedback control
equation in (1)

dv(r)
drβ

= −αv(r) + f3(r, x(r)), v0 = v(0), α ≥ 0, β ∈ (0, 1),

indicated by vx(r), and it can be stated as follows:

vx(r) = v(0)e−αrβ
+ β

∫ r

0
e−α(rβ−ςβ) ςβ−1 f3(ς, x(ς))dς.

Chen [8] prove that with the positive initial condition vx(0) > 0, the solution vx(r) is globally
attractive and bounded above by positive constants. Then

|vx(r) ≤ v(0)e−αrβ
+ β

∫ r

0
e−α(rβ−ςβ) ςβ−1 [a(ς) + b(ς)]|x(ς)|dς

≤ V +
∫ r

0
e−α(rβ−ςβ) ςβ−1 a(ς) dς +

∫ r

0
e−α(rβ−ςβ) ςβ−1 b(ς)‖x‖dς

≤ V + sup
r∈R+

∫ r

0
e−α(rβ−ςβ) ςβ−1 a(ς) dς + ‖x‖ sup

r∈R+

∫ r

0
e−α(rβ−ςβ) ςβ−1 b(ς)dς

≤ V + V1 + V2 r,

where

sup
r∈R+

v(0) e−αrβ
= V, sup

r∈R+

∫ r

0
e−α(rβ−ςβ) ςβ−1 a(ς)dς = V1, and

sup
r∈R+

∫ r

0
e−α(rβ−ςβ) ςβ−1 b(ς)‖x‖dς = V2.

Theorem 1. Assume that assumptions (i)–(vii) hold. Then, the Equation (2) has at least one
solution x = x(t) that belongs to the space in the space BC(R+). Additionally, the solutions to
Equation (2) are locally attractive.

Proof. Let Br be the ball described by

Br = {x ∈ BC(R+) : ‖x‖ ≤ r}.

By defining the operator F on the space BC(R+) by

Fx(r)

= f1(r, x(φ1(r))) + f2(r, x(φ2(r)))g
(
r, vx(r), x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(φ4(ς))))dς

)
, r ∈ [0, ∞)

corresponding to our assumptions, note that for any function x ∈ BC(R+), the function Fx
is continuous on the interval [0, ∞).

We will demonstrate that for some r > 0, FBr ⊂ Br, we obtain
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| Fx(r) |

=

∣∣∣∣ f1(r, x(φ1(r))) + f2(r, x(φ2(r)))g
(
r, vx(r), x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(φ4(ς)))dς

)∣∣∣∣
≤ | f1(r, x(φ1(r))|+ | f2(r, x(φ2(r))|

∣∣∣∣g(r, vx(r), x(φ3(r)))
∫ ψ(r)

0
h(r, ς, x(φ4(ς)))dς

)∣∣∣∣
≤ [ f1(r, 0)|+ η1|x(φ1(r))|]

+ [ f2(r, 0)|+ η2|x(φ2(r))|]
[
|g(r, 0, 0)|+ l(|vx(r)|+ |x(φ3(r))|

∫ ψ(r)

0
|h(r, ς, x(φ4(ς)))|dς)

]
≤ [ f1(r, 0)|+ η1|x(φ1(r))|]
+ [ f2(r, 0)|+ η2|x(φ2(v))|]

[
|g(r, 0, 0)|

+ l(V + V1 + V2 r + |x(φ3(r))|
∫ ψ(r)

0
[k1(r, ς) + k2(r, ς)|x(φ4(ς))|]dς

]
≤ [ f1(r, 0)|+ η1‖x‖] + [ f2(r, 0)|+ η2‖x‖]

[
|g(r, 0, 0)|

+ l(V + V1 + V2 r + ‖x‖
∫ t

0
[k1(r, ς) + k2(r, ς)‖x‖]dς

]
≤ [N1 + η1 r] + [N2 + η2 r][M + l (V + V1 + V2 r) + l r (k1 + k2 r)] = r.

Taking assumption (iv) into consideration, from the above estimate, we conclude that the
operator F transforms the ball Br into itself. There exists a positive solution r = r0 to
the equation

η2 l k2r3 +
[
(k1η2 + k2N2 + η2V2)l

]
r2 +

[
η1 + η2M + lN2(k1 + V2) + η2l(V + V1) − 1

]
r

+ N1 + N2M + N2l(V + V1) = 0.

Now, we show that F is continuous on the ball Br. In order to do this, let us fix ε > 0
and select x, y ∈ Br such that ‖x− y‖ ≤ ε. Then, for r ∈ I, we obtain

| Fx(r)− Fy(r) |

=

∣∣∣∣ f1(r, x(φ1(r)) + f2(r, x(φ2(r)) g
(
r, vx, x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(φ4(ς)))dς

)
− f1(r, y(φ1(r)) + f2(r, y(φ2(r)) g

(
r, vy, y(φ3(r))

∫ ψ(r)

0
h(r, ς, y(φ4(ς)))dς

)∣∣∣∣
≤ | f1(r, x(φ1(r)))− f1(r, y(φ1(r)))|

+ | f2(r, x(φ2(r)))− f2(r, y(φ2(r)))|
∣∣∣∣g(r, vx(r), x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(φ4(ς)))ds

)∣∣∣∣
+
∣∣ f2(r, y(φ2(r)))|

×
∣∣∣∣g(r, vx(r), x(φ3(r))

∫ φ(r)

0
h(r, ς, x(φ4(ς)))dς

)
− g
(
r, vy(r), y(φ3(r))

∫ ψ(r)

0
h(r, ς, y(φ4(ς)))dς

)∣∣∣∣
≤ η1 |x(φ1(r))− y(φ1(r))|

+ η2 |x(φ2(r))− y(φ2(r))|
[
(|g(r, 0, 0)|+ l

(
|vx(r)|+ |x(φ3(r))|)

∫ ψ(r)

0
|h(r, ς, x(φ4(ς)))|dς

)]
+ l[| f2(r, 0)|+ η2|y(r)|]

[
|vx(r)− vy(r)|

+
∣∣x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(φ4(ς)))dς− y(φ3(r))

∫ ψ(r)

0
h(r, ς, y(φ4(ς)))dς

∣∣]
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≤ η1 |x(φ1(r))− y(φ1(r))|+ η2 |x(φ2(r))− y(φ2(r))| ]
[
M + l(v(0)|e−αr|

+
∫ r

0
e−ας[a(ς) + b(ς)]|x(ς)|dς + ‖x‖

∫ ψ(r)

0
[k1(r, ς) + k2(r, ς)|x(φ4(ς))|]dς)

]
+ l [N2 + η2‖y‖]

[ ∫ r

0
e−ας[| f3(ς, x(ς))− f3(ς, y(ς))|]dς

+
∣∣x(φ3(r))− y(φ3(r))

∣∣ ∫ ψ(r)

0
|h(r, ς, x(φ4(ς)))|dς

+ |y(φ3(r))|
∫ ψ(r)

0

∣∣ h(r, ς, x(φ4(ς)))− h(r, ς, y(φ4(ς)))
∣∣dς

]
≤ η1 |x(φ1(r))− y(φ1(r))|

+ η2 |x(φ2(r))− y(φ2(r))| ]
[
M + l(V + V1 + V2 r) + l ‖x‖

∫ ψ(r)

0
[k1(r, ς) + k2(r, ς)‖x‖]dς)

]
+ l [N2 + η2‖y‖]

[ ∫ r

0
e−ας[| f3(ς, x(ς))|+ | f3(ς, y(ς))|]dς

+
∣∣x(φ3(r))− y(φ3(r))

∣∣ ∫ ψ(r)

0
[k1(r, ς) + k2(r, ς)‖x‖]dς

+ ‖y‖
∫ ψ(r)

0

∣∣ h(r, ς, x(φ4(ς)))
∣∣+ ∣∣h(r, s, y(φ4(ς)))

∣∣dς

]
.

Take into account the next two cases

(i) Select T > 0 so that for r ≥ T, the given inequalities are true:∫ r

0
e−ας(a(ς) + b(ς)r) dς ≤ ε1,

and
r
∫ r

0
[k1(r, ς) + k2(r, ς)r] dς ≤ ε2.

Then, we have

| Fx(r)− Fy(t) |
≤ η1 ‖x− y‖+ η2‖x− y‖

[
(M + l(V + V1 + V2 r)

+ l‖x‖
∫ r

0
[k1(r, ς) + k2(r, ς)‖x‖]dς)

]
+ l[N2 + η2‖y‖]

[ ∫ r

0
e−ας(a(ς) + b(ς)‖x‖)ds +

∫ r

0
e−ας(a(ς) + b(ς)‖y‖)dς

+ ‖x− y‖
∫ r

0
[k1(r, ς) + k2(r, ς)‖x‖]dς

+ ‖y‖
( ∫ r

0
[k1(r, ς) + k2(r, ς)‖x‖]dς +

∫ r

0
[k1(r, ς) + k2(r, ς)‖y‖]dς

)]
≤
(
η1 + η2

[
M + l(V + V1 + V2 r) + lr[k1 + k2r]

]
+ l[N2 + η2 r][k1 + k2r]

)
ε

+ 2l[N2 + η2 r](ε1 + ε2).

(ii) For r ≤ T, define the function ωT
h (x, ωT(φ4, ε)) and ωT( f3, ε), where, for ε > 0,

we denote

ωT
h (x, ωT(φ4, ε)) = sup{|h(r, ς, x(ς))− h(r, ς, y(ς))| : r, ς ∈ [0, T], ‖x− y‖ ≤ ε},

ωT( f3, ε) = sup{| f3(r, x(ς))− f3(r, y(ς))| : t ∈ [0, T], ‖x− y‖ ≤ ε}.
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Considering that the function h has uniform continuity, we conclude that

ωT
h (x, ωT(φ4, ε)), ωT( f3, ε)→ 0 as ε→ 0.

Therefore, using the above estimate in this case, we have

| Fx(r)− Fy(r) |
≤ η1 ‖x− y‖+ η2 ‖x− y‖

[
M + l(V + V1 + V2 r) + l ‖x‖[k1 + k2‖x‖])

]
+ l [N2 + η2‖y‖]

[
ωT( f3, ε) + ‖x− y‖[k1 + k2‖x‖] + ‖y‖ ωT

h (x, ωT(φ4, ε))

]
≤
[
η1 + η2

[
M + l(V + V1 + V2 r) + lr[k1 + k2 r]

]
+ l [N2 + η2 r][k1 + k2r]

]
ε.

Finally, from the two cases (i) and (ii), and considering the previous information, we
come to the conclusion that the operator F continuously maps the ball Br into itself.

Now, let us take a nonempty subset X of Br. Let T > 0 and ε > 0 be given, and choose
a function x ∈ X and r1, r2 ∈ [0, T] such that |r2 − r1| ≤ ε, r1 ≤ r2, then

| Fx(r2)− Fx(r1) |

=

∣∣∣∣ f1(r2, x(φ1(r2(r)))

+ f2(r2, x(φ2(r2(t)))g
(

t2, vx(r2), x(φ3(t2(r))
∫ ψ(r2)

0
h(r2, ς, x(φ4(ς)))dς

)
− f1(φ1(r1), x(φ1(r1)))

+ f2(φ2(r1), x(φ2(r1)))g
(
r1, vx(r1), x(φ3(r1))

∫ ψ(r1)

0
h(r1, ς, x(φ4(ς)))dς

)∣∣∣∣
≤

∣∣ f1(r2, x(φ1(r2)))− f1(r1, x(φ1(r1)))
∣∣

+

∣∣∣∣ f2(r2, x(φ2(r1)))g
(
r2, vx(r2), x(φ3(r2))

∫ ψ(r2)

0
h(r2, ς, x(φ4(ς)))dς

)
− f2(r1, x(φ2(r1)))g

(
r2, vx(r2), x(φ3(r2))

∫ ψ(r2)

0
h(r2, ς, x(φ4(ς)))dς

)∣∣∣∣
+

∣∣∣∣ f2(r1, x(φ2(r1)))g
(
r2, vx(r2), x(φ3(r2))

∫ ψ(r2)

0
h(r2, ς, x(φ4(ς)))dς

)
− f2(r1, x(φ2(r1)))g

(
r1, vx(r1), x(r1)

∫ ψ(r1)

0
h(r1, ς, x(φ4(ς)))dς

)∣∣∣∣
≤

∣∣ f1(r2, x(φ1(r2)))− f1(r1, x(φ1(r1)))
∣∣

+
∣∣ f2(r2, x(φ2(r2)))− f2(r1, x(φ2(r1)))

∣∣ ∣∣∣∣g(t2, vx(t2), x(φ3(r2))
∫ ψ(r2)

0
h(r2, ς, x(φ4(ς)))dς

)∣∣∣∣
+ | f2(r1, x(φ2(r1)))|

[∣∣∣∣g(r2, vx(r2), x(φ3(r2))
∫ ψ(r2)

0
h(r2, ς, x(φ4(ς))

)
− g

(
r1, vx(r1), x(φ3(r1))

∫ ψ(r1)

0
h(r1, s, x(φ4(ς)))dς

)∣∣∣∣ ]
≤

[
| f1(r2, x(φ1(r2)))− f1(r1, x(φ1(r2)))|+ | f1(r1, x(φ1(r2)))− f1(r1, x(φ1(r1)))|

]
+

[
| f2(r2, x(φ2(r2)))− f2(r1, x(φ2(r2)))|+ | f2(r1, x(φ2(r2)))− f2(r1, x(φ2(r1)))|

]
×

[
|g(r2, 0, 0)|+ l(V + V1 + V2 r + |x(φ3(r2))|

∫ ψ(r2)

0
|h(t2, ς, x(ς))|dς)

]
+ [| f2(r1, 0)|+ η2|x(φ2(r1))|]

[∣∣∣∣g(r2, vx(r2), x(φ((r2))
∫ ψ(r2)

0
h(r2, ς, x(ς))dς

)
− g

(
r1, vx(r2), x(φ3(r2))

∫ ψ(r2)

0
h(r2, ς, x(ς))dς

)∣∣∣∣
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+

∣∣∣∣g(r1, vx(r2), x(φ3(r2))
∫ ψ(r2)

0
h(r2, ς, x(ς))dς

)
− g

(
t1, vx(r1), x(φ3(r1))

∫ ψ(r1)

0
h(r1, ς, x(ς))dς

)∣∣∣∣ ]
≤ [θ f1(δ) + η1|x(φ1(r2))− x(φ1(r1))|] + [θ f2(δ) + η2|x(φ2(t2))− x(φ2(r1))|]

×
[

M + l(V + V1 + V2 r) + l|x(φ3(r2))|
∫ ψ(t2)

0
[k1(r2, ς) + k2(r2, ς)|x(φ4(ς)))|]dς

]
+ [N2 + η2|x(φ2(r1))|]

[
θg(δ) + l |vx(r2)− vx(r1)|

+ l
[∣∣x(φ3(r2))

∫ ψ(r2)

0
h(r2, ς, x(ς))dς− x(φ3(r1))

∫ ψ(r1)

0
h(r1, ς, x(φ(ς)))

∣∣dς

]
≤ [θ f1(δ) + η1|x(φ1(r2))− x(φ1(r1))|] + [θ f2(δ) + η2|x(φ2(r2))− x(φ2(r1))|]

×
[

M + l(V + V1 + V2 r) + l|x(φ3(r2)|
∫ ψ(r2)

0
[k1(r2, ς) + k2(r2, ς)|x(φ4(ς)))|]dς

]
+ [N2 + η2|x(φ2(r1))|]

[
θg(δ)

+ lθvx (δ) + l|x(φ3(r2))|
∫ ψ(r2)

0
[|h(r2, ς, x(φ4(ς)))− h(r1, ς, x(φ4(ς)))|]dς

+ l|x(φ3(r2))− x(φ3(r1))|
∫ ψ(r1)

0
|h(r1, ς, x(φ4(ς)))|dς

+ l
∣∣x(φ3(r2))

∣∣ ∫ ψ(r2)

ψ(r1)
|h(r1, ς, x(φ4(ς)))|dς

]
≤ [θ f1(δ) + η1|x(φ1(r2))− x(φ1(r1))|] + [θ f2(δ) + η2|x(φ2(r2))− x(φ2(r1))|]

×
[

M + l(V + V1 + V2r) + l|x(φ3(r2))|
∫ ψ(r2)

0
[k1(r2, ς) + k2(r2, ς)|x(φ4(ς)))|]dς

]
+ [N2 + η2|x(φ2(r1))|]

[
θg(δ) + lθvx (δ) + l|x(φ3(r2))|

∫ r2

0
ωT

h (x, ωT(φ4, ε)) dς

+ l|x(φ3(r2))− x(φ3(r1))|
∫ r1

0
[k1(r2, ς) + k2(r2, ς)|x(φ4(ς)))|]dς

+ l
∣∣x(φ3(t1))

∣∣ ∫ r2

r1

[k1(r2, ς) + k2(r2, ς)|x(φ4(ς)))|]dς

]
≤ [θ f1(δ) + η1|x(φ1(r2))− x(φ1(r1))|]
+ [θ f2(δ) + η2|x(φ2(r2))− x(φ2(r1))|]

[
M + l (V + V1 + v2 r)

+ l‖x‖
∫ r2

0
[k1(r2, ς) + k2(r2, ς)‖x‖]dς

]
+ [N2 + η2‖x‖]

[
θg(δ) + lθvx (δ) + l‖x‖ ωT

h (x, ωT(φ4, ε))

+ l |x(φ3(r2))− x(φ3(r1))|
∫ t1

0
[k1(r2, ς) + k2(r2, ς)‖x‖]dς

+ l ‖x‖
∫ r2

r1

[k1(r2, ς) + k2(r2, ς)‖x‖]dς

≤ [θ f1(δ) + η1 ωT(x, ωT(φ1, ε))]

+ [θ f2(δ) + η2 ωT(x, ωT(φ2, ε))]
[

M + l(V + V1 + V2 r) + l r [k1 + k2 r]
]

+ [N2 + η2 r]
[
θg(δ) + lθvx (δ) + lr ωT

h (x, ωT(φ4, ε)) + l [ωT(x, ωT(φ3, ε))] [k1 + k2 r]
]
,

where we denote
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θvx (δ) = sup{|vx(r2)− vx(r1)| : r1, r2 ∈ [0, T], r1 < r2, |r2 − r1| < δ, |x| ≤ r},
θ fi

(δ) = sup{| fi(r2, x)− fi(r1, x)| : r1, r2 ∈ [0, T], r1 < r2, |r2 − r1| < δ, |x| ≤ r}(i = 1, 2),

θg(δ) = sup{|g(r2, x)− g(r1, x)| : r1, r2 ∈ [0, T], r1 < r2, |r2 − r1| < δ, |x| ≤ r}.

We therefore, arrive at the following estimate:

ωT(Fx, ε)

≤ [θ f1(δ) + η1 ωT(x, ωT(φ1, ε))] (3)

+ [θ f2(δ) + η2 ωT(x, ωT(φ2, ε))]
[

M + l(V + V1 + V2 r) + l r [k1 + k2 r]
]

+ [N2 + η2 r]
[
θg(δ) + lθvx (δ) + lr ωT

h (x, ωT(φ4, ε)) + l [ωT(x, ωT(φ3, ε))] [k1 + k2 r]
]
,

subsequently, depending on the function g, fi : [0, ∞)× Br → R, (i = 1, 2) are uniform
continuity, conditions (iii) and (iv), we have to deduce θvx (δ), θg(δ) and θ fi

(δ) → 0, as
δ→ 0. Additionally, it is clear that ωT(φi, ε)→ 0 (i = 1, 2, 3). As a result, when we combine
the facts with the estimate (3), we obtain

wT
0 (FX) ≤

[
η1 + η2(M + l(V + V1 + V2r) + lr(k1 + k2r)) + l[N2 + η2r](k1 + k2r)

]
wT

0 (X).

Consequently, we obtain

w0(FX) ≤
[
η1 + η2(M + l(V + V1 + V2r) + lr(k1 + k2r)) + l[N2 + η1r](k1 + k2r)

]
w0(X). (4)

In the following, we take a nonempty set X ⊂ Br. Then for any x, y ∈ X, and fixed r ≥ 0,
we obtain

| Fx(r)− Fy(r) |

≤ η1 ‖x− y‖+ η2 ‖x− y‖
[
(M + l(V + V1 + V2 r) + l ‖x‖

∫ r

0
[k1 + k2‖x‖]dς

]
+ l [N2 + η2‖y‖]

[ ∫ r

0
e−ας[| f3(ς, x(ς))− f3(ς, y(ς))|]dς

+ |x(φ3(r))− y(φ3(r))|
∫ r

0
[k1 + k2‖x‖]dς + ‖y‖

∫ r

0

∣∣ h(r, ς, x(ς))− h(r, ς, y(ς))
∣∣dς

]
.

Hence, it is simple to arrive at the following inequality:

diam(FX)(r)

≤ η1 diamX(r) + η2 diamX(r)
[

M + l(V + V1 + V2 r) + l r|[k1 + k2 r]
]

+ l [N2 + η2 r]diamX(r)[k1 + k2 r] + l [N2 + η2 r]ωT( f3, ε) + rωT
h (x, ωT(φ4, ε))

]
.

Now, considering our conditions, we discover this estimate:

lim
r→∞

sup diamFX(r)

≤ (η1 + η2
[

M + l(V + V1 + V2 r) + l r|[k1 + k2 r]
]

+ l [N2 + η2 r][k1 + k2 r]) lim
r→∞

sup diamX(r).

Then
lim
r→∞

sup diamFX(r) ≤ c lim
t→∞

sup diamX(r), (5)

where we denote

c = η1 + η2
[

M + l(V + V1 + V2 r) + l r|[k1 + k2 r]
]
+ l [N2 + η2 r][k1 + k2 r].
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Clearly, given assumption (vi), we know that c < 1.
Finally, linking (4) and (5), using the formula that describes the measure of noncom-

pactness [29,30], we arrive at the following inequality.

µ(FX) ≤ c µ(X). (6)

Now, taking into account the condition that c =
[

M + lV + l r|[k1 + k2 r]
]
+ l k [N +

η r][η3 + k1 + k2 r]) < 1, and Darbo’s fixed point theorem [15], we deduce that the ball Br
has a fixed point x for the operator F. Clearly, the functional integral Equation (2) has a
solution x. Additionally, consider that the ball Br contains the image of the space BC(R+)
under the operator F. We conclude that Br contains the set FixF of all the fixed points
of F. It is evident that all solutions to Equation (2) are included in the set Fix F. On the
other hand, we determine that the family kerµ includes the set Fix F [30]. Now, taking into
account the description of sets belonging to kerµ (the kernel kerµ of this measure includes
the nonempty and bounded subsets X of BC(R+) such that the thickness of the bundle
generated by functions from X decreases to zero at infinity, and functions from X are locally
equicontinuous on R+ [26]), we conclude that all solutions to Equation (2) are globally
asymptotically stable.

3. Multi-Valued Problem

The multi-valued problems have attracted significant attention during the last few
decades. The literature on this topic is now much enriched and contains a variety of results
ranging from existence theory to the methods of solution for such problems (see [31–33]).

Now, consider the nonlinear functional–integral inclusions (1) with feedback control
under the following assumption:

(v∗) Let G(r, x) : R+ × R+ × R+ → 2R+ satisfy the following assumptions:

(a) The set G(r, x, y) is a nonempty, closed, and convex subset for all (r, x) ∈ R+ ×
R+ × R+.

(b) The set-valued map G : [0, ∞)× R+× R+ → 2R+ is continuous and Lipschitzian
set-valued map with a nonempty compact convex subset of 2R+

, with a Lipschitz
constant l > 0, such that

Hd(G(r, x1, y1), G(r, x2, y2)) ≤ l(|x1 − y1|+ |x2 − y2|), xi, yi ∈ R+, i = 1, 2.

Existence Theorem

Now, from the main results obtained in Section 2, we deduce the following results for
feedback control functional-integral inclusions (1).

Theorem 2. Let assumptions (i)–(iv), (v∗), and (vi)–(vii) hold. Then, the functional inclusion (1)
has at least one solution x = x(t), which belongs to the space in the space BC(R+). Moreover,
solutions of inclusion (1) are locally attractive.

Proof. By replacing assumption (v) by (v∗) and using Theorem ([33], Section 9, Chapter 1,
Theorem 1), we can deduce that the set of Lipschitz selections of G is nonempty and that
there exists a Lipschitz function g ∈ G with

|g(r, x1, x2)− g(r, y1, y2)| ≤ l
(
|x1 − y1|+ |x2 − y2|

)
,

for each r ∈ R+ and for all xi, yi ∈ R, i = 1, 2. Moreover, the function r→ g(r, 0, 0) belongs
to the space BC(R+), and we have

|g(r, x1, x2)| ≤ l |x1 − x2|+ M, where M = sup
r∈I
|{g(r, 0, 0)| : r ∈ R+} < ∞.
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i.e., assumption (v) of Theorem 2 is satisfied. Therefore, all assumptions of Theorem 2 are
met. and function g satisfies the differential Equation (2)

x(r) = f1(r, x(φ1(r))) + f2(r, x(φ2(r)))

. g
(
r, vx, x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(φ4(ς)))) dς

)
, r ≥ 0

vx(r) = v(0)e−αrβ
+ β

∫ r

0
e−α(rβ−ςβ) ςβ−1 f3(ς, x(ς))dς.

Therefore, any solution to Equation (2) is a solution of inclusion (1).

4. General Discussion and Examples

In this section, we present some cases in the absence and presence of feedback control.
Moreover, two illustrative examples are presented.

Remark 2. Replace assumption (i) by
(i∗) φi, : [0, ∞)→ [0, ∞), for i = 1, 2, 3, 4, such that

|ϕ(r)− ϕ(ς)| ≤ |r− ς|, and ϕ(0) = 0.

In this case, we have that φi(r) for i = 1, 2, 3, 4 is continuous and φi(r) ≤ r, and under
assumptions (i), (ii∗), and (iii)–(iv) the functional Equation (2) has at least one solution x = x(r),
which belongs to the space in the space BC(R+).

• In the case of the presence of a control variable

(1*) Phanograph functional integral inclusion with feedback control
Letting ψ(r) = r and φi(r) = ηir, r ∈ I and ηi ∈ (0, 1), i = 1, 2, 3, 4, then we have
the Phanograph functional-integral inclusion

x(r)− f1(r, x(η1r))

f2(r, x(η2r))
∈ G

(
r, v(r), x(η3r))

∫ r

0
h(r, ς, x(η4 ς)) dς

)
, r ∈ R+;

dv(r)
drβ

= −αv(r) + f3(r, x(r)), v0 = v(0), α ≥ 0, β ∈ (0, 1).

(2*) Retarded functional integral inclusion with feedback control
Let φi(r) = r− ri, r ≥ ri > 0, i = 1, 2, 3, 4 and φi(r) = 0, r < ri, i = 1, 2, 3, 4.
Then, we have the functional retarded integral inclusion with feedback control

x(r)− f1(r, x(r− r1))

f2(r, x(r− r2))

∈ G
(
r, v(r), x(r− r3))

∫ r

0
h(r, ς, x(ς− r4)) dς

)
, r ≥ ri > 0, i = 1, 2, ;

dv(r)
drβ

= −αv(r) + f3(r, x(r)), v0 = v(0), α ≥ 0, β ∈ (0, 1).

(3*) For α = 0, then we obtain the functional retarded integral inclusion with feedback
control

x(r)− f1(r, x(φ1(r)))

f2(r, x(φ2(r)))

∈ G
(
r, v(r), x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(φ4(ς))) dς

)
, r ∈ R+;

dv(r)
drβ

= f3(r, x(r)) β ∈ (0, 1),
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which gives

x(r)− f1(r, x(φ1(r)))

f2(r, x(φ2(r)))
∈ G

(
r, β

∫ r

0
e−α(rβ−ςβ) ςβ−1 f3(ς, x(ς))dς, x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(φ4(ς))) dς

)
, r ∈ R+.

(4*) Let f1(r, x) = 1, f2(r, x)x, g(r, v, x) = x + v, and φi(r) = r; then, the cubic integral
inclusion (1) takes the form

x(r) ∈ 1 + x(r)
[

x(r)
∫ ψ(r)

0
h(r, ς, x(ς))dς + v(r)

]
, (7)

with
dv(r)
drβ

= −αv(r) + f3(r, x(r)), v0 = v(0), α ≥ 0, β ∈ (0, 1).

• In the case of the absence of control variable v(r) = 0, we obtain some particular
cases which that useful for the theory of qualitative analysis of some functional integral
equations and important for some models and real problems.

(1) Let fi(r, x) = 1, (i = 1, 2); then, the integral inclusion (1) takes the form

x(r) ∈ g
(
r, x(φ3(r))

∫ ψ(r)

0
h(r, ς, x(ς))dς

)
, (8)

and then, under the assumptions of Theorem 2, the functional integral inclusion
(8) has at least one asymptotically stable solution x ∈ BC(R+).

(2) Let f1(r, x) = 1, f2(r, x) = g(r, x) = x, and φi(r) = r; then, the cubic integral
inclusion (1) takes the form

x(r) ∈ 1 + x2(r)
∫ ψ(r)

0
h(r, ς, x(ς))dς, (9)

and under the assumptions of Theorem 2, then the cubic integral inclusion (9) has
at least one asymptotically stable solution x ∈ BC(R+).

(3) Let f1(r, x(r)) = f2(r, x(r)) = f (r, x(r)) and g(r, x) = 1 + x, in the integral
Equation (1); we obtain the cubic integral inclusion

x(r) ∈ 2 f (r, x(ϕ1(r))) + f (r, x(ϕ2(r)))x(φ3(r))
∫ ψ(r)

0
h(r, ς, x(φ4(ς)))dς, (10)

and under the assumptions of Theorem 2, then the cubic integral inclusion (10)
has at least one asymptotically stable solution x ∈ BC(R+).

4.1. Example 1

Consider the following hybrid cubic functional integral inclusion:

x(r)− r
4(1+r2)

arctan(r+ x(r))

1
3
√
r2+24

√
|x(r)|

(1+
√
|x(r)|

(11)

∈
[

0,
r

1 + r2 sin(r+ x(r)
∫ r

0
[
2r− ς

1 + r4 +
r|x(ς)|

2π(r2 + 1)(ς + 1)
]dς)

]
, r ≥ 0,

with a fractal feedback control

dv(r)

dr
1
2

= −0.1v(r) +
1
8

e−rcos(r) + r2 e
−7
5 r x(r).
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Now, we investigate the solvability of the integral Equation (11) on the space BC(R+). Take
into account that this hybrid integral inclusion is a particular case of inclusion (1) with

f1(r, x(r)) =
r

4(1 + r2)
arctan(r+ x(r)),

f2(r, x(r)) =
1

3
√
r2 + 24

√
|x(r)|

(1 +
√
|x(r)|)

,

f3(r, x(r)) =
1
8

e−rcos(r) + r2 e
−7
5 r x(r),

g(r, x(r)) =
1

1 + r
sin(r+ x(r)),

h(r, ς, x(ς)) =
2r− ς

1 + r4 +
t|x(ς)|

2π(r2 + 1)(ς + 1)
.

Obviously, the function fi, (i = 1, 2) is mutually continuous. Currently, for any
x, y ∈ R+ and r ≥ 0,

| f1(r, x(r))− f1(r, y(r))| ≤ 1
8

∣∣x(r)− y(r)|,

| f2(r, x(r))− f2(r, y(r))| ≤ 1
15

∣∣x(r)− y(r)|,

| f3(r, x(r))| ≤ 1
8

e−r + r2 e
−7r

5 |x(r)|.

This indicates that condition (iv) is satisfied, with N1 = π
16 and N2 = 1

15 and η1 = 1
8 ,

η2 = 1
15 , where f1(r, 0) = r

1+r2 arctan(r). Thus limr→∞ f1(r, 0) = 0 .
Also, V = 0, 1, V1 = 6

13 , and V2 = 16
27 . On the other hand, we have

|g(r, x(r))− g(r, y(r))| ≤ 1
1 + r

|x(r)− y(r)| ≤ |x(r)− y(r)|
2

,

where l = 1
2 and g(r, 0),= 1

1+r sin(r). with M = 1
2 . Further, notice that the function

h(r, ς, x) satisfies assumption (v), where

|h(r, ς, x(ς))| ≤ 2r− ς

1 + r4 +
r|x(ς)|

2π(r2 + 1)(ς + 1)
.

This indicates that we can insert k1(r, ς) = r(2r−ς)
2(1+r4)

and k2(r, ς) = r
2π(r2+1)(ς+1) .

To verify assumption (v), notice that

lim
r→∞

∫ r

0
k1(r, ς) = lim

r→∞

∫ r

0

r(2r− ς)

2(1 + r4)
dς = lim

r→∞

3r3

4r4 + 4
= 0,

and

lim
r→∞

∫ r

0
k2(r, ς) = lim

r→∞

∫ r

0

r

2π(r2 + 1)(ς + 1)
dς = lim

r→∞

r ln(r+ 1)
2π · (r2 + 1)

= 0.

Moreover, we have k1 = 0.14246919... and k2 = 0.0906987.
Finally, let us pay attention to the cubic equation of Theorem 2, which has the form

η2 l k2r3 +
[
(k1η2 + k2N2 + η2V2)l

]
r2 (12)

+
[
η1 + η2M + lN2(k1 + V2) + η2l(V + V1) − 1

]
r + N1 + N2M + N2l(V + V1) = 0,

and has the following root

r1 = −21.3032, r2 = 0.3.59388, and r3 = 11.8394,
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and it is easily seen that the root r0 = 0.3.59388 of the previous equation satisfies the
inequality such that

η1 + η2
[
M + l(V + V1 + V2 r0) + lr0[k1 + k2r0]

]
+ l[N2 + η2 r0][k1 + k2r0] ' 0.249183 ≤ 1.

As a result, all the prerequisites of Theorem 2 are met. Hence, we conclude that
inclusion (11) has at least one solution in the space BC(R+). Moreover, the solutions are
locally attractive.

4.2. Example 2

Consider the problem (1) with a variable control v, when f1(r, x) = 1
1+r , f2(t, x) = x,

G(t, v, x, w) = v + w, φ3(r) = ψ(r) = φ4(r) = r and h(r, ς, x) = r
r+ς x(ς). Then we obtain

the following cubic integral inclusion involving the Chandrasekhar kernel

x(r)− 1
1 + r

∈ x(t)
[

v(r) + x(r)
∫ r

0

r

r+ ς
x(ς) dς

]
, r ∈ R+ = [0, ∞);

with a fractal feedback control

dv(r)
drβ

= −αv(r) + f3(r, x(r)), v0 = v(0), α ≥ 0.

When f2(t, x) = 1, we obtain Chandrasekhar integral equation. In the radiative transfer,
some problems are reduced by S. Chandrasekhar [34] to the well-known integral equation
of Chandrasekhar type (see [35,36]).

5. Conclusions

It is known that in the more reasonable position, unanticipated factors may continu-
ously disrupt a physical system. The alteration of the system’s parameters typically causes
these disruptions (perturbations). These perturbation functions can be thought of as control
variables in the terminology of control theory. In particular, control variables may be taken
into account while using integral equations.

The feedback control mechanism may be used in conjunction with harvesting, culling,
or other biological control techniques. We recommend the reader to [8–10] for literature on
feedback control system stability.

Inspired by these applications and by the existence results of differential and integral
equations involving control variables that are obtained in [8,11,12], we have established the
existence and the asymptotic stability of the solutions for a nonlinear cubic functional inte-
gral inclusion with a feedback control on the real half-line, using the technique associated
with a measure of noncompactness [37,38].

Furthermore, by selecting an appropriate noncompactness measure, we have proved
that such solutions are asymptotically stable in the Banach space BC(R+).

Our discussion is located in the class of bounded continuous functions BC(R+).
Our work can be considered a formal generalization of the results of the theory of differen-
tial equations and inclusions Refs. [7,39–43].
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20. Banaś, J.; O’Regan, D. Volterra-Stieltjes integral operators. Math. Comput. Model. 2005, 41, 335–344. [CrossRef]
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