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Abstract: In this paper, a fractional-order model for African swine fever with limited medical
resources is proposed and analyzed. First, the existence and uniqueness of a positive solution is
proven. Second, the basic reproduction number and the conditions sufficient for the existence of
two equilibriums are obtained. Third, the local stability of the two equilibriums is studied. Next,
some numerical simulations are performed to verify the theoretical results. The mathematical and
simulation results show that the values of some parameters, such as fractional order and medical
resources, are critical for the stability of the equilibriums.

Keywords: African swine fever; fractional order; limited medical resources; basic reproduction
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1. Introduction

African swine fever (ASF) is a highly contagious disease with a high fatality rate,
and which poses a great threat to the pig industry. The main symptoms of the disease
in pigs include high fever, aphagia, and extensive skin and visceral bleeding. African
swine fever virus (ASFV) has been spreading in Africa, Asia, Europe, and other regions
for more than one hundred years, since it was discovered in Kenya in 1921, and it has
caused immeasurable losses to the global pig industry [1]. Since African swine fever was
discovered in Shenyang City in August of 2018, more than one hundred cases of ASF had
occurred in 28 provinces of China by February, 2019, and the number of pigs culled was up
to one million [2]. Due to the absence of effective vaccines, the available method to control
this disease is to isolate and slaughter infected animals in affected areas, which inevitably
results in high economic losses.

In recent years, mathematical models have played an important role in analyzing
the spread and control of all kinds of infectious diseases [3–6]. Since the outbreak of
African swine fever, researchers have established many models to analyze its spread.
Pietschmann et al. reviewed the main characteristics, clinical features, and transmission
modes of pathogenic viruses [7]. The results showed that very low doses of ASFV infected
other animals through the mouth, nose, and direct contact. Guinat et al. used a stochastic
SEIR model to study the transmission of ASFV and estimated the basic reproduction
number R0 of the Georgia 2007/1 strain through parameters estimated from transmission
experiments [8]. Their results suggested that detection of ASFV genomes in nose and
mouth specimens is an effective diagnostic tool for early detection of infection. Mur et al.
used a spatially explicit stochastic transmission model to understand the dynamics of ASFV
infection among domestic pig farms [9]. The results showed that indirect transmission
through pathogens between farms within a 2 km radius is the most common mode of
transmission. Barongo et al. established a stochastic model to simulate the transmission
dynamics of ASFV under different interventions [10]. The results confirmed the importance
of early intervention and implementation of biosafety measures. Recently, the control of
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African swine fever virus in large-scale pig farms was considered in [11], and the dynamics
of African swine fever with culling in China were analyzed in [12].

In recent decades, fractional-order calculus has been widely studied and applied in
many fields, such as physics [13,14], chemistry [15], biology [16,17], epidemiology [18–20],
and other fields [21–27]. Fractional-order models can reflect the complex behaviors of
various diseases more accurately and deeply than classical integer-order models. Fractional-
order systems are better than integer-order systems because they contain the genetic
characteristics of memory [28]. There are different definitions of fractional calculus, such
as Riemann–Liouville (RL), Caputo, Grunwald–Letnikov (GL), etc. These definitions all
have advantages and disadvantages, and in this paper will use the Caputo definition to
carry out research, because the fractional-order equations under the Caputo definition have
the the same initial condition as the integer order. As the initial value of the fractional
derivative is difficult to find and has no clear physical meaning, the advantages of the
Caputo definition make its application more popular.

In the real world, medical resources are always limited (such as drugs, isolation loca-
tions, etc.), so it is necessary to select an appropriate treatment function when constructing
a model. In [29], Cui et al. introduced the saturation function to the model to describe
the situation of limited medical resources. Inspired by [11,12,28–30], we established the
following model 

DαS(t) = Λ− βS(t)I(t)− µS(t) + δR(t),
DαE(t) = βS(t)I(t)− (ω + µ)E(t),

Dα I(t) = ωE(t)− (µ + d)I(t)− cI(t)
b + I(t)

,

DαQ(t) =
cI(t)

b + I(t)
− (ε + µ)Q(t),

DαR(t) = εQ(t)− (µ + δ)R(t),

(1)

where Dα is the Caputo fractional derivative of order α, with 0 < α ≤ 1. The descriptions
of variables and parameters in system (1) are listed in Table 1, and all parameters are
assumed to be positive. Here, we use the saturation function cI

b+I to depict the limited
medical resources.

Table 1. Description of variables and parameters in system (1).

Variables Descriptions

S(t) Density of the susceptible population
E(t) Density of the exposed population
I(t) Density of the infection population
Q(t) Density of the quarantined population
R(t) Density of the recovered population

Parameters Descriptions Values

Λ The constant recruitment rates of population [1, 1.75]
β Effective contact rate between the susceptible and the infection population [0.001, 0.3]
ω The average rate at which an individual passes through the incubation period [0.12, 0.35]
ε Recovery rate of the quarantined [0.01, 0.8]
δ The constant rate at which the recovered population become susceptible [0.01, 0.3]
d Death rate due to the disease [0.002, 0.0035]
µ Natural death rate [0.08, 0.25]
c The maximum isolation rate per unit of time [1, 10]
b The infection scale [1, 5]

We denote N(t) as the total population, then N(t) = S(t) + E(t) + I(t) + Q(t) + R(t).
From system (1), we can obtain the following differential inequality:

DαN(t) = Λ− µN(t)− dI(t) ≤ Λ− µN(t),
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and from the above, we can further obtain N(t) ≤ Λ
µ

, as t→ +∞. Denote the biologically

feasible region for system (1) as Γ, then it will be

Γ =

{
(S, E, I, Q, R) ∈ R5

+| 0 ≤ S + E + I + Q + R ≤ Λ
µ

}
.

The organizational structure of this article is as follows: In Section 2, the dynamics of
the system (1) are analyzed. The existence and uniqueness of a positive solution is proven,
and the conditions sufficient for the local stability of disease-free equilibrium and endemic
equilibrium are obtained. In Section 3, some numerical examples and simulations are
performed, to confirm the theoretical results. The simulation results indicated that (1) dif-
ferent orders of derivatives have obvious effects on the dynamics of the system; (2) limited
medical resources have crucial effects on controlling the disease. A brief conclusion is
presented in the last section.

2. Qualitative Analysis of System (1)
2.1. The Existence and Uniqueness of a Positive Solution

To be biologically meaningful, it is important to prove that the solutions of system (1)
with any nonnegative initial data are positive and bounded.

Theorem 1. System (1) has a unique solution with any nonnegative initial value, and Γ is positively
invariant for this system.

Proof. First, we will prove that the solution of system (1) is always nonnegative and
bounded above. Based on system (1), we have

DαS|S=0 = Λ + δR > 0,
DαE|E=0 = βSI ≥ 0,
Dα I|I=0 = ωE ≥ 0,

DαQ|Q=0 =
cI

b + I
≥ 0,

DαR|R=0 = εQ ≥ 0.

According to Theorem 1 of [31], we have S(t), E(t), I(t), Q(t), R(t) ≥ 0, for ∀t ≥ 0.
The above boundedness is obvious. Thus, Γ is a positively invariant set with respect to
system (1).

Second, we will prove that system (1) with any positive initial value has a unique
solution. Denote the right side of system (1) as vector function f (t,~x(t)), then the corre-
sponding conditions (i)–(iii) of Lemma 2.6 in [32] are satisfied. Thus, we only need to verify
that the fourth condition is satisfied for system (1).

Denote

A1 =


−µ 0 0 0 δ
0 −(ω + µ) 0 0 0
0 ω −(µ + d) 0 0
0 0 0 −(ε + µ) 0
0 0 0 ε −(µ + δ)

, A2 =


0 0 −β 0 0
0 0 β 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,

A3 =


0 0 0 0 0
0 0 0 0 0
0 0 −c 0 0
0 0 c 0 0
0 0 0 0 0

, ~η =


Λ
0
0
0
0

, ~x(t) =


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

,

where x1(t) = S(t), x2(t) = E(t), x3(t) = I(t), x4(t) = Q(t), x5(t) = R(t).
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Then system (1) can be rewritten as

Dα~x(t) = A1~x(t) + x1(t)A2~x(t) +
1

b + x3(t)
A3~x(t) +~η

.
= f (t,~x(t)).

By simple calculation, we have

‖ f (t,~x(t))‖ = ‖A1~x(t) + x1(t)A2~x(t) +
1

b + x3(t)
A3~x(t) +~η‖

≤ ‖A1‖‖~x(t)‖+ ‖x1(t)A2‖‖~x(t)‖+ ‖
1

b + x3(t)
A3‖‖~x(t)‖+ ‖~η‖

= (‖A1‖+ ‖x1(t)A2‖+ ‖
1

b + x3(t)
A3‖)‖~x(t)‖+ ‖~η‖

≤ (‖A1‖+
Λ
µ
‖A2‖+

1
b
‖A3‖)‖~x(t)‖+ ‖~η‖

.
= λ‖~x(t)‖+ ω.

Thus, the function f (t,~x(t)) satisfies all conditions of Lemma 2.6 in [32], and from that
Lemma, we know system (1) has a unique solution. This completes the proof.

2.2. The Basic Reproduction Number and the Existence of Equilibriums

For all infectious diseases, the basic reproduction number R0 is defined as the ex-
pected number of new infections generated by a single infected person during his/her
entire period of infectiousness when introduced into a completely susceptible popula-
tion [33,34]. In this subsection, we calculate the basic reproduction number and study the
existence of equilibriums of the system (1). According to [34], we can obtain the basic
reproduction number

R0 = ρ(FV−1) =
βωbΛ

µ(ω + µ)[(µ + d)b + c]
,

where

F =

0 β
Λ
µ

0

0 0 0
0 0 0

, V =


ω + µ 0 0

−ω µ + d +
c
b

0

0 − c
b

ε + µ

.

The equilibriums of system (1) are obtained by solving the following algebraic system:

Λ− βSI − µS + δR = 0,
βSI − (ω + µ)E = 0,

ωE− (µ + d)I − cI
b + I

= 0,
cI

b + I
− (ε + µ)Q = 0,

εQ− (µ + δ)R = 0.

(2)

Direct calculation shows that
(i) System (1) always has a trivial equilibrium (i.e., disease-free equilibrium)

E0 = (Λ
µ , 0, 0, 0, 0);

(ii) When R0 > 1, system (1) has a positive equilibrium (i.e., endemic equilibrium)
E∗ = (S∗, E∗, I∗, Q∗, R∗) with

S∗ =
(ω + µ)(µ + d)

βω
+

c(ω + µ)

βω(b + I∗)
, E∗ =

µ + d
ω

I∗ +
cI∗

ω(b + I∗)
,

Q∗ =
cI∗

(ε + µ)(b + I∗)
, R∗ =

cεI∗

(ε + µ)(µ + δ)(b + I∗)
,

(3)
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and I∗ is the positive root of the following equation

a1 I2 + a2 I + a3 = 0, (4)

where

a1 =
(ω + µ)(µ + d)

ω
,

a2 =
βb(ω + µ)[(µ + d)b + c]− µb(ω + µ)(µ + d)(1− R0)− µc(ω + µ)R0

βωb
− δεc

(µ + δ)(ε + µ)
,

a3 =
µ(ω + µ)[(µ + d)b + c]

βω
(1− R0).

(5)

From the above argument, we obtain the following result:

Theorem 2. For system (1), there always exists a disease-free equilibrium E0; if R0 > 1, then there
exists a unique endemic equilibrium E∗ defined by Equations (3) and (4).

2.3. The Stability of the Disease-Free Equilibrium E0

The Jacobian matrix of system (1) evaluated at the disease-free equilibrium E0 is
given by

J(E0) =



−µ 0 −β
Λ
µ

0 δ

0 −(ω + µ) β
Λ
µ

0 0

0 ω −
(

µ + d +
c
b

)
0 0

0 0
c
b

−(ε + µ) 0

0 0 0 ε −(µ + δ)


.

It is easy to see that the three eigenvalues of J(E0) are λ1 = −µ < 0, λ2 = −(ε +
µ) < 0, λ3 = −(µ + δ) < 0, and the other two eigenvalues are determined by the
following equation:

λ2 + b1λ + b2 = 0, (6)

where
b1 = ω + 2µ + d +

c
b

,

b2 = (ω + µ)
(

µ + d +
c
b

)
(1− R0).

(7)

From the above argument, we obtain the following result:

Theorem 3. (1) If R0 < 1, then both roots of Equation (6) have a negative real part, which indicates
that E0 is locally asymptotically stable.

(2) If R0 > 1, then one root of Equation (6) is positive, which indicates that E0 is unstable.

2.4. The Stability of Endemic Equilibrium E∗
The Jacobian matrix of system (1) evaluated at the endemic equilibrium E∗ is given by

J(E∗) =



−(βI∗ + µ) 0 −βS∗ 0 δ
βI∗ −(ω + µ) βS∗ 0 0

0 ω −
[

µ + d +
bc

(b + I∗)2

]
0 0

0 0
bc

(b + I∗)2 −(ε + µ) 0

0 0 0 ε −(µ + δ)


.
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By simple calculation, we obtain the corresponding characteristic equation of J(E∗) as

p(λ) = λ5 + m1λ4 + m2λ3 + m3λ2 + m4λ + m5 = 0, (8)

where

m1 = βI∗ + δ + ε + ω + d + 5µ +
bc

(b + I∗)2 ,

m2 = (ω + µ)

[
µ + d +

bc
(b + I∗)2

]
− βωS∗ + (βI∗ + δ + ε + 3µ)

[
ω + d + 2µ +

bc
(b + I∗)2

]
+(δ + µ)(ε + µ) + (βI∗ + µ)(δ + ε + 2µ),

m3 = (βI∗ + δ + ε + 3µ)

[
(ω + µ)[d + µ +

bc
(b + I∗)2 ]− βωS∗

]
+[(βI∗ + µ)(δ + ε + 2µ) + (δ + µ)(ε + µ)]

[
ω + d + 2µ +

bc
(b + I∗)2

]
+(βI∗ + µ)(δ + µ)(ε + µ) + β2ωS∗ I∗,

m4 = [(δ + µ)(ε + µ) + (βI∗ + µ)(δ + ε + 2µ)]

[
(ω + µ)[d + µ +

bc
(b + I∗)2 ]− βωS∗

]
+(βI∗ + µ)(δ + µ)(ε + µ)

[
ω + d + µ +

bc
(b + I∗)2

]
+ β2ωS∗ I∗(δ + ε + 2µ),

m5 = (δ + µ)(ε + µ)(βI∗ + µ)

[
(ω + µ)[d + µ +

bc
(b + I∗)2 ]− βωS∗

]
+β2ωS∗ I∗(δ + µ)(ε + µ)− βωδεbc

(b + I∗)2 I∗.

(9)

Denote

H1 = m1, H2 =

∣∣∣∣ m1 m3
1 m2

∣∣∣∣, H3 =

∣∣∣∣∣∣
m1 m3 m5
1 m2 m4
0 m1 m3

∣∣∣∣∣∣,

H4 =

∣∣∣∣∣∣∣∣
m1 m3 m5 0
1 m2 m4 0
0 m1 m3 m5
0 1 m2 m4

∣∣∣∣∣∣∣∣, H5 =

∣∣∣∣∣∣∣∣∣∣

m1 m3 m5 0 0
1 m2 m4 0 0
0 m1 m3 m5 0
0 1 m2 m4 0
0 0 m1 m3 m5

∣∣∣∣∣∣∣∣∣∣
.

(10)

According to the Routh–Hurwitz criterion, we find that if, and only if, the coefficients
mi satisfy Hi > 0 ( i = 1, 2, 3, 4, 5), then all roots of Equation (8) have negative real parts.

Theorem 4. (i) If Hi > 0, i = 1, · · · , 5, then the endemic equilibrium E∗ is locally asymptotically
stable.

(ii) When α ∈ (0, 1), according to Lemma 3 in [35], if all roots of Equation (8) satisfy
|arg(λi)| > απ

2 , i = 1, · · · , 5, then E∗ is still locally stable.

3. Numerical Simulations

In the previous section, we investigated the dynamics of the system. The basic repro-
duction number and the sufficient conditions for the stability of the disease-free equilibrium
E0 and endemic equilibrium E∗ were obtained. In this section, we give some examples and
perform some numerical simulations to verify the theoretical results using the parameter
values given in Table 1. In this paper, we used an Adams-type predictor–corrector method
and MATLAB software for the numerical solution of the fractional-integral equation.

Example 1. Fix the following parameter values: ω = 0.15, ε = 0.2, δ = 0.1, c = 8.5, µ = 0.0025,
d = 0.25, and initial value [S(0), E(0), I(0), Q(0), R(0)] = [450, 40, 10, 0, 0].

(i) Let Λ = 1.12, β = 0.018, and b = 1. In this case, we obtain R0 = 0.9062 < 1. From
Figure 1 we find that the disease-free equilibrium E0 of system (1) is always locally asymptotically
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stable for different values of α (α = 0.85, 0.9, 0.95, 0.98, 1), which indicates that the disease will
eventually die out.

(ii) Let Λ = 1, β = 0.06, and b = 4. In this case, we obtain R0 = 9.9292 > 1. From Figure 2,
we can see that when the value of α is relatively large (α = 0.9 or α = 1), the disease-free equilibrium
E0 is unstable; however, it is still asymptotically stable when the value of α is relatively small (α = 0.5
or α = 0.55). These results show the different between an integer-order system and a fractional-order
system. That is to say the value of parameter α has a crucial effect on the dynamics of the system.
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Figure 1. The time series of system (1), with R0 = 0.9062 < 1.
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Figure 2. The time series of system (1), with R0 = 9.9292 > 1.

Example 2. Fix the following parameter values: ω = 0.15, ε = 0.2, δ = 0.1, c = 8.5, µ = 0.0025,
d = 0.25, and initial value [S(0), E(0), I(0), Q(0), R(0)] = [450, 40, 10, 0, 0].

(i) Let Λ = 1, β = 0.06 and b = 4. In this case, we obtain R0 = 9.9292 > 1. From
Figure 3 we find that the endemic equilibrium E∗ is asymptotically stable for different values of α
(α = 0.85, 0.9, 0.96, 1).

(ii) Let Λ = 1.12, β = 0.018 and b = 1. In this case, we obtain R0 = 3.8839 > 1. Figure 4
shows that the endemic equilibrium E∗ maybe stable for some value of α (α = 0.85), or unstable for
other values(α = 0.9, 0.95, 1).
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Figure 3. The time series of system (1), with R0 = 9.9292 > 1, and the Routh–Hurwitz conditions
are satisfied.



Fractal Fract. 2023, 7, 430 10 of 15

0 50 100 150

Time(days)

0

50

100

150

200

250

300

350

400

450

S
(t

)

α=0.85

α=0.9

α=0.95

α=1

0 50 100 150

Time(days)

0

50

100

150

200

250

300

350

400

450

E
(t

)

α=0.85

α=0.9

α=0.95

α=1

0 50 100 150

Time(days)

0

20

40

60

80

100

120

I(
t)

α=0.85

α=0.9

α=0.95

α=1

0 50 100 150

Time(days)

0

5

10

15

20

25

30

35

40

Q
(t

)

α=0.85

α=0.9

α=0.95

α=1

0 50 100 150

Time(days)

0

10

20

30

40

50

60

70

R
(t

)

α=0.85

α=0.9

α=0.95

α=1

Figure 4. The time series of system (1), with R0 = 3.8839 > 1 and the Routh–Hurwitz conditions are
not satisfied.

From the above two examples, we find that

Remark 1. (i) If R0 < 1, then the disease-free equilibrium E0 is always asymptotically stable for
different values of α, which means that the disease will eventually die out. However, if R0 > 1,
the disease-free equilibrium E0 is unstable when the value of α is relatively large; while it might
be stable when the value of α is relatively small. That is to say, the values of R0 and α determine
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the stability of equilibrium E0. This shows the difference between fractional-order systems and
integer-order systems.

(ii) When R0 > 1, from Figure 3, we can see that if the Routh–Hurwitz conditions are satisfied,
then the endemic equilibrium E∗ is asymptotically stable, which means that the disease will persist;
however, from Figure 4, we can see that if the Routh–Hurwitz conditions are unsatisfied, the endemic
equilibrium E∗ may be stable for some value of α(α = 0.85), or it may be unstable for other values of
α(α = 0.9, 0.95, 1). This shows that the values of α and the basic reproduction number are crucial
for the dynamics of the system.

(iii) The above results coincide with the conclusions of Theorems 3 and 4.

Example 3. Fix the following parameter values: Λ = 1.12, β = 0.018, ω = 0.15, ε = 0.2,
δ = 0.1, b = 1, c = 8.5, µ = 0.0025, d = 0.25, and α = 0.98. In this case, we obtain
R0 = 3.8839 > 1. Figure 5 shows that the endemic equilibrium point E∗ is stable with differ-
ent initial values [S(0), E(0), I(0), Q(0), R(0)] = [360, 10, 10, 5, 0], [450, 40, 10, 0, 0],
[500, 160, 20, 10, 0].

Example 4. Fix the following parameter values: Λ = 1.12, β = 0.018, ω = 0.15, ε = 0.2,
δ = 0.1, b = 1, µ = 0.0025, and d = 0.25. Figure 6 shows the effect of parameter c. From this
figure, we can see that as the value of parameter c increases, the peaks of Q(t) and R(t) also
increase. That is to say, if the maximum isolation rate is higher, then there are higher quarantined
and recovered populations, so more medical resources are needed to control the transmission of
the disease.
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Figure 5. The time series of system (1) with different initial values.
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Figure 6. The time series of system (1) for different values of c (c = 5, 8, 10).

From the above two examples, we can see that

Remark 2. (i) From Example 3, we know that the endemic equilibrium E∗ is always stable for
different initial values, which coincides with Theorem 4. That is to say, the initial data do not affect
the stability of equilibriums.

(ii) The value of parameter c affects the peaks of Q(t) and R(t). That is to say, medical
resources are important to control the transmission of the disease.

4. Discussion

In this paper, a fractional-order model for African swine fever with limited medical
resources was constructed and investigated. The basic reproduction number R0 and the
sufficient conditions for the existence and stability of E0 and E∗ were obtained.

Through qualitative analysis, we found that

♦ If R0 < 1, then the disease-free equilibrium E0 is the unique equilibrium of system (1)
and it is asymptotically stable within Γ.

♦ If R0 > 1, then E0 may be stable for a relatively small value of α, or it may be unstable
for a relatively large value of α; and the endemic equilibrium E∗ appears.

♦ If R0 > 1, then the endemic equilibrium E∗ exists and it may be stable for some values
of α or unstable for other values of α.

Through numerical simulation we obtained the following results:

♦ Figures 1 and 2 show that the values of α and R0 are crucial to the dynamics of the
system. If R0 < 1, then the disease-free equilibrium E0 is always stable for different
values of α. If R0 > 1, then the disease-free equilibrium E0 may be stable for a relatively
small value of α; while it is unstable with a relatively large value of α. This result
shows the difference between fractional-order systems and integer-order systems.

♦ Figure 3 shows that if the Routh–Hurwitz conditions are satisfied, then the endemic
equilibrium E∗ is stable for different values of α. Figure 4 shows that the endemic
equilibrium E∗ may be unstable if the Routh–Hurwitz conditions are not satisfied.
Figure 5 shows that the initial values are not important to the stability of the endemic
equilibrium E∗.

♦ Figure 6 shows that medical resources are important for controlling the transmission
of the disease.
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