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1. Introduction and Preliminaries

The notion of almost periodicity was introduced by the Danish mathematician H.
Bohr around 1924–1926 and later generalized by many others. Let I = [0, ∞) or I = R, let
(X, ‖ · ‖) be a complex Banach space and let f : I → X be a continuous function. Given
ε > 0, we call τ > 0 an ε-period for f (·) if and only if ‖ f (t + τ)− f (t)‖ ≤ ε, t ∈ I; the
set of all ε-periods for f (·) is denoted by ϑ( f , ε). It is said that f (·) is almost periodic if
and only if for each ε > 0 the set ϑ( f , ε) is relatively dense in I, which means that there
exists l > 0 such that any subinterval of I of length l meets ϑ( f , ε). For further information
concerning almost periodic functions and their applications, the interested reader may
consult the research monographs [1–9].

An X-valued sequence (xk)k∈Z [(xk)k∈N] is called (Bohr) almost periodic if and only if,
for every ε > 0, there exists a natural number K0(ε) such that among any K0(ε) consecutive
integers in Z [N], there exists at least one integer τ ∈ Z [τ ∈ N] satisfying that∥∥xk+τ − xk

∥∥ ≤ ε, k ∈ Z [k ∈ N];

as in the case of functions, this number is said to be an ε-period of sequence (xk). Any
almost periodic X-valued sequence is bounded and its range is relatively compact in X. The
equivalent concept of Bochner almost periodicity of X-valued sequences can be introduced
as well; see, e.g., ([10] Theorem 70, pp. 185–186) and ([10] Theorems 71–73, pp. 186–188).
It is well known that a sequence (xk)k∈Z in X is almost periodic if and only if there exists
an almost periodic function f : R → X such that xk = f (k) for all k ∈ Z; see, e.g., the
proof of ([11] Theorem 2) given in the scalar-valued case. It is not difficult to prove that,
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for every almost periodic sequence (xk)k∈N in X, there exists a unique almost periodic
sequence (x̃k)k∈Z in X such that x̃k = xk for all k ∈ N, so that a sequence (xk)k∈N in X
is almost periodic if and only if there exists an almost periodic function f : [0, ∞) → X
such that xk = f (k) for all k ∈ N. The class of almost periodic sequences is essentially
important in the analysis of the qualitative properties of solutions for various classes of
impulsive Volterra integro-differential equations, Volterra integro-difference equations and
ordinary differential equations; cf. the research monographs [10,12,13] and the doctoral
dissertation [14] for some results obtained in this direction.

The notion of Stepanov almost periodicity of the sequence (xk)k∈Z and its equivalence
with the usual almost periodicity of (xk)k∈Z have been analyzed for the first time by J.
Andres and D. Pennequin in [15]. Further on, the class of equi-Weyl almost periodic
sequences (xk)k∈Z with values in compact metric spaces has been introduced by A. Iwanik
in [16], while the class of Besicovitch almost periodic sequences has been introduced by A.
Bellow, V. Losert [17] and further analyzed by V. Bergelson et al. in [18] (cf. also the research
article [16] by T. Downarowicz and A. Iwanik, which concerns the notion of quasi-uniform
convergence in compact dynamical systems). In our joint study with W.-S. Du and D.
Velinov [19], we have recently introduced and analyzed the classes of (equi-)Weyl-p-almost
periodic sequences, Doss-p-almost periodic sequences and Besicovitch-p-almost periodic
sequences with a general exponent p ≥ 1, providing also certain applications to the abstract
impulsive Volterra integro-differential inclusions.

On the other hand, many structural results about the class of (multi-dimensional)
c-almost periodic functions, where c ∈ C and |c| = 1, have recently been presented in
the research article [20] by M. T. Khalladi et al. and the research monograph [6]. The
strong motivational factor for the genesis of this paper presents the fact that the class
of c-almost periodic sequences has not been explored in the existing literature by now.
Furthermore, in a joint research article [21] with M. Fečkan, M. T. Khalladi and A. Rahmani,
the first named author has recently introduced and analyzed the class of multi-dimensional
ρ-almost periodic-type functions of the form F : I × X → Y, where ∅ 6= I ⊆ Rn, X
and Y are complex Banach spaces and ρ is a general binary relation on Y. In this paper,
we have assumed very mild conditions on the domain I × X; for example, we have not
assumed that the interior of I is non-empty or that the set I is unbounded in the direction
of some coordinate axes. Here, we specifically analyze the situation in which the following
conditions hold true:

∅ 6= I′ ⊆ Zn, ∅ 6= I ⊆ Zn and I + I′ ⊆ I. (1)

In particular, we introduce and analyze several new classes of Stepanov, Weyl, Besicovitch
and Doss ρ-almost periodic-type sequences. Following our research studies carried out
in [22–25], we can further analyze many other classes of multi-dimensional ρ-almost
periodic-type sequences of the above form.

The organization of paper can be briefly described as follows. Section 1.1 recalls the
basic definitions and results about Weyl ρ-almost periodic-type functions, Doss ρ-almost
periodic-type functions and Besicovitch almost periodic-type functions in Rn. In Section 2,
we remind the readers of the already known notions of (metrical) ρ-almost periodicity
for the sequences of the form F : I × X → Y; the term “sequence” used here is a little
bit inappropriate in the case that X is not a trivial space. The first original contribution
of ours is Theorem 1, where we analyze the existence of a Bohr I′-almost periodic-type
function F̃ : Rn → Y such that F̃(t) = F(t) for all t ∈ I, where F : I → Y is a given Bohr
I′-almost periodic type sequence; cf. also Proposition 1 and Theorem 2. An analogue of
Theorem 1 for T-almost periodic sequences, where T ∈ L(Y) is a linear isomorphism, is
clarified in Theorem 3; cf. also Corollary 1 and Problem 2. The main structural results
about the introduced classes of generalized ρ-almost periodic sequences are given in
Propositions 3 and 4, Theorem 4, Propositions 6 and 7 and Theorem 5; cf. also Corollaries 2
and 3. Concerning the above-mentioned results, we will only note here that it is very
difficult to state any satisfactory result concerning the discretization of (equi)-Weyl-p-almost
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periodic-type functions, Doss-p-almost periodic-type functions and Besicovitch-p-almost
periodic-type functions. Several new applications to the abstract Volterra integro-difference
equations and the abstract impulsive Volterra integro-differential equations are given in
Section 4, which consists of three separate subsections (the theory of difference equations
in several variables is still very unexplored (cf. the book chapter [26] by L. Székelyhidi and
references cited therein for more details on the subject); this is probably the first research
article that investigates the almost periodic solutions of difference equations depending on
several variables). In Section 5, we provide several conclusions and final remarks about the
introduced classes of (generalized) ρ-almost periodic sequences. In addition to the above,
we propose many useful comments, illustrative examples and open problems about the
notion under our consideration.

Notation and terminology. Suppose that X, Y, Z and T are given non-empty sets.
Let us recall that a binary relation between X into Y is any subset ρ ⊆ X×Y. If ρ ⊆ X×Y
and σ ⊆ Z× T with Y ∩ Z 6= ∅, then we define ρ−1 ⊆ Y × X and σ · ρ = σ ◦ ρ ⊆ X × T
by ρ−1 := {(y, x) ∈ Y × X : (x, y) ∈ ρ} and σ ◦ ρ := {(x, t) ∈ X × T : ∃y ∈ Y ∩
Z such that (x, y) ∈ ρ and (y, t) ∈ σ}, respectively. As is well known, the domain and
range of ρ are defined by D(ρ) := {x ∈ X : ∃y ∈ Y such that (x, y) ∈ X×Y} and R(ρ) :=
{y ∈ Y : ∃x ∈ X such that (x, y) ∈ X × Y}, respectively; ρ(x) := {y ∈ Y : (x, y) ∈ ρ}
(x ∈ X), x ρ y ⇔ (x, y) ∈ ρ. Set ρ(X′) := {y : y ∈ ρ(x) for some x ∈ X′} (X′ ⊆ X) and
Nn := {1, · · ·, n} (n ∈ N). An unbounded subset A ⊆ Z is called syndetic if and only
if there exists a strictly increasing sequence (an) of integers such that A = {an : n ∈ Z}
and supn∈Z(an+1 − an) < +∞. Set, for every t0 ∈ Rn and l > 0, B(t0, l) := {t ∈ Rn :
|t− t0| ≤ l}, where | · − · | denotes the Euclidean distance in Rn. If I ⊆ Rn and M > 0, we
set IM := {t ∈ I : |t| ≥ M} and I′M := {t ∈ I : |t| ≤ M}. If X0 ⊆ X, where (X, ‖ · ‖) is a
complex Banach space, then CH(X0) denotes the convex hull of X0. In the remainder of the
paper, we will always assume that (Y, ‖ · ‖Y) is likewise a complex Banach space. By I, we
denote the identity operator on Y.

1.1. Weyl ρ-Almost Periodic-Type Functions, Doss ρ-Almost Periodic-Type Functions and
Besicovitch Almost Periodic-Type Functions in Rn

In this subsection, we will always assume that ρ ⊆ Y×Y is a function. If ∅ 6= Λ ⊆ Rn,
then p(Λ) denotes the collection of all Lebesgue measurable functions from Λ into [1, ∞];
for more details about the Lebesgue spaces with variable exponent Lp(x), we refer the
reader to [6] and the references cited therein.

Let us assume that the following condition holds:

(WM1): Let ∅ 6= Λ ⊆ Rn and ∅ 6= Λ′ ⊆ Rn. Let ∅ 6= Ω ⊆ Rn be a Lebesgue measurable
set such that m(Ω) > 0, p ∈ P(Λ), Λ′ + Λ + lΩ ⊆ Λ, Λ + lΩ ⊆ Λ for all l > 0,
φ : [0, ∞)→ [0, ∞) and F : (0, ∞)×Λ→ (0, ∞).

We need the following notion ([27]):

Definition 1.

(i) By e−W(p(u),φ,F,ρ)
Ω,Λ′ ,B (Λ×X : Y) we denote the set consisting of all functions F : Λ×X → Y

such that, for every ε > 0 and B ∈ B, there exist two finite real numbers l > 0 and L > 0
such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that, for every x ∈ B, the
mapping u 7→ ρ(F(u; x)), u ∈ t + lΩ is well defined, and

sup
x∈B

sup
t∈Λ

F(l, t)φ
(∥∥F(τ + u; x)− ρ(F(u; x))

∥∥
Y

)
Lp(u)(t+lΩ)

< ε.

(ii) By W(p(u),φ,F),ρ
Ω,Λ′ ,B (Λ× X : Y) we denote the set consisting of all functions F : Λ× X → Y

such that, for every ε > 0 and B ∈ B, there exists a finite real number L > 0 such that
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for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that, for every x ∈ B, the mapping
u 7→ ρ(F(u; x)), u ∈ t + lΩ is well defined, and

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

F(l, t)φ
(∥∥F(τ + u; x)− ρ(F(u; x))

∥∥
Y

)
Lp(u)(t+lΩ)

< ε.

Suppose now that Λ is a general non-empty subset of Rn as well as that p ∈ P(Λ)
and the following condition holds:

φ : [0, ∞)→ [0, ∞) is measurable, F : (0, ∞)→ (0, ∞) and p ∈ P(Λ).

Set Λ′′ := {τ ∈ Rn : τ + Λ ⊆ Λ} and assume ∅ 6= Λ′ ⊆ Λ′′.
We also need the following notion ([27]):

Definition 2. Suppose that the function F : Λ × X → Y satisfies that φ(‖F(· + τ; x) −
ρ(F(·; x))‖) ∈ Lp(·)(Λ′t) for all t > 0, x ∈ X and τ ∈ Λ′. Then we say that the function
F(·; ·) is Doss-(p, φ, F,B, Λ′, ρ)-almost periodic if and only if, for every B ∈ B and ε > 0, there
exists l > 0 such that for each t0 ∈ Λ′ there exists a point τ ∈ B(t0, l) ∩Λ′ such that, for every
t > 0, x ∈ B and · ∈ Λt, we have

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(
‖F(·+ τ; x)− ρ(F(·; x))‖Y

)]
Lp(·)(Λ′t)

< ε.

Suppose, finally, that Λ is a general non-empty subset of Rn as well as that p ∈ P(Λ),
the function φ : [0, ∞) → [0, ∞) is Lebesgue measurable and F : (0, ∞) → (0, ∞). Let
∅ 6= Λ′ ⊆ Λ′′. Recall, a trigonometric polynomial P : Λ× X → Y is any linear combination
of functions such as (t; x) 7→ ei〈λ,t〉c(x), where c : X → Y is a continuous function.

The following notion has recently been introduced in ([28] Definition 2.1):

Definition 3. Suppose that F : Λ× X → Y, φ : [0, ∞)→ [0, ∞) and F : (0, ∞)→ (0, ∞). Then
we say that the function F(·; ·) belongs to the class e− (B, φ, F)− Bp(·)(Λ× X : Y) if and only if
for each set B ∈ B there exists a sequence (Pk(·; ·)) of trigonometric polynomials such that

lim
k→+∞

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(∥∥F(t; x)− Pk(t; x)

∥∥
Y

)]
Lp(t)(Λ′t)

= 0,

where we assume that the term in braces belongs to the space Lp(t)(Λ′t) for any compact set K.

2. Bohr (B, I′, ρ)-Almost Periodic Type Sequences

We start our work with the observation that we have recently introduced, in ([21]
Definitions 2.1, 2.22 and 2.25), the notions of Bohr (B, I′, ρ)-almost periodicity, (B, I′, ρ)-
uniform recurrence, D-asymptotical Bohr (B, I′, ρ)-almost periodicity of type 1 and D-
asymptotical (B, I′, ρ)-uniform recurrence of type 1 for a function of the form F : I×X → Y.
For the sake of completeness, we will only recall the following notion:

Definition 4. Suppose that ∅ 6= I′ ⊆ Rn, ∅ 6= I ⊆ Rn, F : I × X → Y is a continuous function,
ρ is a binary relation on Y and I + I′ ⊆ I. Then, we say that:

(i) F(·; ·) is Bohr (B, I′, ρ)-almost periodic if and only if for every B ∈ B and ε > 0 there exists
l > 0 such that, for each t0 ∈ I′, there exists τ ∈ B(t0, l) ∩ I′ such that, for every t ∈ I and
x ∈ B, there exists an element yt;x ∈ ρ(F(t; x)) such that∥∥F(t + τ; x)− yt;x

∥∥
Y ≤ ε.
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(ii) F(·; ·) is (B, I′, ρ)-uniformly recurrent if and only if for every B ∈ B there exists a sequence
(τk) in I′ such that limk→+∞ |τk| = +∞ and that, for every t ∈ I and x ∈ B, there exists an
element yt;x ∈ ρ(F(t; x)) such that

lim
k→+∞

sup
t∈I;x∈B

∥∥F(t + τk; x)− yt;x
∥∥

Y = 0.

If (1) holds, then F : I × X → Y is a continuous function if and only if for each t ∈ I,
x ∈ B and ε > 0 there exists δ > 0 such that, for every y ∈ X with ‖x− y‖ < δ, we have
‖F(t; x)− F(t; y)‖Y < ε; in particular, any function F : I → Y is already continuous. The
notion introduced in ([21] Definitions 3.1 and 3.4), with ω ∈ Zn \ {0}, ωj ∈ Z \ {0} for
1 ≤ j ≤ n and some extra assumptions being satisfied, can serve us to introduce the notion
of (ω, ρ)-periodicity and the notion of (ωj, ρj)j∈Nn -periodicity of a sequence F : I → X. As
in all our recent research studies of multi-dimensional almost periodic type functions, we
will omit the term “B” from the notation for the sequences of the form F : I → Y, the term
“I′” from the notation if I′ = I′′ and the term “ρ” from the notation if ρ = I; for example,
a Bohr B-almost periodic sequence is nothing else but a Bohr (B, I′, ρ)-almost periodic
sequence with I′ = I and ρ = I. We also write “c” in place of “cI” if c ∈ C.

Before proceeding any further, we would like to observe that almost all structural
results from the first three sections of [21] hold in the discrete framework. The exceptions
are listed below:

(A1) It is clear that the statements of ([21] Corollary 2.4, Theorems 2.14 and 2.16, and
Propositions 3.7 and 2.24) cannot be directly formulated in the discrete framework.

(A2) We should further examine the question of whether the statements of ([21] Proposi-
tions 2.18 and 2.20) can be formulated with I = Z or I = N0 and I′ = N.

(A3) We should further examine the question of whether the statements of ([21] Theo-
rem 2.28, and Corollary 2.29) can be formulated with the condition (AP-E) replaced
with the condition:

(AP-ED) For every t′ ∈ Zn, there exists a finite real number M > 0 such that t′ + IM ⊆ I.

Remark 1. Before considering these questions, let us observe that the notion of strong B-almost
periodicity, introduced in ([6] Definition 6.1.24), is meaningful in the discrete setting and that
the statement of ([6] Proposition 6.1.25) holds in the discrete framework. Concerning the notion
of Bohr (B, c)-almost periodicity and the notion of (B, c)-uniform recurrence introduced in ([6]
Definition 7.1.6), we would like to note that the statements of ([6] Proposition 7.1.9, Corollary 7.1.11,
Propositions 7.1.13–7.1.16, Theorem 7.1.18) hold in the discrete framework. Keeping this in mind,
we can simply prove that the statements of ([20] Propositions 2.2, 2.6–2.9, 2.11 and 2.17; Corollary
2.10; and Theorem 2.13) continue to hold for c-almost periodic sequences (c-uniformly recurrent
sequences); in particular, if a sequence (xk)k∈N is c-uniformly recurrent for some c ∈ C, then we
must have |c| = 1. The statements of ([6] Theorems 6.1.40 and 7.1.25) can be directly formulated in
the discrete framework as well.

Concerning the question (A2), we would like to note that the statements of ([21]
Propositions 2.18 and 2.20) continue to hold if I = Z or I = N0 and I′ = N. This follows
from the same argumentation as in the continuous case. Concerning the question (A3),
the situation is much more complicated. In connection with this problem, we will first state
and prove the following analogue of ([6] Theorem 6.1.37) in the discrete framework:

Theorem 1. Suppose that I′ ⊆ I ⊆ Zn, I + I′ ⊆ I, the set I′ is unbounded, S ⊆ Zn is finite,
(AP-ED) holds and ΩS := [(I′ ∪ (−I′)) + (I′ ∪ (−I′))]∪ S. Then, F : I → Y is a Bohr I′-almost
periodic sequence, resp. an I′-uniformly recurrent sequence if and only if there exists a Bohr I′-
almost periodic, resp. an I′-uniformly recurrent, function F̃ : Rn → Y such that F̃(t) = F(t) for
all t ∈ I. If this is the case, then F̃(·) is Bohr ΩS-almost periodic, resp. ΩS-uniformly recurrent;
furthermore, R(F̃(·)) ⊆ CH(R(F)) and the assumption that F(·) is bounded implies that F̃(·) is
uniformly continuous.



Fractal Fract. 2023, 7, 410 6 of 24

Proof. Suppose first that F : I → Y is a Bohr I′-almost periodic sequence, resp. an I′-
uniformly recurrent sequence. Repeating verbatim the argumentation given in the proof
of the above-mentioned result, we find that there exists a Bohr I′-almost periodic, resp.
an I′-uniformly recurrent, sequence F̃Z : Zn → Y such that F̃Z(t) = F(t) for all t ∈ I.
In order to extend the function F̃Z : Zn → Y to a Bohr I′-almost periodic, resp. an I′-
uniformly recurrent, function F̃ : Rn → Y such that F̃(t) = F̃Z(t) for all t ∈ Zn, we
can argue as in the proof of ([11] Theorem 2) with appropriate technical modifications.
For the sake of convenience, we will present all relevant details in the case that n = 2,
extending the proof of ([11] Theorem 2) with c = 1 and δ = 1/2 to the two-dimensional
setting. If t = (t1, t2) ∈ R2 is given, then there exist the unique numbers k ∈ Z and
m ∈ Z such that t1 ∈ [k, k + 1) and t2 ∈ [m, m + 1). We first define F̃(t1, m) := F̃Z(k, m) if
t1 ∈ [k, k + (1/2)) and F̃(t1, m) := 2(F̃Z(k + 1, m)− F̃Z(k, m))(t1 − k− (1/2)) + F̃Z(k, m) if
t1 ∈ [k + (1/2), k + 1); we similarly define F̃(t1, m + 1) := F̃Z(k, m + 1) if t1 ∈ [k, k + (1/2))
and F̃(t1, m + 1) := 2(F̃Z(k + 1, m + 1) − F̃Z(k, m + 1))(t1 − k − (1/2)) + F̃Z(k, m + 1) if
t1 ∈ [k + (1/2), k + 1). After that, we define F̃(t1, t2) := F̃(t1, m) if t2 ∈ [m, m + (1/2)) and
F̃(t1, t2) := 2(F̃(t1, m + 1)− F̃(t1, m))(t2−m− (1/2)) + F̃(t1, m) if t2 ∈ [m + (1/2), m + 1).
It can be simply verified that the function F̃(·) is continuous as well as that R(F̃(·)) ⊆
CH(R(F)) and the function F̃(·) is uniformly continuous if F(·) is bounded. Further on,
let us assume that a point t0 ∈ I′ and a number ε > 0 are given; then there exist l > 0
and τ = (τ1, τ2) ∈ I′ ∩ B(t0, l) such that ‖F̃Z(s + τ) − F̃Z(s)‖ < ε/9, s ∈ Z2. Now, we
will prove that ‖F̃(t + τ) − F̃(t)‖ < ε, t ∈ R2. Suppose that k ∈ Z, m ∈ Z, t = (t1, t2),
t1 ∈ [k, k + 1) and t2 ∈ [m, m + 1). There exist four possibilities:

(i) t1 ∈ [k, k + (1/2)) and t2 ∈ [m, m + (1/2));
(ii) t1 ∈ [k, k + (1/2)) and t2 ∈ [m + (1/2), m + 1);
(iii) t1 ∈ [k + (1/2), k + 1) and t2 ∈ [m, m + (1/2));
(iv) t1 ∈ [k + (1/2), k + 1) and t2 ∈ [m + (1/2), m + 1).

If (i) holds, then t1 + τ1 ∈ [k + τ1, k + τ1 + (1/2)) and we have∥∥F̃(t + τ)− F̃(t)
∥∥ =

∥∥F̃Z(t1 + τ1, m + τ2)− F̃Z(t1, m)
∥∥ ≤ ε/3,

where the last estimate follows from the estimate ‖F̃Z(s + τ)− F̃Z(s)‖ < ε/9, s ∈ Z2 and
the argumentation contained in the proof of ([11] Theorem 2). If (ii) holds, then we have
t2 + τ2 ∈ [m + τ2 + (1/2), m + τ2 + 1) and therefore∥∥F̃(t + τ)− F̃(t)

∥∥
=
∥∥∥2
[
F̃Z(t1 + τ1, m + 1 + τ2)− F̃Z(t1 + τ1, m + τ2)

]
· (t2 −m− (1/2)) + F̃Z(t1 + τ1, m + τ2)

− 2
[
F̃Z(t1, m + 1)− F̃Z(t1, m)

]
· (t2 −m− (1/2))− F̃Z(t1, m)

∥∥∥
≤
∥∥F̃Z(t1 + τ1, m + 1 + τ2)− F̃Z(t1, m + 1)

∥∥+ ∥∥F̃Z(t1 + τ1, m + τ2)− F̃Z(t1, m)
∥∥

+
∥∥F̃Z(t1 + τ1, m + τ2)− F̃Z(t1, m)

∥∥ ≤ 3 · (ε/3) = ε.

The analysis of cases (iii) and (iv) is similar and therefore F̃(·) is Bohr I′-almost periodic,
resp. I′-uniformly recurrent; as in [6], this simply implies that F̃(·) is Bohr ΩS-almost
periodic, resp. ΩS-uniformly recurrent. Finally, it is clear that the existence of a Bohr I′-
almost periodic, resp. an I′-uniformly recurrent, function F̃ : Rn → Y such that F̃(t) = F(t)
for all t ∈ I implies that F(·) is Bohr I′-almost periodic, resp. I′-uniformly recurrent.

There exist infinitely many ways to extend the function F̃Z(·) to a function F̃(·) defined
on the whole Euclidean plane, obeying all required properties from the formulation of
Theorem 1 (we only need to change the values of parameters c and δ from the proof of ([11]
Theorem 2)). This readily implies that any non-empty subset I of Zn cannot be admissible
with respect to the almost periodic extensions (cf. ([6] Definition 6.1.39) for the notion).

Now, we will focus our attention to the case in which I′ = I = Zn. We need the
following result of independent interest (cf. also ([1] pp. 54–59) for several related results
given in the one-dimensional setting):
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Proposition 1. Suppose that F : Rn × X → Y is a B-almost periodic function, where B is any
collection of compact subsets of X. Then, the function F(·; ·) is Bohr (B,Zn)-almost periodic.

Proof. The statement of proposition is trivial if Y = {0}; otherwise, there exists an element
y ∈ Y such that ‖y‖Y = 1. Let ε > 0 and B ∈ B be fixed. Then, ([6] Proposition 6.1.22)
implies that there exists δ ∈ (0, ε) such that the assumption |t− t′|+ ‖x− x′‖ ≤ δ for some
t, t′ ∈ Rn and x, x′ ∈ X imply ‖F(t; x)− F(t′, x′)‖Y ≤ ε. Furthermore, ([6] Proposition
6.1.19) implies that there exists a relatively dense set of points τ = (τ1, . . . , τn) in Rn

such that ‖F(t + τ; x) − F(t; x)‖Y ≤ ε for all t ∈ Rn and x ∈ B, as well as that ‖Gj(t +
τ; x)− Gj(t; x)‖Y ≤ ε for all t ∈ Rn, j ∈ Nn and x ∈ B, where the Bohr B-almost periodic
function Gj : Rn × X → Y is defined as the usual periodic extension of the function by
Gj;0(t; x) := (1− |1− tj|)y, t = (t1, . . . , tj, . . . , tn) ∈ [0, 2]n, x ∈ X to the space Rn×X. As in
the one-dimensional setting, this simply implies that there exist two vectors p ∈ Zn and
w = (w1, . . . , wn) ∈ B(0, δ) such that τ = 2p + ω. Therefore, we have:∥∥F(t + 2p; x)− F(t; x)

∥∥
Y

≤
∥∥F(t + 2p; x)− F(t + 2p + w; x)

∥∥
Y +

∥∥F(t + 2p + w; x)− F(t; x)
∥∥

Y

≤ ε + δ < 2ε, t ∈ Rn, x ∈ B.

This simply completes the proof because the set consisting of all points 2p ∈ Zn with the
above properties is relatively dense in Zn, which can be trivially shown.

Keeping in mind Theorem 1 and Proposition 1, we can simply extend the statement of
([11] Theorem 2) to the higher-dimensional setting:

Theorem 2. Suppose that F : Zn → Y. Then, F(·) is a Bohr almost periodic sequence if and only
if there exists a Bohr almost periodic function F̃ : Rn → Y such that F(t) = F̃(t) for all t ∈ Zn.

As a simple corollary of Theorem 2, we have that the set of all Bohr almost periodic
sequences F : Zn → Y is a linear vector space with the usual operations.

Further on, if S ⊆ Zn is finite, c ∈ C \ {1}, |c| = 1 and arg(c)/π ∈ Q, then the set
of all (Bohr) c-almost periodic sequences F : Zn → Y is not a linear vector space with the
usual operations; we define the set ΩS as it has been done on ([6] p. 467). Arguing as in
the proof of Theorem 1, we can similarly deduce the following analogues of ([21] Theorem
2.28, [6] Theorem 7.1.26) in the discrete framework:

Theorem 3. Suppose that I′ ⊆ I ⊆ Zn, I + I′ ⊆ I, the set I′ is unbounded, ρ = T ∈ L(Y) is a
linear isomorphism, S ⊆ Zn is finite and (AP-ED) holds. Then, F : I → Y is a Bohr (I′, T)-almost
periodic function, resp. an (I′, T)-uniformly recurrent function if and only if there exists a Bohr
(I′, T)-almost periodic, resp. an (I′, T)-uniformly recurrent, function F̃ : Rn → Y such that
F̃(t) = F(t) for all t ∈ I. Furthermore, R(F̃(·)) ⊆ CH(T−1R(F)), the boundedness of F(·)
implies that F̃(·) is uniformly continuous and the assumptions arg(c)/π ∈ Q and ρ = cI imply
that F̃(·) is Bohr (ΩS, T)-almost periodic, resp. (ΩS, T)-uniformly recurrent.

As an immediate consequence of Theorem 3, we have the following:

Corollary 1. Suppose that c ∈ C, |c| = 1 and F : Zn → Y is a c-almost periodic sequence. Then,
there exists a Bohr (Zn, c)-almost periodic function F̃ : Rn → Y such that F(t) = F̃(t) for all
t ∈ Zn.

Further on, it is logical to ask the following questions with regards to Proposition 1
and Corollary 1:

Proposition 2. Let c ∈ C \ {1} and |c| = 1.
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(Q1) Suppose that F : Rn × X → Y is a (B, c)-almost periodic function, where B is any collection
of compact subsets of X. Is it true that the function F(·; ·) is Bohr (B,Zn, c)-almost periodic?

(Q2) Suppose that F : Rn → Y is a c-almost periodic function. Is it true that (F(t))t∈Zn is a
c-almost periodic sequence?

Suppose, finally, that (v1, · · ·, vn) is a basis of Rn,

I =
{

α1v1 + · · ·+ αnvn : αi ≥ 0 for all i ∈ Nn
}
∩Zn

is a convex polyhedral in Rn ∩Zn, and I′ ⊆ Zn is a proper convex subpolyhedral of I. We
would like to note that the set ΩS from the formulation of Theorem 1 is relatively dense in
Rn, while the set ΩS from the formulation of Theorem 1 is relatively dense in Rn provided
that arg(c)/π ∈ Q. If this is the case, then the mean value M(F), given by the expression (4)
below, exists uniformly in s ∈ Zn.

3. Generalized ρ-Almost Periodic Type Sequences

In this section, we analyze various classes of Stepanov, Weyl, Besicovitch and Doss
ρ-almost periodic type sequences of the form F : Λ× X → Y, where ∅ 6= Λ ⊆ Zn. We will
always assume here that Λ = Λ1 ×Λ2 × . . .×Λn, where for each j ∈ Nn there exists an
integer a ∈ Z such that Λj = Z, Λj = {. . . , a− 2, a− 1, a} or Λj = {a, a + 1, a + 2, . . .}. Set
Λ′′ := {a ∈ Zn : a + Λ ⊆ Λ}. For every integer l ∈ N, we introduce the set Pl consisting
of all closed sub-rectangles of Λ, which contains exactly (l + 1)n points with all integer
coordinates. Suppose that a function Fl : {l} × Pl → [0, ∞) is given for each integer l ∈ N.

The following notion generalizes the notion introduced by J. Andres and D. Pen-
nequin [15]:

Definition 5. Suppose that F : Λ× X → Y is a given sequence, l ∈ N, 1 ≤ p < +∞, Λ′ ⊆ Λ′′

and ρ is a binary relation on Y. Then, we say that F(·; ·) is Stepanov-(B, Λ′,F·, p, ρ, l)-almost
periodic if and only if, for every ε > 0 and B ∈ B, there exists L > 0 such that, for every t0 ∈ Λ′,
there exists a point τ ∈ Λ′ ∩ B(t0, L), which satisfies that, for every J ∈ Pl and for every j ∈ J,
x ∈ B, there exists zj,x ∈ ρ(F(j; x)) such that

sup
x∈B

Fl(l, J)

[
∑
j∈J

∥∥F(j + τ; x)− zj,x
∥∥p
]1/p

< ε. (2)

In the classical concept, a sequence is almost periodic if and only if it is Stepanov
almost periodic (see, e.g., ([15] Consequence 3)). Furthermore, we can simply prove the
following result:

Proposition 3.

(i) Suppose that F : Λ × X → Y is a given sequence, l ∈ N, 1 ≤ p < +∞, Λ′ ⊆ Λ′′

and ρ is a binary relation on Y. If there exists a real number cl > 0 such that Fl(l, J) ≤
cl l−n/p for all J ∈ Pl and F(·; ·) is Bohr (B, Λ′, ρ)-almost periodic, then F(·; ·) is Stepanov-
(B, Λ′,F·, p, ρ, l)-almost periodic.

(ii) Suppose that F : Λ× X → Y is a given sequence, l ∈ N, 1 ≤ p < +∞, Λ′ ⊆ Λ′′ and
ρ is a binary relation on Y. If there exists a real number cl > 0 such that Fl(l, J) ≥ cl
for all J ∈ Pl and F(·; ·) is Stepanov-(B, Λ′,F·, p, ρ, l)-almost periodic, then F(·; ·) is Bohr
(B, Λ′, ρ)-almost periodic.

Keeping in mind the above result, it becomes clear that the concept of Stepanov-
(B, Λ′,F·, p, ρ, l)-almost periodicity introduced above is not satisfactory enough. Because of
that, in the remainder of paper, we will focus our attention mainly on the Weyl, Besicovitch
and Doss classes of generalized ρ-almost periodic sequences.

The following notion generalizes the notion introduced in [16,18,19,29]:
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Definition 6. Suppose that F : Λ× X → Y is a given sequence, 1 ≤ p < +∞, Λ′ ⊆ Λ′′ and ρ
is a binary relation on Y. Then, we say that F(·; ·) is:

(i) equi-Weyl-(B, Λ′,F·, p, ρ)-almost periodic if and only if, for every ε > 0 and B ∈ B, there
exist l ∈ N and L > 0 such that, for every t0 ∈ Λ′, there exists a point τ ∈ Λ′ ∩ B(t0, L),
which satisfies that, for every J ∈ Pl and for every j ∈ J, x ∈ B, there exists zj,x ∈ ρ(F(j; x))
such that (2) holds;

(ii) Weyl-(B, Λ′,F·, p, ρ)-almost periodic if and only if, for every ε > 0 and B ∈ B, there exists
L > 0 such that, for every t0 ∈ Λ′, there exists a point τ ∈ Λ′ ∩ B(t0, L), which satisfies that
there exists an integer lτ ∈ N such that, for every l ≥ lτ , J ∈ Pl , j ∈ J and x ∈ B, there exists
zj,x ∈ ρ(F(j; x)) such that (2) holds.

It is obvious that any equi-Weyl-(B, Λ′,F·, p, ρ)-almost periodic sequence is Weyl-
(B, Λ′,F·, p, ρ)-almost periodic and any Weyl-(B, Λ′,F·, p, ρ)-almost periodic sequence
is Doss-(B, Λ′,F·, p, ρ)-almost periodic, where the notion of Doss-(B, Λ′,F·, p, ρ)-almost
periodicity is introduced as follows:

Definition 7. Suppose that F : Λ× X → Y is a given sequence, 1 ≤ p < +∞, Λ′ ⊆ Λ′′ and ρ is
a binary relation on Y. Then, we say that F(·; ·) is Doss-(B, Λ′,F·, p, ρ)-almost periodic if and only
if, for every ε > 0 and B ∈ B, there exists L > 0 such that, for every t0 ∈ Λ′, there exists a point
τ ∈ Λ′ ∩ B(t0, L), which satisfies that there exists an increasing sequence (lk) of positive integers
such that, for every k ∈ N, J ∈ Plk , j ∈ J and x ∈ B, there exists zj,x ∈ ρ(F(j; x)) such that (2)
holds with the number l replaced by the number lk therein.

As in the recent research studies of multi-dimensional almost periodic type functions,
we will omit the term “B” from the notation for the functions of the form F : Λ→ Y, the
term “Λ′” from the notation if Λ′ = Λ′′ and the term “ρ” from the notation if ρ = I. The
situation in which the following condition holds:

(FV) There exists a function F : (0, ∞) → (0, ∞) such that F(l, J) = F(l) for all l ∈ N and
J ∈ Pl

will be dominant in our analysis; in this case, an (equi-)Weyl-(B, Λ′,F·, p, ρ)-almost periodic
(Doss-(B, Λ′,F·, p, ρ)-almost periodic) function is also called (equi-)Weyl-(B, Λ′,F, p, ρ)-
almost periodic (Doss-(B, Λ′,F, p, ρ)-almost periodic). The situation in which condition
(FV) does not hold is far from being simple for consideration (cf. ([6] Example 6.3.4 and
pp. 425–428) for some applications made in the continuous framework).

Remark 2. We feel it is our duty to emphasize that the notion of a scalar-valued almost periodic
sequence in the sense of Weyl, introduced by A. Bellow and V. Losert in [17], is completely misleading;
in their approach, an almost periodic sequence (xk)k∈N in the sense of Weyl is nothing else but the
usual asymptotically almost periodic sequence (by an asymptotically almost periodic sequence we
mean a sum of an almost periodic sequence and a sequence vanishing at plus infinity; see ([17]
p. 316, Lemma 3.6)). It can be simply proved that any asymptotically almost periodic sequence
(xk)k∈N is equi-Weyl-(l−1/p, p)-almost periodic, i.e., equi-Weyl-p-almost periodic in the usual
sense (p ≥ 1); on the other hand, the sequence (xk)k∈N given by xk := 1 if there exists l ∈ N such
that k = l3, and xk := 0, otherwise, is equi-Weyl-(l−σ, p)-almost periodic for any σ > 1/2, but
not asymptotically almost periodic.

We continue by stating the following result:

Proposition 4. Suppose that F : Λ× X → Y is a given sequence, 1 ≤ p < +∞, Λ′ = Λ′′ and
ρ : Y → Y is a continuous function. If (FV) holds and F(·; ·) is equi-Weyl-(B,F, p, ρ)-almost
periodic, then for each bounded set B ∈ B we have that the set {F(t; x) : t ∈ Λ; x ∈ B} is bounded.

Proof. Let B ∈ B be given and let ε = 1. Without loss of generality, we may assume that
Λ = Λ′ = Zn or Λ = Λ′ = [0, ∞)n. Suppose first that Λ = Λ′ = Zn. Then, there exist
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l ∈ N and L > 0 such that, for every fixed t ∈ Zn, there exists a point τ ∈ Zn ∩ B(t, L),
which satisfies that, for every J ∈ Pl and for every j ∈ J and x ∈ B, (2) holds with
zj,x = ρ(F(j; x)). Then, t− τ ∈ B(0, L) and, by choosing an appropriate closed rectangle
J in Rn with a vertex t− τ, we obtain that ‖F(t− τ + τ; x)− ρ(F(t− τ; x))‖Y ≤ 1/F(l)
for all x ∈ B. This implies F(t; x) ∈ B(ρ(F(t− τ; x)), 1/F(L)), which gives the required
conclusion since B is bounded and ρ(·) is continuous. Suppose now that Λ = Λ′ = [0, ∞)n.
If n = 1, then the final conclusion follows similarly as in the proof of ([19] Proposition
2) with the corresponding ε-period τ belonging to the segment [t− 2L, t] for t ≥ 2L. In
a general case, any of the sequences t 7→ F(t, j2, j3, . . . , jn), t ∈ N0, t 7→ F(j1, t, j3, . . . , jn),
t ∈ N0, t 7→ F(j1, j2, t, . . . , jn), t ∈ N0, . . . , t 7→ F(j1, j2, j3, . . . , jn−1, t), t ∈ N0, is equi-Weyl-
(B,F, p, ρ)-almost periodic (the integers j1 ≥ 0, . . . , jn ≥ 0 are fixed in advance). Taking
into account the result established in the one-dimensional setting, it suffices to prove that
the set {F(t; x) : t1 ≥ 2L, . . . , tn ≥ 2L; x ∈ B} is bounded (t = (t1, t2, . . . , tn)). This follows
as in the case that Λ = Λ′ = Zn, with the corresponding ε-period τ belonging to the cube
[t1 − 2L, t1]× [t2 − 2L, t2]× . . .× [tn − 2L, tn].

In particular, any equi-Weyl-(l−n/p, p, ρ)-almost periodic sequence F : Zn → Y, where
ρ : Y → Y is a continuous function and Y is a finite-dimensional space, has a relatively
compact range. The interested reader may try to construct an example of an infinite-
dimensional Banach space Y and an equi-Weyl-(l−1/p, p, I)-almost periodic sequence F :
Z→ Y whose range is not relatively compact in Y.

Example 1.

(i) Let us observe that there exists a Weyl-(l−1/p, p, I)-almost periodic real sequence (yk)k∈N (i.e.,
(yk)k∈N is Weyl-p-almost periodic in the usual sense), which is not (Besicovitch-p-)bounded,
not equi-Weyl-(l−1/p, p, I)-almost periodic and not Besicovitch-p-almost periodic in the sense
of ([19] Definition 9); cf. ([19] Example 4(ii)). Concerning the sequence (yk)k∈N considered
in ([19] Example 4(i)), we would like to note that (yk)k∈N is equi-Weyl-(l−σ, p, I)-almost
periodic for any σ > 0 and p ≥ 1, as easily approved; let us also recall that for each p ≥ 1
there exists a Besicovitch-p-almost periodic real sequence (yk)k∈N which is not Weyl-p-almost
periodic (see ([19] p. 23)).

(ii) Let l ∈ N. Suppose that (yk)k∈N is a real sequence defined by yk := 0 for k = 1, 2, . . . , l;
yl+2k := 1 (k ∈ N0) and yl+2k+1 := −1 (k ∈ N0). Then, (yk)k∈N is equi-Weyl-(l−σ, p,−I)-
almost periodic for any σ > 0 and p ≥ 1, i.e., the sequence (yk)k∈N is equi-Weyl-p-almost
anti-periodic.

(iii) Define the sequence F : Zn → R by F(k1, . . . , kn) := 0 if there exists an index j ∈ Nn such
that k j < 0 and F(k1, . . . , kn) := 1, otherwise. Then, it can be simply proved (cf. ([6] Example
6.3.9) for the continuous version) that F(·) is Weyl-(l−σ, p, I)-almost periodic for any p ≥ 1
and σ > (n− 1)/p.

We continue by raising an issue:

Proposition 5. In the continuous framework, we know that the space of all complex-valued equi-
Weyl-(l−n/p, p, I)-almost periodic functions F : R→ C is not complete with respect to the Weyl-
p-seminorm. If we denote by P the space consisting of all complex-valued equi-Weyl-(l−n/p, p, I)-
almost periodic sequences F : Z→ C, then it can be simply proved, as in the continuous framework,
that the expression

d(G, H) := lim
l→+∞

l−n/p sup
k∈Z

[
k+l

∑
j=k

∥∥G(j)− H(j)
∥∥p
]1/p

, G, H ∈ P

defines a pseudometric on P. Is (P, d) complete or not?
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Further on, we set Λ′j := R if Λj = Z, Λ′j := (−∞, a] if Λj = {. . . , a− 2, a− 1, a} for
some a ∈ Z and Λ′j := [a, ∞) if Λj = {a, a + 1, a + 2, . . .} for some a ∈ Z (1 ≤ j ≤ n).
After that, we set Λe := Λ′1 × Λ′2 × . . . × Λ′n. Now, we are ready to state the following
result concerning the extensions of (equi-)Weyl ρ-almost periodic-type sequences and Doss
ρ-almost periodic-type sequences:

Theorem 4. Suppose that F : Λ × X → Y is a given sequence, 1 ≤ p < +∞, Λ′ ⊆ Λ′′

and ρ = T ∈ L(Y). If (FV) holds and F(·; ·) is (equi-)Weyl-(B, Λ′,F, p, ρ)-almost periodic
(Doss-(B, Λ′,F, p, ρ)-almost periodic), where for each j ∈ Nn we have Λ′j := [a, ∞) for some
a ∈ Z or Λ′j = R, then there exists a continuous function F̃ : Λe × X → Y such that F̃ ∈
(e−)Wp,x,F

[0,1]n ,Λ′ ,B(Λe × X : Y) (F̃(·; ·) is Doss-(p, x,F,B, Λ′, T)-almost periodic) and F̃(t; x) =
F(t; x) for all t ∈ Λ and x ∈ X.

Proof. We will present the proof only in the one-dimensional setting, for the class of
equi-Weyl-(B, Λ′,F, p, ρ)-almost periodic sequences with X = {0}; the general result can
be deduced similarly, following the argumentation contained in the proof of Theorem 1.
Suppose first that Λe = [a, ∞) for some a ∈ Z. If t ∈ [b, b + 1) for some b ∈ Z with
b ≥ a, then we set F̃(t) := F(b) for t ∈ [b, b + (1/2)) and F̃(t) := 2(F(b + 1)− F(b))(t−
b− (1/2)) + F(b) for t ∈ [b + (1/2), b + 1). Let ε > 0 be given. By our assumption, we
can find an integer l ∈ N and a real number L > 0 such that, for every t0 ∈ Λ′, there
exists a point τ ∈ Λ′ ∩ B(t0, L), which satisfies that, for every j ∈ N ∩ [a, ∞), we have

∑
j+l
k=j ‖F(k + τ)− TF(k)‖p ≤ εp[F(l)]−1. We need to prove that, for every fixed real number

x ≥ a, we have: ∫ x+l

x
‖F̃(s + τ)− TF̃(s)‖p ds ≤ Const. · εp[F(l)]−1. (3)

In order to see this, observe first that for each t ∈ R we have
∫ t+1

t+(1/2)(s− t− (1/2)) ds =
1/8; keeping this and the definition of F̃(·) in mind, we can compute as follows:

∫ x+l

x
‖F̃(s + τ)− TF̃(s)‖p ds

≤
∫ bxc+1

bxc
‖F̃(s + τ)− TF̃(s)‖p ds + . . . +

∫ bxc+l+1

bxc+l
‖F̃(s + τ)− TF̃(s)‖p ds

≤
[∫ bxc+(1/2)

bxc
‖F̃(s + τ)− TF̃(s)‖p ds + . . . +

∫ bxc+l+(1/2)

bxc+l
‖F̃(s + τ)− TF̃(s)‖p ds

]

+

[∫ bxc+1

bxc+(1/2)
‖F̃(s + τ)− TF̃(s)‖p ds + . . . +

∫ bxc+l+1

bxc+l+(1/2)
‖F̃(s + τ)− TF̃(s)‖p ds

]

≤ cp

[∥∥F(bxc+ τ)− TF(bxc)
∥∥p

Y + . . . +
∥∥F(bxc+ l + τ)− TF(bxc+ l)

∥∥p
Y

]

+ cp ·
[∥∥F(bxc+ τ)− TF(bxc)

∥∥p
Y + . . . +

∥∥F(bxc+ τ + l + 1)− TF(bxc+ l + 1)
∥∥p

Y

]

≤ 3cp sup
j≥a

j+l

∑
k=j
‖F(k + τ)− TF(k)‖p ≤ 3cpεp[F(l)]−1,

where cp > 0 is a finite real constant. This proves (3) and completes the proof in this case.
The consideration is quite similar in the case that Λe = R.

Remark 3. It is also possible to assume that Λ′j0 := (−∞, a] for some a ∈ Z and j0 ∈ N, but then
we must replace the set Ω = [0, 1]n with the direct product of the sets Ωj = [0, 1] or Ωj = [−1, 0]
for 1 ≤ j ≤ n, with the obvious choice Ωj0 = [−1, 0].
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Keeping in mind Proposition 4, Theorem 4, Remark 3 and the construction given in
the proof of Theorem 1, we can formulate the following:

Corollary 2. Suppose that F : Λ → Y is a given sequence, 1 ≤ p < +∞, Λ′ = Λ′′ and ρ = I.
Suppose, further, that for each j ∈ Nn we have Λ′j := [a, ∞) (Λ′j := (−∞, a]) for some a ∈ Z
or Λ′j = R, and F(l, J) ≡ l−n/p for all l ∈ N and J ∈ Pl . Define Ω := Ω1 × . . .×Ωn, where
Ωj = [0, 1] if Λ′j = [a, ∞) and Ωj = [−1, 0] if Λ′j = (−∞, a] for some a ∈ Z (1 ≤ j ≤ n). If F(·)
is equi-Weyl-(B, Λ′,F, p, ρ)-almost periodic, then the mean value

M(F) := lim
T→+∞

1
Tn ∑

t∈(s+TΩ)∩Zn
F(t) (4)

exists uniformly on s ∈ Λ.

Proof. Without loss of generality, we may assume that Λe = Rn. Let the function F̃(·; ·) be
given by Theorem 4; then we know that the mean value

M
(

F̃
)

:= lim
T→+∞

1
Tn

∫
s+TΩ

F̃(t) dt,

exists uniformly on s ∈ [0, ∞)n; cf. the proof of ([6] Theorem 6.3.32) and ([6] Remark 6.3.33).
Keeping in mind the way of construction of F̃(·), this implies the required conclusion after
a simple computation involving the boundedness of sequence F(·).

Remark 4. In contrast with the statements of Theorems 1 and 3, it is very difficult to state a
satisfactory converse in Theorem 4 for the corresponding Weyl (Doss) class. For example, due to the
conclusions established in ([15] Example 4), we know that there exists an infinitely differentiable
Stepanov-1-almost periodic function f : R→ R such that the sequence ( f (k))k∈Z is unbounded and
the sequence ( f (k+(1/2)))k∈Z is almost periodic. Due to Proposition 4, it follows that the sequence
( f (k))k∈Z cannot be equi-Weyl-almost periodic, i.e., equi-Weyl-(Z, l−1, 1, I)-almost periodic.

For the sequel, let us recall that A. Iwanik has investigated the equi-Weyl-1-almost
periodic sequences with values in compact metric spaces ([29]). We would like to point out
that the statement of ([29] Lemma 1) holds for an arbitrary equi-Weyl-1-almost periodic
sequence g : Z→ X such that R(g) is contained in a compact convex subset of X as well
as that the assumption that R(g) is a relatively compact subset of X is slightly redundant
in our framework. In the present situation, the best we can do is to state and prove the
following extension of ([29] Lemma 1):

Proposition 6. Suppose that F : Λ→ Y is a given sequence such that R(F) ⊆ K for some compact
convex subset K of Y, 1 ≤ p < +∞, Λ′ = Λ′′ and ρ = I. Suppose, further, that F(l, J) ≡ l−n/p

for all l ∈ N and J ∈ Pl . If F(·) is equi-Weyl-(Λ′,F·, p, ρ)-almost periodic, then for each ε > 0
there exist a Bohr almost periodic function H : Λ→ Y with values in K and an integer l ∈ N such
that, for every J ∈ Pl , we have

l−n/p

[
∑
j∈J
‖F(j; x)− H(j; x)‖p

]1/p

≤ ε. (5)

Proof. We will outline the main details of the proof only. If Λ′j0 := (−∞, a] (Λ′j0 = [a,+∞))
for some a ∈ Z, then we set Ωj = [−1, 0] (Ωj = [0, 1]); if Λ′j0 := R, then we set Ωj = [−1, 1];
cf. also Remark 3. Set Ω := Ω1 ×Ω2 × . . .×Ωn. Let ε > 0 be given. Then, we know that
there exist l ∈ N and L ∈ N such that, for every t0 ∈ Λ′, there exists a point τ ∈ Λ′ ∩ B(t0, L),
which satisfies that, for every J ∈ Pl and for every j ∈ J, (2) holds with zj,x = F(j; x).
We write the region Λ as a countable union of the closed rectangles (Λj)j∈N, which are
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translations of the cube LΩ in Rn. Then, for each j ∈ N there exists a point τj ∈ Λj such
that, for every J ∈ Pl and for every j ∈ J, (2) holds with zj,x = F(j; x) and τ = τj. It
is clear that the set J = {τj : j ∈ N} is syndetic in Λ, with the meaning clear. Define
Jk := J ∩ kΩ for all k ∈ N. Let a point j ∈ Λ be fixed. Then, any member of the sequence
(|Jkl |−1 ∑t∈Jkl

F(j + t))k∈N belongs to K since R(F) ⊆ K and K is convex. Since K is a
compact subset of X, we obtain the existence of a strictly increasing sequence (km) of
positive integers such that

lim
m→+∞

1
|Jkm l | ∑

t∈Jkml

F(j + t) =: H(j)

exists in K. Keeping in mind that

lim inf
m→+∞

(
am + bm

)
≥ lim inf

m→+∞
am + lim inf

m→+∞
bm

for any two sequences (am) and (bm) of positive real numbers and the well-known inequal-
ity between the means(

a1 + . . . + am

m

)p

≤
ap

1 + . . . + ap
m

m
, m ∈ N; aj ≥ 0, 1 ≤ j ≤ m,

we can argue in the same way as in [29] to conclude that the function H : Λ→ Y is Bohr
almost periodic and satisfies the required properties.

Remark 5. The foregoing argumentation shows that, for every equi-Weyl-p-almost periodic se-
quence g : Z → X, there exists a uniformly continuous equi-Weyl-p-almost periodic function
g̃ : R → X such that g̃(t) = g(t) for all t ∈ Z as well as that g̃(t) ∈ CH(R(g)), t ∈ R
(1 ≤ p < +∞). Then, we can argue as in the proof of ([6] Theorem 6.3.23) in order to see that for
each ε > 0 there exists an almost periodic function h : R→ X such that R(h) ⊆ CH(R(g)) and
DW(g̃, h) < ε, where DW(·; ·) denotes the Weyl distance of functions. However, it is not clear how
to prove that the last estimate implies that for each ε > 0 there exists l > 0 such that

Dp
Sl

(
(g̃(k))k∈Z, (h(k))k∈Z

)
:= sup

k∈Z

1
l

k+l−1

∑
j=k

∥∥g̃(j)− h(j)
∥∥p

< ε.

Of course, if g : Z → X is an almost periodic sequence, then we have ‖g̃(t)− h(t)‖ < ε for all
t ∈ R; the same result can be clarified for the almost periodic sequences g : Zn → X, thus providing
an extension of ([17] Fundamental Theorem II, p. 319) to the higher-dimensional setting.

The converse statement in Proposition 6 can be proved using a simple argumentation
and the decomposition

‖F(t + τ)− F(t)‖Y

≤ ‖F(t + τ)− H(t + τ)‖Y + ‖H(t + τ)− H(t)‖Y + ‖H(t)− F(t)‖Y , t ∈ Λ, τ ∈ Λ′ :

Proposition 7. Suppose that F : Λ→ Y is a given sequence, 1 ≤ p < +∞, Λ′ = Λ′′ and ρ = I.
Suppose, further, that F(l, J) ≡ l−n/p for all l ∈ N and J ∈ Pl . If for each ε > 0 there exist a Bohr
almost periodic function H : Λ→ Y and an integer l ∈ N such that, for every J ∈ Pl , we have (5),
then F(·) is equi-Weyl-(Λ′,F·, p, ρ)-almost periodic.

Since the sum of two compact (convex) subsets of Y is likewise a compact (convex)
subset of Y, combining Propositions 6 and 7, we obtain:
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Proposition 8. Denote by e−Wp,Λ′
ap;cc(Λ : Y) the collection of all equi-Weyl-(Λ′,F·, p, ρ)-almost

periodic sequences such that F(l, J) ≡ l−n/p for all l ∈ N and J ∈ Pl , 1 ≤ p < +∞, Λ′ = Λ′′,
ρ = I and R(F) is contained in a compact convex subset of Y. Then, e−Wp,Λ′

ap;cc(Λ : Y) is a vector
space with the usual operations.

Remark 6. Suppose that Y is a finite-dimensional space and the assumptions of Proposition 7
hold. Since the convex hull of a compact subset K of Y is compact, Proposition 4 implies that F(·)
is equi-Weyl-(Λ′,F·, p, ρ)-almost periodic if and only if for each ε > 0 there exist a Bohr almost
periodic function H : Λ→ Y and an integer l ∈ N such that, for every J ∈ Pl , we have (5). If this
is the case, then F(·) is Besicovitch-(l−n/p, p)-almost periodic in the sense of Definition 8 below.

In connection with Proposition 8 and Remark 6, we would like to ask the following
question (the interested reader may also try to formulate an analogue of ([29] Lemma 3) in
our framework):

Proposition 9. Denote by e−Wp,Λ′
ap (Λ : Y) the collection of all equi-Weyl-(Λ′,F·, p, ρ)-almost

periodic sequences such that F(l, J) ≡ l−n/p for all l ∈ N and J ∈ Pl , 1 ≤ p < +∞, Λ′ = Λ′′ and
ρ = I. Is it true that e−Wp,Λ′

ap (Λ : Y) is a vector space with the usual operations? Furthermore, is
it true that the equivalence relation clarified in Remark 6 holds if the space Y is infinite-dimensional?

Now, we will introduce the class of Besicovitch-(B,F, p)-almost periodic sequences:

Definition 8. Suppose that F : Λ × X → Y is a given sequence, F : (0, ∞) → [0, ∞) and
1 ≤ p < +∞. Then, we say that F(·; ·) is Besicovitch-(B,F, p)-almost periodic if and only if,
for every ε > 0 and B ∈ B, there exists a trigonometric polynomial P(·; ·) such that

lim sup
l→+∞

F(l) sup
x∈B

[
∑

j∈[−l,l]n∩Λ

∥∥F(j; x)− P(j; x)
∥∥p
]1/p

< ε.

If F(l) ≡ l−n/p, then we omit the term “F” from the notation.

Since lim supl→+∞ · is sub-additive, it follows that the set of all Besicovitch-(B,F, p)-
almost periodic sequences is a vector space with the usual operations. The usual example
of a Besicovitch-p-almost periodic sequence (Λ = Zn, X = {0}, F(l) ≡ l−n/p) is obtained
in the one-dimensional framework by taking the Fourier coefficients of a complex Borel
measure on the unit circle (see ([17] p. 315)).

The following results can be established for the Besicovitch class (Corollary 3(ii) can
be deduced using the argumentation contained in the proof of ([17] Lemma 3.4(1))):

Theorem 5. Suppose that F : Λ×X → Y is a given sequence, F : (0, ∞)→ [0, ∞), 1 ≤ p < +∞
and Λ′ ⊆ Λ′′. If F(·; ·) is Besicovitch-(B,F, p)-almost periodic, where for each j ∈ Nn we have
Λ′j := [a, ∞) for some a ∈ Z or Λ′j = R, then there exists a continuous function F̃ : Λe × X → Y
such that F̃ ∈ e− (B, x,F)− Bp(Λe × X : Y) and F̃(t; x) = F(t; x) for all t ∈ Λ and x ∈ X.

Corollary 3. Suppose that F : Λ× X → Y is a given sequence, 1 ≤ p < +∞ and Λ′ = Λ′′.
Suppose, further, that for each j ∈ Nn we have Λ′j := [a, ∞) (Λ′j := (−∞, a]) for some a ∈ Z
or Λ′j = R, and F(l) ≡ l−n/p for all l > 0. Define Ω := Ω1 × . . . ×Ωn, where Ωj = [0, 1]
if Λ′j = [a, ∞) and Ωj = [−1, 0] if Λ′j = (−∞, a] for some a ∈ Z (1 ≤ j ≤ n). If F(·) is
Besicovitch-(B,F, p)-almost periodic, then the following holds:
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(i) The set {F(t; x) : t ∈ Λ, x ∈ B} is Besicovitch-p-bounded for each bounded subset B of the
collection B, i.e.,

lim sup
l→+∞

1
ln sup

x∈B
∑

t∈[−l,l]n∩Λ
‖F(t; x)‖p < +∞.

(ii) If X = {0}, then the mean value M(F), given by (4), exists uniformly on s ∈ Λ.

It is worth noting that, besides the mean value M(F), we can also define the Bohr–
Fourier coefficients of F(·) following our approach; cf. ([17] Lemma 3.4(1)). We ought to
observe that the proofs of ([17] Lemma 3.11: (1)(b); (2)) are not correct: speaking-matter-of-
factly, the argumentation given in the cited monograph ([1] pp. 107–109) of A. S. Besicovitch
only shows that, for a given Besicovitch-p-almost periodic function f : R→ R and a given
number ε > 0, we have the existence of a sufficiently large positive real number t0(ε) > 0
and a corresponding Bochner–Fejér trigonometric polynomial σ

f
B(·) such that

∫ t

−t

∥∥ f (s)− σ
f
B(s)

∥∥p ds ≤ 2εpt, t ≥ t0(ε).

However, it is not clear why the last inequality would imply the existence of an integer
k0(ε) ∈ N such that

k

∑
j=−k

∥∥ f (j)− σ
f
B(j)

∥∥p ≤ 2εpk, k ≥ k0(ε),

even if the all above terms are well-defined and f (·) is continuous. Therefore, it is clear
that we must follow another approach in the discrete setting.

Remark 7. In the question ([19] (Q4)), we have asked the following:
Is it true that the sequence (yk)k∈Z [(yk)k∈N] is (equi-)Weyl-p-almost periodic (Doss-p-almost

periodic/Besicovitch-p-almost periodic) (1 ≤ p < ∞) if and only if there exists a continuous
(equi-)Weyl-p-almost periodic (Doss-p-almost periodic/Besicovitch-p-almost periodic) function
f : R→ X ( f : [0, ∞)→ X) such that yk = f (k) for all k ∈ Z [k ∈ N] (cf. the notion introduced
above with n = 1, F·(l) ≡ l−1/p and ρ = I)?

In Theorems 4 and 5, we have proved the existence of a continuous (equi-)Weyl-p-almost
periodic (Doss-p-almost periodic/Besicovitch-p-almost periodic) function f (·) obeying the required
properties. On the other hand, in Remark 4, we have shown that the converse statement is not
true for the class of equi-Weyl-p-almost periodic sequences; it seems very plausible that the same
statement is not true for the classes of Doss-p-almost periodic sequences and Besicovitch-p-almost
periodic sequences.

Concerning the completeness of the space of Besicovitch-(B, p)-almost periodic se-
quences, denoted here simply by P, we will only state the following direct consequence of
([28] Theorem 2.3), which provides a discrete analogue of the famous result established by
J. Marcinkiewicz in [30]:

Theorem 6. Suppose that 1 ≤ p < +∞, Λ′ = Λ′′ and for each j ∈ Nn we have Λ′j := [a, ∞)

(Λ′j := (−∞, a]) for some a ∈ Z or Λ′j = R, and F(l) ≡ l−n/p for all l > 0. Define Ω :=
Ω1 × . . .×Ωn, where Ωj = [0, 1] if Λ′j = [a, ∞) and Ωj = [−1, 0] if Λ′j = (−∞, a] for some
a ∈ Z (1 ≤ j ≤ n). Then, for every bounded set B of the collection B, we have that (P, dB) is a
complete pseudometric space, where

dB(F, G) := lim sup
l→+∞

l−n/p sup
x∈B

[
∑

j∈[−l,l]n∩Λ

∥∥F(j)− G(j)
∥∥p
]1/p

, F, G ∈ P.
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Before proceeding to the next section, we will only note that the statements of ([28]
Propositions 1 and 2) can be formulated in the discrete setting; cf. also ([17] Lemma 3.1),
which can be formulated if one of the corresponding sequences b(·) or c(·) is vector-valued.
Details can be left to the interested readers.

4. Applications to the Abstract Volterra Integro-Difference Equations

In this section, we will consider certain applications of the introduced notion to the
abstract Volterra integro-difference equations. Before doing this, we would like to notice
that we have recently analyzed the existence and uniqueness of Weyl, Besicovitch and
Doss almost periodic-type solutions to the abstract impulsive Volterra integro-differential
equations in [19]. Concerning the statement of ([19] Theorem 8), we would like to make the
following comment: Let us replace the condition (ew-M1), resp., (w-M1), in the formulation
of this result with the following condition:

(ew-M1-T) For every ε > 0, there exist s ∈ N and L > 0 such that every interval I′ ⊆ [0, ∞)
of length L contains a point τ ∈ I′, which satisfies that there exists an integer
qτ ∈ N such that |ti+qτ

− ti − τ| < ε for all i ∈ N and

sup
|J|=s

[
1
s ∑

j∈J

∥∥yj+qτ
− Tyj

∥∥p
]1/p

< ε, (6)

where the supremum is taken over all segments J ⊆ N of length s and ρ = T
∈ L(X).

(w-M1-T) For every ε > 0, there exists L > 0 such that every interval I′ ⊆ [0, ∞) of length
L contains a point τ ∈ I′, which satisfies that there exist an integer qτ ∈ N and
an integer sτ ∈ N such that |ti+qτ

− ti − τ| < ε for all integers i ∈ N and (6)
holds for all integers s ≥ sτ , with ρ = T ∈ L(X).

Then, the function G2 : [0, ∞) → X from the formulation of the above-mentioned
result will be (equi-)Weyl-(p, T)-almost periodic (see [6] for the notion); a similar comment
can be made in the case of consideration of ([19] Theorem 9). Observe, finally, that it would
be very difficult to say anything relevant if the term 1/s in (6) is replaced with the term
1/sσ, where σ ∈ (0, 1).

In connection with our results established in [19], we will also provide the following
illustrative example:

Example 2. Suppose that the family of sequences (tj
k)k∈Z, j ∈ Z is equipotentially almost periodic.

Then, we know that there exist ζ ∈ R \ {0} and an almost periodic function a : R→ R such that
tk = ζk + a(k) for all k ∈ Z. The function g(x) := ζx + a(x), x ∈ R has the property that the
function x 7→ f (x) = g(x)− ζx, x ∈ R is almost periodic; then, we can apply the theorem of H.
Bohr concerning the argument of a complex-valued almost periodic function in order to see that
the function x 7→ exp(ig(x)), x ∈ R is almost periodic. This, in particular, implies that (eitk )k∈Z
is an almost periodic sequence. Of course, the converse statement is not true since (ei[2πk2])k∈Z is
an almost periodic sequence, but the sequence (tk ≡ 2πk2)k∈Z does not satisfy that the family of
sequences (tj

k)k∈Z, j ∈ Z is equipotentially almost periodic.

It would be very difficult to summarize all relevant results concerning the almost
periodic type solutions to the abstract Volterra integro-difference equations. For more
details on the subject, we refer the reader to the research monographs [31] by R. P. Agar-
wal, [32] by R. P. Agarwal, C. Cuevas, C. Lizama, [33] by S. Elaydi as well as to the research
articles [15,34–45]; cf. also the references quoted in ([5] Section 3.11) and ([6] p. 303).

We will divide the remainder of this section into three individual subsections.
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4.1. On the Abstract Difference Equation u(k + 1) = Au(k) + f (k)

In ([36] Section 3), D. Araya, R. Castro and C. Lizama have considered the almost
automorphic solutions of the first-order linear difference equation

u(k + 1) = Au(k) + f (k), k ∈ Z, (7)

where A ∈ L(X) and ( fk ≡ f (k))k∈Z is an almost automorphic sequence. In this subsec-
tion, we will expand the above-mentioned research study by assuming that ( fk)k∈Z is a
generalized almost periodic sequence.

We will first assume that A = λI, where λ ∈ C and |λ| 6= 1. Due to ([36] Theorem 3.1),
we know that the almost automorphy of sequence ( fk)k∈Z implies the existence of an almost
automorphic solution u(·) of (7), which is given by

u(k) =
k

∑
m=−∞

λk−m f (k− 1), k ∈ Z, (8)

if |λ| < 1, and

u(k) = −
∞

∑
m=k

λk−m−1 f (k), k ∈ Z, (9)

if |λ| > 1. Before proceeding any further, we would like to note that this is a unique almost
automorphic solution of (7); in actual fact, any almost automorphic sequence is bounded
and we only need to show the uniqueness of bounded solutions of (7). However, this can be
proved in an almost trivial way; furthermore, there exists a unique polynomially bounded
solution of (8).

We will first prove the following theorem:

Theorem 7. Suppose that F : (0, ∞) → (0, ∞), 1 ≤ p < +∞, ρ = T ∈ L(X), (FV) holds and
f (·) is equi-Weyl-(F, p, T)-almost periodic (polynomially bounded Weyl-(F, p, T)-almost periodic;
polynomially bounded Doss-(F, p, T)-almost periodic). Then, a unique (equi-)Weyl-(F, p, T)-
almost periodic (polynomially bounded Weyl-(F, p, T)-almost periodic; polynomially bounded
Doss-(F, p, T)-almost periodic) solution of (7) is given by (8) if |λ| < 1, and (9) if |λ| > 1.

Proof. We will consider the class of equi-Weyl-(F, p, T)-almost periodic sequences, only.
Due to Proposition 4, we know that ( fk)k∈Z is a bounded sequence and the above argument
shows that we only need to prove that the function u(·), given by (8) if |λ| < 1, and (9) if
|λ| > 1, is an (equi-)Weyl-(F·, p, T)-almost periodic solution of (7). Clearly, the function
u(·) is well-defined and bounded; for simplicity, we will consider henceforth the case
|λ| < 1, only. Let ε > 0 be given. Then, we know that there exist l ∈ N and L > 0 such that,
for every t0 ∈ Z, there exists τ ∈ B(t0, l) ∩Z such that

sup
k∈Z

F(l)
[

k+l

∑
j=k

∥∥ f (j + τ)− T f (j)
∥∥p
]1/p

≤ ε. (10)
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Let k ∈ Z be fixed. Then, we have:

F(l)
[

k+l

∑
j=k

∥∥u(j + τ)− Tu(j)
∥∥p
]1/p

= F(l)
[

k+l

∑
j=k

∥∥∥∥∥ ∞

∑
v=0

λv[ f (j + τ − v− 1)− T f (j− v− 1)
]∥∥∥∥∥

p]1/p

≤ F(l)
[

k+l

∑
j=k

∣∣∣∣∣ ∞

∑
v=0
|λ|v

∥∥ f (j + τ − v− 1)− T f (j− v− 1)
∥∥∣∣∣∣∣

p]1/p

.

Suppose now that ζ > 1/p. Using the Hölder inequality, we obtain that there exists a finite
real constant cλ > 0 such that∣∣∣∣∣ ∞

∑
v=0
|λ|v

∥∥ f (j + τ− v− 1)− T f (j− v− 1)
∥∥∣∣∣∣∣

p

≤ cp
λ

∞

∑
v=0

1
(1 + vζ)p

∥∥ f (j+ τ− v− 1)− T f (j− v− 1)
∥∥p,

so that the last estimate in the above calculation and (10) together imply that

F(l)
[

k+l

∑
j=k

∥∥u(j + τ)− Tu(j)
∥∥p
]1/p

≤ cλF(l)
[

k+l

∑
j=k

∞

∑
v=0

1
(1 + vζ)p

∥∥ f (j + τ − v− 1)− T f (j− v− 1)
∥∥p
]1/p

= cλF(l)
[

∞

∑
v=0

1
(1 + vζ)p

k+l

∑
j=k

∥∥ f (j + τ − v− 1)− T f (j− v− 1)
∥∥p
]1/p

≤ cλF(l)
[

∞

∑
v=0

1
(1 + vζ)p

(
ε/F(l)

)p
]1/p

= εcλ

[
∞

∑
v=0

1
(1 + vζ)p

]1/p

,

finishing the proof.

In general case, we have the following result:

Theorem 8. Suppose that F : (0, ∞) → (0, ∞), 1 ≤ p < +∞, ρ = T ∈ L(X), (FV) holds and
f (·) is equi-Weyl-(F, p, T)-almost periodic (polynomially bounded Weyl-(F, p, T)-almost periodic;
polynomially bounded Doss-(F, p, T)-almost periodic). Then, there exists an (equi-)Weyl-(F, p, T)-
almost periodic (polynomially bounded Weyl-(F, p, T)-almost periodic; polynomially bounded
Doss-(F, p, T)-almost periodic) solution of (7), provided that A ∈ L(X) and ‖A‖ < 1.

Keeping in mind Theorem 7, the statement of ([36] Theorem 3.2) can be simply reformu-
lated for the generalized almost periodic solutions considered in this paper. For simplicity,
we will only state the following result:

Theorem 9. Suppose that A is a complex matrix, which satisfies that its point spectrum is disjoint
from the unit sphere S1. Suppose, further, that F : (0, ∞)→ (0, ∞), 1 ≤ p < +∞, (FV) holds and
f (·) is equi-Weyl-(F, p, I)-almost periodic. Then, there exists a unique equi-Weyl-(F, p, I)-almost
periodic solution of (7).

We can similarly prove the analogues of Theorems 7–9 for the generalized Besicovitch
almost periodic solutions of (8). For the sake of brevity, we will only state the following
analogue of Theorem 7 here:
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Theorem 10. Suppose that F : (0, ∞)→ (0, ∞), 1 ≤ p < +∞, F1 : (0, ∞)→ (0, ∞) and f (·)
is polynomially bounded Besicovitch-(F, p)-almost periodic. Suppose, further, that for each ε > 0
there exist l0 > 0, c > 0 and k > 0 such that, for every l ≥ l0, we have

F1(l)
F(l + v)

≤ c
(
1 + v

)k.

Then, a unique polynomially bounded Besicovitch-(F1, p)-almost periodic solution of (7) is given
by (8) if |λ| < 1, and (9) if |λ| > 1.

In this paper, we will not reconsider the statements of ([36] Theorems 3.6–3.9). Con-
cerning the generalized almost periodic type solutions of the following semilinear analogue
of (7):

u(k + 1) = Au(k) + f (k; u(k)), k ∈ Z,

where A ∈ L(X), we will only note that our already established results can be used
to deduce the variants of ([36] Theorems 4.1–4.3) for a class of bounded c-uniformly
recurrent sequences (cf. ([20] Theorems 2.28–3.1)) and a class of bounded slowly oscillating
sequences (cf. ([23] Theorem 5) and the paragraph following it). We will consider the
composition principles for the generalized Weyl, Besicovitch and Doss almost periodic
sequences somewhere else (cf. [5–27] for continuous versions).

Before proceeding to the next subsection, we would like to recommend for the readers
the doctoral dissertation of M. Veselý [14], where we have located a great number of results
about the existence and uniqueness of almost periodic solutions of the abstract difference
equation u(k + 1) = Aku(k) + f (k), k ∈ Z, where (Ak)k∈Z is a sequence of closed linear
operators satisfying certain properties.

4.2. On the Abstract Fractional Difference Equation ∆αu(k) = Au(k + 1) + f (k)

Discrete fractional calculus is a very attractive field of applied mathematics and com-
putation, which is incredibly important in the modeling of various phenomena concerning
interval-valued systems, chaotic systems with short memory and image encryption and
discrete-time recurrent neural networks. In the recent research article [46], E. Alvarez,
S. Díaz and C. Lizama have analyzed the existence and uniqueness of (N, λ)-periodic
solutions for the abstract fractional difference equation

∆αu(k) = Au(k + 1) + f (k), k ∈ Z, (11)

where A is a closed linear operator on X, 0 < α < 1 and ∆αu(k) denotes the Caputo
fractional difference operator of order α; see ([46] Definition 2.3). In this subsection, we
will use the same notion and notation as in the above-mentioned paper, providing a few
important observations about ([46] Theorem 4.2) only.

Suppose that A is a closed linear operator on X such that 1 ∈ ρ(A), where ρ(A)
denotes the resolvent set of A, and ‖(I− A)−1‖ < 1. Then, ([46] Theorem 3.4) implies that
A generates a discrete (α, α)-resolvent sequence {Sα,α(v)}v∈N0 such that ∑+∞

v=0 ‖Sα,α(v)‖ <
+∞. If ( fk)k∈Z is a bounded sequence, then we know that the function

u(k) =
k−1

∑
l=−∞

Sα,α(k− 1− l) f (l), k ∈ Z (12)

is a mild solution of (11). Since ∑+∞
v=0 ‖Sα,α(v)‖ < +∞, we can almost directly conclude that

u(t) will be T-almost periodic (T-uniformly recurrent), where ρ = T ∈ L(X), provided that
( fk)k∈Z is T-almost periodic (T-uniformly recurrent). Concerning the generalized almost
periodic type solutions of (11), we are in a position to directly clarify certain results in
the case that (FV) holds and the forcing term f (·) is equi-Weyl-(F, 1, T)-almost periodic
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(bounded Weyl-(F, 1, T)-almost periodic; bounded Doss-(F, 1, T)-almost periodic; bounded
Besicovitch-(F, 1)-almost periodic). Speaking-matter-of-factly, if f (·) enjoys this feature,
then a mild solution u(·) of (11), given by (12), enjoys the same feature as well. In order to
see this, let us assume that f (·) is equi-Weyl-(F, 1, T)-almost periodic, for example. Then,
f (·) is bounded and we have

F(l)
k+l

∑
j=k
‖u(j + τ)− Tu(j)‖

= F(l)
k+l

∑
j=k

∥∥∥∥∥∑
v=0

Sα,α(v)
[

f (j + τ − 1− v)− T f (j− 1− v)
]∥∥∥∥∥

≤ F(l)
k+l

∑
j=k

∑
v=0

∥∥Sα,α(v)
∥∥ · ∥∥ f (j + τ − 1− v)− T f (j− 1− v)

∥∥
= F(l) ∑

v=0

k+l

∑
j=k

∥∥Sα,α(v)
∥∥ · ∥∥ f (j + τ − 1− v)− T f (j− 1− v)

∥∥,

which simply implies the required (k, τ ∈ Z; l ∈ N). Unfortunately, the existence of an equi-
Weyl-(F, p, T)-almost periodic solution of (11), where p > 1, requires further investigations
of the solution family {Sα,α(v)}v∈N0 ; basically, the mild solution u(·) of (11), given by (12),
enjoys the same feature as the forcing term f (·), provided that ∑∞

v=0[‖Sα,α(v)‖q · (1 +
vζ)q] < +∞ for some ζ > 1/p, where 1/p + 1/q = 1 (this follows from our previous
considerations from Section 4.1).

Concerning the generalized almost periodic type solutions of the following semilinear
analogue of (11):

∆αu(k) = Au(k + 1) + f (k; u(k)), k ∈ Z,

we will only note that an analogue of ([46] Theorem 4.5) can be formulated, e.g., for bounded
c-uniformly recurrent sequences and bounded slowly oscillating sequences.

Without going into further details, we will only note that the similar conclusions can
be given in the case of consideration of the following class of Volterra difference equations
with infinite delay:

u(k + 1) = α
k

∑
l=−∞

a(k− l)u(l) + f (k), k ∈ Z, α ∈ C;

cf. ([47] Theorems 3.1 and 3.3).

4.3. Two Multi-Dimensional Analogues of the Abstract Difference Equation
u(k + 1) = Au(k) + f (k)

It is worth noticing that the statements of ([36] Theorems 3.1, 3.2 and 3.5) can be
formulated in the multi-dimensional setting. Without going into full details, we will
only explain here how one can formulate some multi-dimensional extensions of ([36]
Theorem 3.1(i)).

Suppose that f : Zn → X, λ1, λ2, . . . , λn are given complex numbers and

max(|λ1|, |λ2|, . . . , |λn|) < 1.

Consider the function

u
(
k1, k2, . . . , kn

)
:= ∑

l1≤k1,l2≤k2,...,ln≤kn

λk1−l1
1 λk2−l2

2 · . . . .λkn−ln
n f

(
l1 − 1, l2 − 1, . . . , ln − 1

)
= ∑

v1≥0,v2≥0,...,vn≥0
λv1

1 λv2
2 · . . . . · λvn

n f
(
k1 − v1 − 1, k2 − v2 − 1, . . . , kn − vn − 1

)
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defined for any (k1, k2, . . . , kn) ∈ Zn. Using the same argumentation as in Section 4.1,
we can simply prove the following: If (FV) holds and the sequence f (·) is equi-Weyl-
(Λ′,F, p, T)-almost periodic (polynomially bounded Weyl-(Λ′,F, p, T)-almost periodic;
polynomially bounded Doss-(Λ′,F, p, T)-almost periodic), then the sequence u(·) enjoys
the same property as f (·); a similar statement can be deduced for the class of generalized
Besicovitch-p-almost periodic sequences (ρ = T ∈ L(X)).

On the other hand, it is very simple to find the form of function F : Zn → X such that

u
(
k1 + 1, k2 + 1, . . . , kn + 1

)
= λ1λ2 . . . λn · u

(
k1, k2, . . . , kn

)
+ F

(
k1, k2, . . . , kn

)
,

for all (k1, k2, . . . , kn) ∈ Zn. More precisely, we have:

u
(
k1 + 1, k2 + 1, . . . , kn + 1

)
= ∑

l1≤k1+1,l2≤k2+1,...,ln≤kn+1
λk1+1−l1

1 λk2+1−l2
2 · . . . . · λkn+1−ln

n f
(
l1 − 1, l2 − 1, . . . , ln − 1

)
= ∑

l2≤k2+1,...,ln≤kn+1
λk2+1−l2

2 · . . . . · λkn+1−ln
n f

(
k1, l2 − 1, . . . , ln − 1

)
+ λ1 ∑

l1≤k1,l2≤k2+1,...,ln≤kn+1
λk1+1−l1

1 λk2+1−l2
2 · . . . . · λkn+1−ln

n f
(
l1 − 1, l2 − 1, . . . , ln − 1

)
= ∑

l2≤k2+1,...,ln≤kn+1
λk2+1−l2

2 · . . . . · λkn+1−ln
n f

(
k1, l2 − 1, . . . , ln − 1

)
+ λ1 ∑

l1≤k1,l3≤k3+1,...,ln≤kn+1
λk1−l1

1 λk3+1−l3
3 · . . . . · λkn+1−ln

n f
(
l1 − 1, k2, . . . , ln − 1

)
+ λ1λ2 ∑

l1≤k1,l2≤k2,l3≤k3+1,...,ln≤kn+1
λk1−l1

1 λk2−l2
2 λk3+1−l3

3 · . . . . · λkn+1−ln
n

× f
(
l1 − 1, l2 − 1, . . . , ln − 1

)
= . . . .

In the second approach, we consider the solution uj : Z → X of the equation uj(k +
1) = λuj(k)+ f j(k), k ∈ Z, where f j(·) is a generalized almost periodic sequence (1 ≤ j ≤ n)
and λ ∈ C satisfies |λ| < 1. Define u(k1, . . . , kn) = u1(k1) + u2(k2) + . . . + un(kn) and
f (k1, . . . , kn) = f1(k1) + f2(k2) + . . . + fn(kn) for all k j ∈ Z (1 ≤ j ≤ n). Then, we have

u
(
k1 + 1, . . . , kn + 1

)
= λu

(
k1, . . . , kn

)
+ f

(
k1, . . . , kn

)
,
(
k1, . . . , kn

)
∈ Zn;

moreover, the sequence u(·) has a similar almost periodic behavior as the forcing terms f j(·).
For example, if all sequences f j(·) are equi-Weyl-p-almost periodic in the usual sense, then
the sequence u(·) is likewise equi-Weyl-p-almost periodic in the usual sense (1 ≤ p < ∞).

In [41], C. Lizama and L. Roncal have investigated the almost periodicity for semidis-
crete equations with the (fractional) Laplacian. It is worth noting that the argument
contained in the proof of Theorem 7 can serve one to formulate an analogue of ([41] The-
orem 1.5(1)) for the forcing terms g(t, ·), which are generalized Weyl almost periodic for
each fixed number t ≥ 0; an extension to the higher dimensions can be also formulated
following the consideration given in ([41], Remark 14). We close this section with the
observation that we can also analyze the pointwise products of generalized almost periodic
sequences and the invariance of generalized almost periodicity under the actions of the
infinite convolution products (see, e.g., ([36] Theorem 2.13)).

5. Conclusions and Final Remarks

In this research article, we have examined the class of Bohr ρ-almost periodic-type
sequences and several classes of generalized ρ-almost periodic-type sequences of the form
F : I × X → Y, where ∅ 6= I ⊆ Zn, X and Y are complex Banach spaces and ρ is a general
binary relation on Y. We have provided a great number of structural results, illustrative
examples and open problems about the introduced classes of ρ-almost periodic sequences.
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Some applications of the obtained results are given to the abstract Volterra integro-difference
equations and the abstract impulsive Volterra integro-differential equations.

Let us finally mention some conclusions and final remarks about the introduced
notion, some topics not considered here and some perspectives for further expansion of
the theory. Before proceeding any further, we would like to emphasize that many other
classes of generalized ρ-almost periodic type sequences are introduced and analyzed in
our recent research studies [22–25,48,49]. For example, suppose that F : I × X → Y and
(1) holds. Then, the notion introduced in ([23] Definitions 1–6) can be used to provide the
definitions of:

(1) (S,D,B)-asymptotical (ω, ρ)-periodicity of F(·; ·);
(2) (S,B)-asymptotical (ωj, ρj,Dj)j∈Nn -periodicity of F(·; ·);
(3) D-quasi-asymptotical (B, I′, ρ)-almost periodicity of F(·; ·);
(4) D-quasi-asymptotical (B, I′, ρ)-uniform recurrence of F(·; ·);
(5) D-remotely (B, I′, ρ)-almost periodicity of F(·; ·);
(6) D-remotely (B, I′, ρ)-uniform recurrence of F(·; ·);
(7) (D,B, ρ)-slowly oscillating property of F(·; ·), and
(8) (B, (Dj, ρj)j∈Nn)-slowly oscillating property of F(·; ·).
Furthermore, the notion introduced in ([22] Definition 2.1) can be used to provide the
definition of a Levitan almost periodic sequence F : I×X → Y. The applications of Levitan
almost periodic sequences (and the sequences introduced in ([23] Definitions 1–6) men-
tioned above) to the abstract Volterra integro-difference equations have not been considered
in the existing literature by now; we will examine this problematic somewhere else.

Concerning some other topics, we would like to emphasize that we have not consid-
ered here the generalized ρ-uniformly recurrent type sequences. More precisely, we can
introduce the following notion (compare to Definitions 6 and 7):

Definition 9. Suppose that F : Λ× X → Y is a given sequence, 1 ≤ p < +∞, ρ is a binary
relation on Y and (τk)k∈N is a sequence in Λ′′ such that limk→+∞ |τk| = +∞. Then, we say that
F(·; ·) is:

(i) equi-Weyl-(B, (τk),F·, p, ρ)-uniformly recurrent if and only if, for every ε > 0 and B ∈ B,
there exist l ∈ N and k0 ∈ N such that, for every k ≥ k0, J ∈ Pl and for every j ∈ J,
x ∈ B, there exists zj,x ∈ ρ(F(j; x)) such that (2) holds with the point τ replaced by the point
τk therein;

(ii) Weyl-(B, (τk),F·, p, ρ)-uniformly recurrent if and only if, for every ε > 0 and B ∈ B, there
exists k0 ∈ N such that, for every k ≥ k0, there exists an integer lk ∈ N such that, for every
l ≥ lk, J ∈ Pl , j ∈ J and x ∈ B, there exists zj,x ∈ ρ(F(j; x)) such that (2) holds with the
point τ replaced by the point τk therein.

Definition 10. Suppose that F : Λ× X → Y is a given sequence, 1 ≤ p < +∞, ρ is a binary
relation on Y and (τk)k∈N is a sequence in Λ′′ such that limk→+∞ |τk| = +∞. Then, we say that
F(·; ·) is Doss-(B, (τk),F·, p, ρ)-uniformly recurrent if and only if, for every ε > 0 and B ∈ B,
there exists k0 ∈ N such that, for every k ≥ k0, there exists an increasing sequence (lk

m) of positive
integers such that, for every m ∈ N, J ∈ Plk

m
, j ∈ J and x ∈ B, there exists zj,x ∈ ρ(F(j; x)) such

that (2) holds with the point τ replaced by the point τk and the number l replaced by the number
lk
m therein.

It is very simple to reformulate Theorem 4 and the conclusion from Remark 3 to the
Weyl and Doss generalized classes of ρ-uniformly recurrent-type sequences; for the sake
of simplicity, we will skip all details concerning this question here because we have not
recalled, in Section 1.1, the definitions of Weyl and Doss classes of ρ-uniformly recurrent-
type functions.

Concerning some possibilities for further expansion of the theory, we would like
to note that almost automorphic-type sequences are also incredibly important. We will
explore multi-dimensional almost automorphic-type sequences and their applications
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somewhere else. It is our strong belief that the almost periodic-type solutions and the
almost automorphic-type solutions of difference equations in several variables will receive
considerable attention from authors in the near future.
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