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Abstract: In this paper, we introduce a SIVR model using the Laplace Adomian decomposition. This
model focuses on a new trend in mathematical epidemiology dedicated to studying the characteristics
of vaccination of infected communities. We analyze the epidemiological parameters using equilibrium
stability and numerical analysis techniques. New mathematical strategies are also applied to establish
our epidemic model, which is a pandemic model as well. In addition, we mathematically establish
the chance for the next wave of any pandemic disease and show that a consistent vaccination strategy
could control it. Our proposal is the first model introducing a vaccination strategy to actively infected
cases. We are sure this work will serve as the basis for future research on COVID-19 and pandemic
diseases since our study also considers the vaccinated population.

Keywords: ABC derivatives; basic reproduction number; equilibrium points; fractional derivatives;
Laplace transform; numerical methods; SARS-CoV-2; sensitivity and stability analyses

1. Introduction, Motivation, and Objectives
1.1. Introductory Aspects

Mathematical models of epidemic describe the number of infected, death, or recovered
cases. These models provide information to individuals in organizations and healthcare to
understand how infectious diseases grow. Epidemic models are classified into two types:
(i) stochastic and (ii) deterministic. In the stochastic case, one uses random variables and
arrives at the solutions based on probability distributions [1,2]. In the determinist case,
one employs differential equations to arrive at the solutions with the change rate of each
compartment depending on the unit time, which is often measured in days [3,4]. Recently,
many mathematicians have started to study fractional differential equations (FDE) [5]
because the journey of fractional calculus is wonderful to read both in the aspects of history
and the theory of calculus, beginning with the contributions of Riemann–Liouville, then of
Caputo, and later of Atangana–Balenau in the Caputo (ABC) sense [6,7].

One can estimate the basic reproduction number of a disease and attain the global
stability of the solutions of the system by proving the local stability of equilibrium points.
Disease-free and disease-dependent equilibrium points, feasibility region analyses, as well
as the existence of positive solutions can also be used. Numerical solutions may be brought
up by applying the Laplace Adomian decomposition method (LADM). If the problem is of
a linear and ordinary differential equation (ODE), we are not required to seek numerical
results since analytical results are available. Nevertheless, for nonlinear problems, only
very few cases possess analytical results and most of them do not possess such results. We
utilize numerical approaches as the Runge–Kutta method (RKM) in our research.
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Note that the RKM does not allow us to obtain solutions of an FDE. The LADM
permits us to obtain semi-analytical solutions. In [8], the LADM was utilized to study
a fractional model of the human immunodeficiency virus (HIV) and measles [9]. In the
initial period of fractional calculus, some of the problems for FDEs involved Riemann–
Liouville fractional derivatives only. Today, mathematicians are interested in this type
of derivative [10]. The stability of such FDEs was analyzed in [11]. Nonetheless, if such
nonlinear problems are of fractional order, it is hard to solve them step by step. Several
methods are available in the literature, such as FDEs, to solve these problems. Some of
them are the differential transform method, the homotopy perturbation method, and the
LADM. We prefer the LADM because it uses Adomian polynomials, the basic idea of
Laplace transformations, and their inverse to obtain the solutions. Previous studies that
motivated us to conduct the present research are summarized below. When one wants to
model any biological or medical problem using fractional calculus, one must be careful in
estimating the corresponding parameters [12].

1.2. Motivation and State of the Art

The motivation for framing our proposal is as follows. Considering the susceptible,
infectious, and recovered (SIR) model, one can assume a new compartment to analyze
what does happen when someone is vaccinated during the period of infection; that is, by
considering a susceptible, infectious, recovered, and vaccinated (SIRV) model. One can
ask: Does such a disease model exist? The response is yes. We consider some people with
type I or type II diabetes who are only in the category “I”. However, doctors prescribe
to these diabetes patients several vaccines such as those for influenza, pneumococcal
infection, Tdap, hepatitis B, and Zoster to prevent seasonal flu, pneumococcal diseases,
tetanus, diphtheria, whooping cough, hepatitis B, and shingles, respectively. In some cases,
vaccines may be used to treat active viral infections. The concept behind this is to improve
immunity by providing vaccinations against the virus that causes the symptoms and the
infectious disease.

Let us consider rabies, a dangerous neurological disorder, as an example. Often, rabies
is a severe infection that spreads through the saliva of some animals, especially mammals
infected with rabies. It takes up to two or three weeks for mammal or animal rabies to infect
our central nervous system. Medically speaking, one is suspected of having rabies when
bitten by such animals. Earlier, one may start with symptoms. By the symptoms and lab
report, the infection can be confirmed. This period of two or three weeks of infectious time
is enough to vaccinate an infected individual. The vaccines are given to such an actively
infectious person to boost the immune response and prevent the virus from penetrating the
nerve tissue. Thus, vaccinations during the actively infectious stage of rabies prevent the
dangerous neurological effects of the disease. First, one recovers from the affected bite and
then from the infections. The same approach is also applied to treat Ebola, which is known
to be the fastest-spreading and deadliest virus on the globe.

The diseases spread by animals, such as bats and monkeys, are responsible for the
death of 80% of infected individuals within two weeks. By applying newly found vaccines,
victims can strengthen their immune systems and control the active virus to save their life.
Observe that one can present an SIVR model where the susceptible individual becomes
infected. Furthermore, for a situation where an infected person undergoes vaccination
therapies, what happens mathematically in the number of infected cases and what happens
with the recovered cases as time increases can be studied using a SIRV model.

Note that when somebody has diabetes, they undergo to many vaccines to prevent
them from any new infections. When one is infected with rabies, vaccines prevent worsen-
ing severity of the disease, which results in damage to the central nervous system. However,
both of these diseases are different. We are motivated by these diseases and wish to create a
new SIVR model. Thus, our aim is to frame the model in which the vaccinations are given
to actively infected persons to recover quickly and prevent them from acquiring severe
infections [13].



Fractal Fract. 2023, 7, 407 3 of 25

Some SVIR models have been proposed [14,15]. Applications of FDEs were predomi-
nantly equipped with epidemic models, and their analysis [16–19]. Some epidemic models,
such as those for severe acute respiratory syndrome [20], HIV [21–23], tumor/cancer [24,25],
tuberculosis [26], hepatitis B [27], and COVID-19 [28–32] were studied using fractional
derivatives. Moreover, some physical systems such as the visco-elastic damper model [33]
were analyzed with FDEs. Other than this, the theory of periodic reactions [34] and the
advanced analysis of SIVR models [35,36] have also paved a path on which our time-
dependent disease model can proceed.

1.3. Objective and Description of Sections

According to our bibliographical review, to the best of our knowledge, there are no
SVIR models that describe a pandemic based on a new strategy called the constant and
consistent application of vaccination. After the pandemic gradually decreases, a consistent
depletion vaccination strategy can be analyzed to mathematically state how it could help
to show depletion in the number of infections in society. Therefore, the main objectives
of our investigation are as follows: (i) to formulate a new pandemic model with SIVR
cases; (ii) to study strategies related to constant/consistent application and consistent
depletion vaccinations; and (iii) to analyze how our model could help to mathematically
show depletion in the number of infections in society.

This paper is organized as follows. The presentation of the SIVR model is in Section 2.
This section also introduces the necessary preliminary knowledge. In Section 3, we provide
equilibrium values and stability, as well as a feasibility region analysis. The positive
solutions are outlined in Section 4, with a sensitivity analysis also being presented in this
section. Section 5 reports our numerical results. In Section 6, the findings obtained are
discussed. Finally, conclusions of the present work are provided.

2. Background
2.1. SIVR Epidemic Model

Consider the following equations for building up the desired mathematical model:

S′(t) = −aS(t)I(t), I′(t) = aS(t)I(t)− (b + r)I(t),
V′(t) = (b− c− r)I(t)− rV(t), R′(t) = cI(t)− rR(t),

(1)

where S(t), I(t), R(t), and V(t) in the SIRV model stated in (1) permit us to obtain the
number of susceptible, infected, recovered, and vaccinated people at time t, respectively.
Additionally, a, b, c, and r are the rates at which the susceptible become infected, the
infected become vaccinated, the vaccinated recovered, and the infected are recovered,
respectively. Note that

N(t) = S(t) + I(t) + V(t) + R(t), (2)

where N(t) stated in (2) is the total population at time t. To frame the model as seen in
Figure 1, we assume several values given in Table 1. The values in this table are used for
illustrative purposes only and are not intended to represent true values for any specific
disease or pandemic. The values of a, b, c, and r will depend on the specific characteristics
of the disease or pandemic, as well as on the population being studied. These values are
subject to change over time as more information becomes available about the disease or
pandemic. Choice of the population size will affect the numerical results of the model. In
this study, a population size of 100,000 was chosen for convenience, but the model can
be applied to any population size with appropriate adjustments to the parameter values.
Specifically, we have a population size to 100,000 and values of 0.004 × 100,000 = 400,
0.003 × 100,000 = 300, 0.002 × 100,000 = 200, and 0.001 × 100,000 = 100 for S, I, V, and R,
respectively; that is, we take a very small part of 0.01% of the total population and reduce it
still further for transmission of S to I, I to V, recovery by vaccination (V to R), and natural
recovery (I to R) to obtain a, b, c, and r, whose values are given in Table 1.
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Figure 1. Graphical representation of the SIVR model.

In general, it is recommended to use data-driven parameter values for epidemiological
models whenever possible. These values can be obtained from historical data or from
ongoing surveillance efforts. Using data-driven parameter values can improve the accuracy
of the model and its predictions.

Table 1. Notations/symbols employed in the SIVR model and values for a, b, c, and r as in [3,37].

Notations/Symbols Definition

S Susceptible population
I Infected population
V Vaccinated population
R Recovered population
t Time instant
S0 Initial susceptible population, S0 = 400 (fixed)
I0 Initial infected population, I0 = 300 (fixed)
V0 Initial vaccinated population, V0 = 200 (fixed)
R0 Initial recovered population, R0 = 100 (fixed)
Scritical Threshold point or epidemic critical community size
R0 Basic reproduction number
a Rate at which those susceptible become infected, a = 0.0004 (fixed)
b Rate at which those infected become vaccinated, b = 0.03 (fixed)
c Rate at which those infected recover via vaccination, c = 0.01 (fixed)
r Rate at which those infected recover naturally, r = 0.02 (fixed)

The theory of fractional calculus has recently influenced more researchers and aca-
demics. Diverse real-life phenomena can be easily modeled with the help of fractional
calculus. Fractional calculus studies and establishes the derivatives formed by various
orders between 0 and 1, often denoted as α; that is, 0 ≤ α ≤ 1. At α = 0, we obtain
the algebraic nondifferential equation. At α = 1, we arrive at the first-order differential
equations. For example, the half derivative is given by fractional-order α = 0.5.

In fractional calculus, we can also reach first-order derivatives. Because this calculus
generalizes ordinary differential calculus, it is impossible to obtain half derivatives or
any noninteger order derivatives in ordinary differential calculus. Where the epidemic
modeling is concerned, the changes observed in every compartment are low for a unit time.
Thus, instead of an ODE, we prefer an FDE. Furthermore, we must draw attention to one
important aspect: the ordinary differential derivatives are local.

In contrast, the fractional-order derivatives are global since such derivatives are used
for hiking the region of stability of any physical system. When considering the fractional
derivative without the singular kernel, one must remember Caputo and Fabrizio [6]. The
special feature of the ABC fractional derivative [7] is that it is the new fractional deriva-
tive with a nonlocal and nonsingular kernel. Thus, some necessary results in FDEs are
presented here.
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2.2. Preliminaries on Fractional Differential Equations

Next, we introduce some necessary definitions and explain our motivation for utilizing
fractional derivatives. Fractional order operators are now widely used to model numerous
mathematical and physical problems in different areas, such as physics, chemistry, and
biology. Mathematical models from these areas have been studied and solved by employ-
ing different fractional order operators. Singular kernels seem to be the problem in the
integrands of Riemann–Liouville and Caputo type fractional operators.

Such kernels are not smooth at modeling problems and coming up with finer solutions.
To overcome this, Atangana and Baleanu introduced a new advanced operator based upon
the Mittag-Leffler type of kernel [7]. The kernel given was nonlocal and nonsingular. The
important advantage of this operator is that it is very helpful in a modeling biological
dynamical systems since the Atangana–Baleanu fractional order derivative eliminates
the difficulty of modeling any biological or physical problems with singularity. Various
biological systems have been modeled and analyzed using the ABC operator.

Definition 1 ([7]). The Mitag–Leffler function is the solution of the fractional ODE Dαy = ay,
for 0 < α < 1, where a generalized Mittag-Leffler function Eα(−tα) = ∑∞

k=0 (−t)αk/Γ(αk + 1) is
considered as a nonlocal function, with Γ representing the standard gamma function.

Definition 2 ([7]). The ABC fractional derivative of function f supported on [0, t] is stated as

ABCDα
[0,t]{ f (t)} = F(α)

(1− α)

∫ t

0
f ′(µ)Eα

(
−α(t− µ)α

(1− α)

)
dµ,

where 0 < α ≤ 1 is the fractional order, F(α) = (1− α)/Γ(1− α) is a normalization function
that satisfies F(0) = F(1) = 1, as in the Caputo–Fabrizio case [6], and Eα is the Mittag-Leffler
function of order α defined as

Eα(z) =
+∞

∑
k=0

zk

Γ(kα + 1)
.

The ABC derivative can be transformed to Caputo by using

Eα

(
−α(t− µ)α

(1− α)

)
to (t− µ)−α, and

F(α)
(1− α)

to 1/Γ(1− α).

Definition 3 ([7]). The Laplace transform of the ABC derivative of Definition 2 is given by

L
{ABCDα

[0,t]{ f (t)}
}
(u) =

F(α)
(1− α)

(
uαL { f (t)}(u)− uα−1

uα + α/(1− α)

)
,

where L { f (t)} is the Laplace transform of f (t).

Definition 4 ([38]). The Atangana–Baleanu integral of f on [0, t] with α > 0 is expressed as

ABC Jα
[0,t]{ f (t)} = (1− α)

F(α)
f (t) +

α

F(α)Γ(α)

∫ t

0
f (µ)(t− µ)α−1dµ.

Works such as [39–42] serve as a motivation and guidance for us to construct a frac-
tional ordered system of differential equations. We recommend readers to refer to [3,43]
for a better understanding of the various types of epidemic models that can be estimated
using FDEs.
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The system described in (1) considers the variables S(t), I(t), R(t), and V(t). This
system can be reformulated by means of an FDE system stated as

ABCDα1 S(t) = −aS(t)I(t),
ABCDα2 I(t) = aS(t)I(t)− (b + r)I(t),
ABCDα3 V(t) = (b− c− r)I(t)− rV(t),
ABCDα4 R(t) = cI(t)− rR(t).

(3)

The total population size, at t = 0, is given by N(0) = N0 = S0 + I0 + V0 + R0. Now,
we have to establish a few things. How do the models formulated in (1) and (3) relate
real-life phenomena? Why is this model more relevant to any existing diseases? For
establishing this, we can refer to the model stated in (1), where we consider an ODE for the
derivatives; that is, the by-products that depend on the rate of changes concerning time are
fully changed from 0-th to 1-st order, which frequently requires at least a unit time with
a magnitude of days. However, similar to that presented in (3), the model is converted
to the fractional ordered system, allowing for the by-products to indicate that derivatives
can exist not only in zero and first orders but also in fractional orders; that is, very minute
changes between zero and first orders. For an example, consider Dα1 used in the above
equation to provide the half-order derivative when α1 = 0.5, which is similar for other
orders α2, α3, α4. In contrast, one can adopt different orders to each compartment S, I, V, R
by taking different values of αi for i ∈ {1, 2, 3, 4}. Similarly, one can obtain fourth order
changes in the model by assigning αi = 0.25, for i ∈ {1, 2, 3, 4}.

3. Mathematical Analysis
3.1. Justification

In this paper, we present two methods for deriving the basic reproduction number,R0,
for FDEs. One method is the next generation matrix, and the other is the traditional method.
By using both methods, we establish that they are equally effective. Although the basic
reproduction number is calculated by considering FDEs as normal algebraic equations,
where the order of derivatives is equal to zero, these methods are applicable to both ODEs
and FDEs. However, FDEs offer more flexibility in finding solutions at various orders,
where 0 < αi ≤ 1, for i ∈ {1, 2, 3, 4}. It is important to note that for any fractional order
less than one, any values ofR0 and Scritical that do not exceed the unit order will be bound
within the values of an integer order. For this reason, we have defined the analysis for an
ODE. The fractional order is better because the epidemic will not grow suddenly but will
rather grow fractionally over time. Even for orders less than one, there is a small change in
the growth rate. This small change over a period can only be predicted using FDEs.

3.2. Estimation of the Basic Reproduction Number with a First Computation Method

Assume that the class of secondary susceptible individuals can be formed from both
infected and vaccinated classes. Since we are considering a SIVR model and not a SIVRS
model, we are not assuming that the recovered class will be susceptible again. Thus, we
employ next-generation matrix techniques for large domains.

Let us consider

ABCDα2 I(t) = aS(t)I(t)− (b + r)I(t),

(4)ABCDα3 V(t) = (b− c− r)I(t)− rV(t).

The Jacobian matrix of the expressions formulated in (4) is given by

G =

(
aS(0)− (b + r) 0

b− c− r −r

)
. (5)
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Now, the matrix G stated in (5) can be decomposed as G = G1 + G2, where

G1 =

(
aS(0) 0

0 0

)
and

G2 =

(
−(b + r) 0
b− c− r −r

)
.

Let us calculate Y from Y = −G2. Then, we have

Y =

(
b + r 0

r + c− b r

)
.

Hence, we find that

adj(Y) =
(

r 0
b− c− r b + r

)
, |Y| = (b + r)r, Y−1 =

(
1

b+r 0
b−c−r
r(b+r)

1
r

)
.

Therefore, we obtain

G1Y−1 =

(
aS(0)
b+r 0
0 0

)
.

Note that the basic reproduction number is calculated from R0 = ρ(G1Y−1), where
ρ(G1Y−1) is the spectral radius of the matrix G1Y−1 and is given by max(|λi|), with λi
representing the eigenvalues of the matrix G1Y−1. Thus,R0 = S0a/(b + r) since S(0) = S0.

3.3. Estimation of the Basic Reproduction Number with a Second Computation Method

The advantage of the usual method is that it requires only one infected case to obtain
R0 and Scritical, whereas the next-generation matrix method requires an additional case
that directly depends on an infected case (V(t) in our problem) to obtain a matrix format
and calculateR0. However, by using the second method, we can consider Proposition 1.

Proposition 1. Any epidemic model can be described as:

(i) Does not survive, if and only if,R0 << S0 << Scritical.
(ii) Endemic, if and only if, S0 << R0 << Scritical.
(iii) Pandemic, if and only if, S0 >> Scritical >> R0.

The basic reproduction number is a predictive calculation for how many new cases
arise from an infected individual. This is the rate of infection which leads to new susceptible
individuals at time t = 0. When ABCDα2 I(t0) = 0, we have aS(t0)I(t0)− (b + r)I(t0) = 0,
and hence R0 = S0a/(b + r) is the basic reproduction number and Scritical = (b + r)/a.
Using two different methods, we have obtained the same basic reproduction numberR0.
When S0 < Scritical, the disease does not survive, and when S0 > Scritical, the disease recurs;
that is, there is an epidemic. We consider that S0 = 400, Scritical = 100, and R0 = 4. As
the basic reproduction numberR0 is much less than Scritical, but S0 >> Scritical >> R0, or
400 >> 100 >> 4, the disease does survive and increases rapidly. Therefore, our model
replicates purely a pandemic model. Note that the initial population values are assumed to
be similar to [3,37], which is very similar to most diseases with the same duration of time.

3.4. Equilibrium Points and Feasibility Region Analysis

In the system established in (3), we consider ABCDα1 S(t) = 0, ABCDα2 I(t) = 0,
ABCDα3 V(t) = 0, and ABCDα4 R(t) = 0. Then, the disease free equilibrium points are
either F(0) = (S(0), I(0), V(0), R(0)) = ((b + r)/a, 0, 0, 0) or F(0) = (S(0), I(0), V(0), R(0)) =
(0, 0, 0, 0); that is, F(0) = (125, 0, 0, 0) or F(0) = (0, 0, 0, 0).
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The disease-dependent equilibrium points, or the endemic equilibrium points denoted
by F∗ = (S∗, I∗, V∗, R∗), are given by

F∗ =
(

b + r
a

, I(0),
rV(0)

b− c− r
,

rR(0)
c

)
.

The disease-dependent equilibrium points are computed as

F∗ = (125, 300,−1.15292× 1018, 200).

The disease-dependent equilibrium points denoted by F∗ = (S∗, I∗, V∗, R∗) are estab-
lished as

F∗ =
(

b + r
a

, I(0),
rV(0)

b− c− r
,

rR(0)
c

)
.

The disease-dependent equilibrium points are calculated as

F∗ = (125, 300,−1.15292× 1018, 200).

Lemma 1 restricts the SIVR model solution to a feasible region, and then it detects
when the outbreak occurs.

Lemma 1. The solution of the model under consideration is restricted to the feasible region given
by E = {(S, I, V, R) ∈ R4

+, 0 ≤ N(t) ≤ N0}. Then, an epidemic outbreak occurs when
S0 > Scritical, where Scritical is the threshold phenomenon or an epidemic-critical community size.

Proof. Let N(t) = S(t) + I(t) + V(t) + R(t). Then, we have

ABCDαN(t) =ABC Dα1 S(t) +ABC Dα2 I(t) +ABC Dα3 V(t) +ABC Dα4 R(t).

Now, by summing all the terms presented in (3), we obtain

ABCDαN(t) = −r(2I(t) + V(t) + R(t)),
ABCDαN(t) ≤ 0,

which obviously means that N(t) ≤ N0. In a similar fashion, when ABCDαS(t) ≤ 0,
we have S(t) ≤ S0. In the same way, we claim that I(t) ≤ I0 and R(t) ≤ R0. Now, if
S0 < (b + r)/a, then I(t) ≤ 0. Otherwise, if S(t) > (b + r)/a, then there arises I(t),
V(t), and R(t). The term ABCDαN(t) = −r(2I(t) + V(t) + R(t)) indicates that the natural
recovery of the infection has a substantial effect in reducing the total population cases N(t).
Additionally, we arrive at −2rI(t) < −r(V(t) + R(t)), implying that 2I(t) > V(t) + R(t).
This is the hypothesis when the number of infected is twice as high as that of the number
of vaccinated and recovered, which indicates that the infection spread is high. Nonetheless,
when the natural recovery is supported by vaccination, the situation is good in overcoming
a pandemic outbreak.

Let us gather some of the existing knowledge on the mathematical analysis of pan-
demic outbreaks. A system is globally asymptotically stable when local asymptotic stability
is ensured at all equilibrium points. If a system is marginally stable at some equilibrium
point, the controlled pandemic may lead to the next wave. If a system is completely unsta-
ble, it establishes a pandemic situation that is impossible to control using existing strategies.
Remark 1 provides conditions for the existence of the next wave and whether it can be
controlled or not.

Remark 1. Not all pandemics can be controlled in a similar fashion to an epidemic, as they often
exhibit waves of peaks after initial control measures. Currently, vaccines are administered before
infection to protect susceptible individuals. Vaccines are not typically given during an infection, as
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they may initially reduce immunity before ultimately boosting it. However, in our model, we have
implemented a vaccination strategy for the infected individuals and analyzed the effect of vaccination
and natural recovery on the system. By considering these two recovery strategies, we can effectively
control the existence of future waves, as demonstrated in our analysis of the model presented in (3).
Although the first wave may be initially controlled, there is still a chance for subsequent waves to
occur. In addition, we have to keep in mind the following:

(i) The present situation should be under control.
(ii) The next pandemic wave can be expected at any time.
(iii) If the next wave occurs, this should also be controlled.

If we linearize the expressions stated in (3) formed by the initial populations, then
they seem to be the Jacobian matrix defined by

J =


−aI(t) −aS(t) 0 0
aI(t) aS(t)− (b + r) 0 0

0 b− c− r −r 0
0 c 0 −r

.

The characteristic polynomial of the above matrix is found to be: p(λ) = λ4 + 0.05λ3 +
0.0068λ2 + 0.000244λ+ 2.4× 10−6. To compute the corresponding eigenvalues, we solve the
equation p(λ) = 0, obtaining:~λ = (−0.005+ 0.0772981i,−0.005− 0.0772981i,−0.02,−0.02),
where “i” is the imaginary number. Figures 2 and 3 show graphical representations of the
real parts of the eigenvalues of the matrix J. For the system formulated in (3), note that
the four roots of the eigenvalues have only the negative real parts. This implies that the
system we are examining is locally asymptotically stable for the initial populations. Now,
the Jacobian matrix formed with the two disease-free equilibrium points can be stated as

J(F0) =


−aI0 −aS0 0 0
aI0 aS0 − (b + r) 0 0
0 b− c− r −r 0
0 c 0 −r

.

Figure 2. Negative real parts of the eigenvalues of J.
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Figure 3. Real and imaginary parts of the eigenvalues of J.

The characteristic polynomial when F0 = (0, 0, 0, 0) is: p(λ) = 0.00002λ + 0.0024λ2 +
0.09λ3 + λ4. With p(λ) = 0, the real parts of the eigenvalues are: ~λ = (−0.05,−0.02,
−0.02, 0). Figures 4 and 5 show the plots with the real and imaginary parts of the eigenval-
ues of the matrix J(F0), for F0 = (0, 0, 0, 0). Thus, the system presented in (3), formed with
above disease-free equilibrium points, is not locally asymptotically stable but marginally
stable, since all the eigenvalues are nonpositive other than the one which is zero.

Figure 4. Negative real parts of the eigenvalues of J(F0), for F0 = (0, 0, 0, 0).
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Figure 5. Real and imaginary parts of the eigenvalues of J(F0), for F0 = (0, 0, 0, 0).

The characteristic polynomial when F0 = (125, 0, 0, 0) is stated as: p(λ) = 0.0004λ2 +
0.04λ3 + λ4. From computing the zeros of p(λ), the real parts of the eigenvalues are given
as: ~λ = (−0.02,−0.02, 0, 0). Figures 6 and 7 show the graph of the real and imaginary parts
of the eigenvalues of the matrix J(F0), for F0 = (125, 0, 0, 0). Thus, the system established
in (3), formed with disease-free equilibrium points, is not locally asymptotically stable or
unstable. However, note that it is marginally stable since all the eigenvalues are only zero
and negatives without imaginary terms. The marginal stability infers that the system for
the disease-free equilibrium is marginally stable but, at any time, may become unstable;
that is, the possibility for the next wave is there, overcoming disease-free equilibrium points
on pandemic situations.

Now, the Jacobian matrix formed with the two disease free equilibrium points is
stated as

J(F∗) =


−aI∗ −aS∗ 0 0
aI∗ aS∗ − (b + r) 0 0
0 b− c− r −r 0
0 c 0 −r

.

Figure 6. Negative real parts of the eigenvalues of J(F0), for F0 = (125, 0, 0, 0).
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Figure 7. Real and imaginary parts of the eigenvalues of J(F0), for F0 = (125, 0, 0, 0).

The characteristic polynomial when F∗ = (125, 300, − 1.15292 × 1018, 200) is:
p(λ) = 2.4× 10−6 + 0.000288λ + 0.0112λ2 + 0.16λ3 + λ4. From the solution of p(λ) = 0,
the eigenvalues are: ~λ = (−0.06 + 0.0489898i,−0.06− 0.0489898i,−0.02,−0.02).

Figures 8 and 9 show the plots with the real and imaginary parts of the eigenvalues of
the matrix J(F∗), for F∗ = (125, 300,−1.15292× 1018, 200). Thus, the system given in (3),
formed with disease-dependent equilibrium points, is locally asymptotically stable since
all the eigenvalues have negative real parts.

Figure 8. Negative real parts of the eigenvalues of J(F∗), for F∗ = (125, 300,−1.15292× 1018, 200).
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Figure 9. Real and Imaginary parts of the eigenvalue of J(F∗), for F∗ = (125, 300, −1.15292× 1018, 200).

Figure 10a,b depicts the phase portraits of the three-dimensional SIV (susceptible–
infected–vaccinated) and SIR (susceptible–infected–recovered) models, respectively. The
fact that both models have a stable equilibrium at the center of the box and exhibit similar
patterns indicates that they are interdependent.

(a) (b)

Figure 10. 3D-phase-portraits of (a) SIV and (b) SIR models.

The system is stable for both the initial population and the disease, depending on
the equilibrium points. However, the disease-free equilibrium points are only marginally
stable, not asymptotically stable. Therefore, we can infer that the outbreak can be controlled.
Nevertheless, there is always a possibility of the next wave of transition occurring at any
time. Even in such as situation, it can be controlled with the present strategy that we
are following.

4. Positive Solutions and Sensitivity Analysis
4.1. Existence of Positive Solutions

Next, we justify the positive solutions obtained. Three important results satisfying for
all time t ∈ [0, ∞) are given as follows:
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(i) The solution path traced by our SIVR model stated in (3) is always positive (bounded
from below by zero) and is also bounded from above by the population size for all
positive initial conditions at any time t.

(ii) The total population remains constant even for a long time period for any arbitrary
positive initial conditions.

(iii) The solutions are all positive, bounded from below by zero, and also bounded from
above by the population size.

From (3), we get the solutions of S(t), I(t), V(t) and R(t) expressed as

S(t) = S(t0) + e−a
∫ t

t0
I(k)dk, 0 < S(t) < +∞,

I(t) = I(t0) + e
∫ t

t0
(aS(k)−(b+r))dk, 0 < I(t) < +∞,

V(t) = e−r(t−t0)

(
V(t0) +

∫ t

t0

(b− c− r)I(k)er(k−t0)dk
)

, 0 < V(t) < +∞,

R(t) = e−r(t−t0)

(
R(t0) +

∫ t

t0

(c)I(k)er(k−t0)dk
)

, 0 < R(t) < +∞,

where “e” is the exponential or Euler function.
We know that the total population is the sum of all cases; that is,

N(t) = S(t) + I(t) + V(t) + R(t).

Additionally, from (3), we have

ABCDαi N(t) = ABCDα1 S(t) +ABC Dα2 I(t) +ABC Dα3 V(t) +ABC Dα4 R(t),

ABCDαi N(t) = −r(2I(t) + V(t) + R(t)),

ABCDαi N(t) = −r(N(t) + I(t)− S(t)).

Observe that the solution of N(t) is given by

N(t) = e−r(t−t0)

(
N(t0)−

∫ t

t0

r(I(k)− S(K))er(k−t0)dk
)

.

Then, we have 0 < N(t) < +∞. Thus, the total population is always positive at any time
t ∈ [0, ∞).

Notice that, as t approaches infinity, N(∞) approaches N(t0). Hence, N(t) approaches
zero as t tends to infinity, which implies that the total number of cases vanishes for infinitely
large time t. Furthermore, from (i) and (ii), it is clear that S(t), I(t), V(t), and R(t) are
positively bounded and that this boundedness is independent of t.

The relationship between S(t), I(t), V(t), and R(t) over time indicates that the system
is strictly positive, meaning that it is bounded from below by zero and from above by
the population size, as shown in Figure 11. This figure presents a parametric plot of the
SIVR model with respect to t to illustrate the interdependence between the variables in the
system. Since the parametric plot is not based on true values of t, the graphical plot shows
the limits of all the variables as t approaches infinity. The parametric plot is represented
in black to differentiate it from the solution curves, which would be shown in various
colors. A solution would have four curves, each representing one of the four variables and
showing the common path shared by all of them over time. The curve displayed in the
figure traces a path that is common to all four variables.
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Figure 11. Parametric plot of the relationship in the SIVR model.

4.2. Sensitivity Analysis

Next, we compare how the state variables influence the basic reproduction number
R0 of the infection. The expression used to calculate the sensitivity index of a parameter θ
is defined as

Iθ = rθR0

=
θ

R0

∂R0

∂θ
. (6)

When applying (6) to the model proposed in the present study, we obtain that

Ia =
(b + r)

S(0)
S(0)

(b + r)
= 1, (7)

Ib = − b
(b + r)

= −0.6, (8)

Ir = − r
(b + r)

= −0.4. (9)

From the values of Ia, Ib, and Ir stated in (7)–(9), respectively, we can say that the
basic reproduction of secondary infection is primarily influenced by a, more than by b or r.

On the one hand, when sensitivity index Ia increases or decreases by 1%, R0 also
increases or decreases by 1%. On the other hand, the rates b and c are less dominant in
causing secondary infections. In Figure 12, we can see a bar plot with the values of the
three indexes.
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Figure 12. Bar plot of values of the sensitivity indexes and type of rate.

5. Numerical Simulations
5.1. Graphical Representation of S(t), I(t), V(t), and R(t)

Next, we show the results that were obtained from the computational experiments
carried out. The software we used was MathWorks SIMULINK and Wolfram Mathematica.
First-order derivatives and fractional derivatives were computed.

The system presented in (1) was solved numerically using SIMULINK, which is a Matlab
add-on. The numerical method utilized for the approximations was the classical fourth-
order RKM. In Figure 13, we can see, through the block diagram shown, the graphical
representation of (1). As a result of the simulations carried out, the values for S(t), I(t),
V(t), and R(t), with ordinary derivatives, are presented in Table 2 for t ∈ [0, 60] and in
Table 3 for t ∈ [0, 1000]. Figure 14 shows the corresponding plots.

Table 2. Simulations with the SIVR model for t ∈ {0, 10, 20, . . . , 60} at αi = 1 for i ∈ {1, 2, 3, 4}.

t S(t) I(t) V(t) R(t)

0 400 300 200 100
10 81.833 419.819 163.746 118.002
20 19.0757 300.543 134.064 129.423
30 7.22778 191.081 109.762 127.787
40 3.93508 118.373 89.8658 118.29
50 2.70459 72.7313 73.5759 105.276
60 2.14891 44.5381 60.2388 91.3616

Table 3. Simulations with the SIVR model for t ∈ {0, 100, 200, . . . , 1000} at αi = 1, for i ∈ {1, 2, 3, 4}.

t S(t) I(t) V(t) R(t)

0 400 300 200 100
100 1.57405 6.19969 27.0671 45.7696
200 1.4975 0.0443779 3.66313 6.46463
300 1.49697 0.000317467 0.49575 0.876828
400 1.49697 2.27097× 10−6 0.0670924 0.118679
500 1.49697 1.62182× 10−8 0.00907998 0.0160616
600 1.49697 1.10376× 10−10 0.00122884 0.00217371
700 1.49697 2.4074× 10−12 0.000166305 0.000294179
800 1.49697 2.56041× 10−13 0.00002250720 0.00003981320

1000 1.49697 8.23794× 10−11 4.12206× 10−7 7.29126× 10−7
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Figure 13. Block diagram of the SIVR model given in (1).
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Figure 14. Plot of the number of susceptible, infected, vaccinated, and recovered people, denoted as
S(t), I(t), V(t), and R(t) of the SIVR model, respectively, for solutions based on first-order ordinary
derivatives over time (a) t ∈ [0, 60] and (b) t ∈ [0, 1000] in days.

5.2. Laplace Adomian Decomposition Method

To solve the proposed SIVR model with fractional derivatives, we use the LADM
method [9]. The functions S(t), I(t), V(t), and R(t) are calculated as
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Sk+1 = L −1
{
− a

uα1
L {Ak}(u)

}
,

Ik+1 = L −1
{

a
uα2

L {Ak}(u)−
(b + r)

uα2
L {Ik}(u)

}
,

Vk+1 = L −1
{
(b− c− r)

uα3
L {Ik}(u)−

r
uα3

L {Vk}(u)
}

,

Rk+1 = L −1
{ c

uα4
L {Ik}(u)−

r
uα4

L {Rk}(u)
}

,

(10)

where Ak stated in (10) is called the Adomian polynomial and defined as

Ak =
1
k!

(
dk
( k

∑
l=0

(λlSlλ
l Il)
)

/dλk
)∣∣∣∣

λ=0
, k ∈ {0, 1, . . . , n},

with A0 = S0 I0, A1 = S0 I1 + S1 I0, A2 = S0 I2 + S1 I1 + S2 I0, and so on, with L −1{ f (t)}
representing the inverse Laplace transform of f (t). Now, we set

S(t) =
∞

∑
k=0

Sk, I(t) =
∞

∑
k=0

Ik, V(t) =
∞

∑
k=0

Vk, R(t) =
∞

∑
k=0

Rk

where

S(t) = − 5.28tα1+α2
Γ(α1+α2+1) +

1.5552t2α1+α2
Γ(2α1+α2+1) +

0.6336t2α1+α2 Γ(α1+α2+1)
Γ(α1+1)Γ(α2+1)Γ(2α1+α2+1) −

0.297216t3α1+α2
Γ(3α1+α2+1)

− 0.076032t3α1+α2 Γ(α1+α2+1)
Γ(α1+1)Γ(α2+1)Γ(3α1+α2+1) −

0.076032t3α1+α2 Γ(2α1+α2+1)
Γ(2α1+1)Γ(α2+1)Γ(3α1+α2+1)−

0.110592t3α1+α2 Γ(2α1+α2+1)
Γ(α1+1)Γ(α1+α2+1)Γ(3α1+α2+1) −

0.5808tα1+2α2
Γ(α1+2α2+1) +

0.272448t2α1+2α2
Γ(2α1+2α2+1)

+ 0.101376t2α1+2α2 Γ(α1+α2+1)
Γ(α1+1)Γ(α2+1)Γ(2α1+2α2+1) +

0.069696t2α1+2α2 Γ(α1+2α2+1)
Γ(α2+1)Γ(α1+α2+1)Γ(2α1+2α2+1)

+ 0.069696t2α1+2α2 Γ(α1+2α2+1)
Γ(α1+1)Γ(2α2+1)Γ(2α1+2α2+1) −

0.063888tα1+3α2
Γ(α1+3α2+1) + 5.76t2α1

Γ(2α1+1)

− 0.6912t3α1
Γ(3α1+1) +

0.082944t4α1
Γ(4α1+1) −

48.tα1
Γ(α1+1) + 400,

I(t) = − 5.76tα1+α2
Γ(α1+α2+1) +

0.6912t2α1+α2
Γ(2α1+α2+1) −

0.082944t3α1+α2
Γ(3α1+α2+1) −

1.2672tα1+2α2
Γ(α1+2α2+1)

− 0.6336tα1+2α2 Γ(α1+α2+1)
Γ(α1+1)Γ(α2+1)Γ(α1+2α2+1) +

0.262656t2α1+2α2
Γ(2α1+2α2+1) + 0.076032t2α1+2α2 Γ(α1+α2+1)

Γ(α1+1)Γ(α2+1)Γ(2α1+2α2+1)

+ 0.076032t2α1+2α2 Γ(2α1+α2+1)
Γ(2α1+1)Γ(α2+1)Γ(2α1+2α2+1) +

0.110592t2α1+2α2 Γ(2α1+α2+1)
Γ(α1+1)Γ(α1+α2+1)Γ(2α1+2α2+1) −

0.209088tα1+3α2
Γ(α1+3α2+1)

− 0.069696tα1+3α2 Γ(α1+α2+1)
Γ(α1+1)Γ(α2+1)Γ(α1+3α2+1) −

0.069696tα1+3α2 Γ(α1+2α2+1)
Γ(α2+1)Γ(α1+α2+1)Γ(α1+3α2+1)

− 0.069696tα1+3α2 Γ(α1+2α2+1)
Γ(α1+1)Γ(2α2+1)Γ(α1+3α2+1) +

3.63t2α2
Γ(2α2+1) +

0.3993t3α2
Γ(3α2+1) +

0.043923t4α2
Γ(4α2+1) + 33.tα2

Γ(α2+1) + 300,

V(t) = 1.9984×10−17tα1+α2+α3
Γ[α1+α2+α3+1] − 2.39808×10−18t2α1+α2+α3

Γ[2α1+α2+α3+1] + 4.39648×10−18tα1+2α2+α3
Γ[α1+2α2+α3+1] +

2.19824×10−18/Γ[α1+α2+1]tα1+2α2+α3

Γ[α1+1]Γ[α2+1]Γ[α1+2α2+α3+1] − 3.9968×10−19tα1+α2+2α3
Γ[α1+α2+2α3+1] −

1.14492×10−16tα2+α3
Γ[α2+α3+1] − 1.25941×10−17t2α2+α3

Γ[2α2+α3+1] − 1.38535×10−18t3α2+α3
Γ[3α2+α3+1] +

2.28983×10−18tα2+2α3
Γ[α2+2α3+1] + 2.51882×10−19t2α2+2α3

Γ[2α2+2α3+1] − 4.57967×10−20tα2+3α3
Γ[α2+3α3+1] + 0.08t2α3

Γ[2α3+1]

− 0.0016t3α3
Γ[3α3+1] +

0.000032t4α3
Γ[4α3+1] −

4.tα
3

Γ[α3+1] + 200,

R(t) = 1.tα4
Γ[1+α4]

+ 0.33tα2+α4
Γ[1+α2+α4]

− 0.0576tα1+α2+α4
Γ[1+α1+α2+α4]

+ 0.006912t2α1+α2+α4
Γ[1+2α1+α2+α4]

+ 0.0363t2α2+α4
Γ[1+2α2+α4]

−
0.012672tα1+2α2+α4
Γ[1+α1+2α2+α4]

− 0.006336tα1+2α2+α4
Γ[1+α1+α2]Γ[1+α1]Γ[1+α2]Γ[1+α1+2α2+α4]

+ 0.003993t3α2+α4
Γ[1+3α2+α4]

−
0.02t2α4

Γ[1+2α4]
− 0.0066tα2+2α4

Γ[1+α2+2α4]
+ 0.001152tα1+α2+2α4

Γ[1+α1+α2+2α4]
− 0.000726t2α2+2α4

Γ[1+2α2+2α4]

+ 0.0004t3α4
Γ[1+3α4]

+ 0.000132tα2+3α4
Γ[1+α2+3α4]

− 8.×10−6t4α4
Γ[1+4α4]

+ 100.

(11)

To model the formulation stated in (3), we apply the LADM method to obtain the
solution. The equations produced for α ∈ [0, 1] at t ∈ [0, 1] are huge, involving eleven
values for α with eleven values for t, producing 121 terms for the four cases. Thus, we have
shown them in Figures 15–19.
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Using the solutions to the ODEs for α1 = α2 = α3 = α4 = 1 and by utilizing the
fourth order Laplace Adomian decomposition method (note that increasing the order of
the method, we can gain a better accuracy of the solution), as given by

S(t) = 400− 48t + 0.24t2 + 0.2584t3 − 0.00403t4,
I(t) = 300 + 33t− 1.065t2 − 0.24065t3 + 0.00703812t4,
V(t) = 200− 4t + 0.04t2 − 0.000266667t3 + 1.33333× 10−6t4,
R(t) = 100 + t + 0.155t2 − 0.00458333t3 − 0.000578708t4.

(12)

Tables 4–7 report the values obtained from (11) for the functions S(t), I(t), V(t), and
R(t), respectively, with αi ∈ {0.0, 0.1, 0.2, . . . , 0.9, 1.0} and t ∈ [0, 1]. Figure 15 shows the
plots of the functions S(t), I(t), V(t), and R(t), with αi ∈ {0.0, 0.1, 0.2, . . . , 0.9, 1.0} and
t ∈ [0, 1]. Figures 16–18 show, respectively, the plots of the same functions with t ∈ [1, 2],
t ∈ [2, 5] and t ∈ [0, 30]. Again, the values of αi are taken from the set {0.0, 0.1, 0.2, . . . , 0.9, 1.0}.
Figure 19 provides the corresponding 3D plots. Additionally, we give the ODEs stated
in (12).

Table 4. S(t) at α1 ∈ [0, 1] and t ∈ [0, 1].

ABCDα1 S(t)
α1 t = 0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1
0 353.4 353.4 353.4 353.4 353.4 353.4 353.4 353.4 353.4 353.4 353.4

0.1 400.0 360.8 358.0 356.4 355.2 354.2 353.4 352.7 352.1 351.6 351.1
0.2 400.0 367.5 362.8 359.7 357.4 355.6 354.0 352.6 351.4 350.3 349.3
0.3 400.0 373.5 367.4 363.3 360.1 357.4 355.1 353.1 351.3 349.6 348.0
0.4 400.0 378.6 371.9 367.0 363.1 359.7 356.7 354.1 351.7 349.4 347.3
0.5 400.0 382.9 375.9 370.6 366.1 362.2 358.7 355.5 352.5 349.7 347.1
0.6 400.0 386.5 379.6 374.1 369.3 364.9 361.0 357.3 353.8 350.5 347.4
0.7 400.0 389.5 382.9 377.4 372.4 367.8 363.4 359.3 355.4 351.7 348.1
0.8 400.0 391.8 385.8 380.4 375.4 370.6 366.0 361.6 357.4 353.3 349.2
0.9 400.0 393.7 388.3 383.2 378.2 373.4 368.7 364.1 359.5 355.1 350.7
1 400.0 395.2 390.4 385.6 380.9 376.1 371.3 366.6 361.9 357.2 352.5

Table 5. I(t) at α2 ∈ [0, 1] and t ∈ [0, 1].

ABCDα2 I(t)
α2 t = 0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1
0 330.1 330.1 330.1 330.1 330.1 330.1 330.1 330.1 330.1 330.1 330.1

0.1 300.0 325.7 327.3 328.3 329.1 329.7 330.1 330.6 330.9 331.2 331.5
0.2 300.0 321.5 324.5 326.3 327.8 328.9 329.9 330.7 331.4 332.1 332.7
0.3 300.0 317.7 321.6 324.2 326.2 327.8 329.3 330.5 331.6 332.6 333.5
0.4 300.0 314.4 318.8 321.9 324.4 326.5 328.4 330.0 331.5 332.9 334.1
0.5 300.0 311.5 316.2 319.6 322.5 325.0 327.2 329.3 331.1 332.8 334.4
0.6 300.0 309.1 313.7 317.4 320.6 323.4 325.9 328.2 330.4 332.5 334.4
0.7 300.0 307.2 311.6 315.3 318.6 321.6 324.4 327.0 329.5 331.9 334.1
0.8 300.0 305.6 309.7 313.3 316.6 319.8 322.8 325.6 328.4 331.0 333.5
0.9 300.0 304.3 308.0 311.5 314.8 318.0 321.1 324.1 327.1 329.9 332.7
1 300.0 303.3 306.6 309.8 313.0 316.2 319.4 322.5 325.6 328.7 331.7

Table 6. V(t) at α3 ∈ [0, 1] and t ∈ [0, 1].

ABCDα3 V(t)
α3 t = 0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1
0 196.1 196.1 196.1 196.1 196.1 196.1 196.1 196.1 196.1 196.1 196.1

0.1 200.0 196.7 196.5 196.3 196.2 196.2 196.1 196.0 196.0 195.9 195.9
0.2 200.0 197.3 196.9 196.6 196.4 196.3 196.1 196.0 195.9 195.8 195.7
0.3 200.0 197.8 197.3 196.9 196.7 196.4 196.2 196.1 195.9 195.8 195.6
0.4 200.0 198.2 197.7 197.2 196.9 196.6 196.4 196.2 195.9 195.8 195.6
0.5 200.0 198.6 198.0 197.6 197.2 196.8 196.6 196.3 196.0 195.8 195.6
0.6 200.0 198.9 198.3 197.8 197.4 197.1 196.7 196.4 196.1 195.9 195.6
0.7 200.0 199.1 198.6 198.1 197.7 197.3 197.0 196.6 196.3 196.0 195.7
0.8 200.0 199.3 198.8 198.4 197.9 197.6 197.2 196.8 196.4 196.1 195.8
0.9 200.0 199.5 199.0 198.6 198.2 197.8 197.4 197.0 196.6 196.3 195.9
1 200.0 199.6 199.2 198.8 198.4 198.0 197.6 197.2 196.8 196.4 196.0
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Table 7. R(t) at α4 ∈ [0, 1] and t ∈ [0, 1].

ABCDα4 R(t)
α4 t = 0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1
0 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3

0.1 100.0 101.0 101.1 101.2 101.2 101.2 101.3 101.3 101.3 101.3 101.4
0.2 100.0 100.8 101.0 101.1 101.1 101.2 101.2 101.3 101.3 101.4 101.4
0.3 100.0 100.6 100.8 100.9 101.0 101.1 101.2 101.3 101.3 101.4 101.4
0.4 100.0 100.5 100.7 100.8 100.9 101.0 101.1 101.2 101.3 101.4 101.4
0.5 100.0 100.4 100.6 100.7 100.8 100.9 101.0 101.1 101.2 101.3 101.4
0.6 100.0 100.3 100.5 100.6 100.7 100.9 101.0 101.1 101.2 101.3 101.4
0.7 100.0 100.2 100.4 100.5 100.6 100.8 100.9 101.0 101.1 101.2 101.3
0.8 100.0 100.2 100.3 100.4 100.6 100.7 100.8 100.9 101.0 101.2 101.3
0.9 100.0 100.1 100.3 100.4 100.5 100.6 100.7 100.8 101.0 101.1 101.2
1 100.0 100.1 100.2 100.3 100.4 100.5 100.7 100.8 100.9 101.0 101.2
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Figure 15. Plots of the number of (a) susceptible S(t), (b) infected I(t), (c) vaccinated V(t), and
(d) recovered R(t) cases over time t ∈ [0, 1] (in days) for 11 solutions each based on the αith fractional
derivative with αi ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for all i ∈ {1, 2, 3, 4}.
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Figure 16. Plots of the number of (a) susceptible S(t), (b) exposed E(t), (c) infected I(t), and
(d) recovered R(t) cases over time t ∈ [1, 2] (in days) for 11 solutions each based on the αith fractional
derivative with αi ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for all i ∈ {1, 2, 3, 4}.
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Figure 17. Plots of the number of (a) susceptible S(t), (b) exposed E(t), (c) infected I(t), and
(d) recovered R(t) cases over time t ∈ [2, 5] (in days) for 11 solutions each based on the αith fractional
derivative with αi ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for all i ∈ {1, 2, 3, 4}.
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Figure 18. Plots of the number of (a) susceptible S(t), (b) exposed E(t), (c) infected I(t), and
(d) recovered R(t) cases over time t ∈ [0, 30] (in days) for 11 solutions each based on the αith
fractional derivative with αi ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for all i ∈ {1, 2, 3, 4}.
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(a) (b)

(c) (d)

Figure 19. 3D-plots of the number of (a) susceptible S(t), (b) infected I(t), (c) vaccinated V(t), and
(d) recovered R(t) cases over time t ∈ [0, 60] (in days) for 61× 11 solutions each based on the αith
fractional derivative with αi ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for all i ∈ {1, 2, 3, 4}.

6. Results, Discussion, and Conclusions

In the present investigation, the solutions obtained with the LADM were used to
plot fractional illustrations for various values of α as seen in Figures 15–18. Other than
stability analysis, the feasibility region analysis, the existence of positive solutions (see
Figure 11), and the sensitivity analysis (see Figure 12) were also performed. From the
sensitivity analysis, we showed that the coefficient of S, that is, the constant a, is the most
influential parameter of the basic reproduction numberR0. New propositions and theorems
were stated to claim that the epidemic model is replicating the pandemic spread. From
Figure 14a, we observed that the number of recovered cases increased more than did the
number of infected cases at around day #40 due to a consistent decrease in vaccination. At
approximately day #50, all infected cases were fully vaccinated. We presented the depletion
vaccination strategy model because it is not necessary to increase daily vaccination cases
when the number of infected and susceptible cases is reduced. Additionally, when the
spread is severe, more people can be vaccinated, but when the spread is less, people may
not be interested in vaccinating unnecessarily. Moreover, we mathematically established
the chance of the next wave of any pandemic disease and showed that it could be controlled
by a consistent vaccination strategy.

Typically, vaccines have been given to uninfected individuals to prevent them from
contracting COVID-19. Individuals who have recovered from the virus may not need to
be vaccinated for a certain period of time since they have natural immunity. Vaccines can
temporarily reduce immunity before boosting it again. When a person is already infected,
they are generally not recommended to receive vaccines for other diseases that require a
strong immune system. However, for diseases like rabies, individuals may be vaccinated
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even while they have an active infection. Currently, vaccines for actively infected COVID-19
cases are not available in most countries. The usual recommendation is self-quarantine
or medical quarantine under doctor’s supervision. We are interested in expanding our
current research to specifically investigate the implications of vaccines for actively infected
COVID-19 cases.

We utilized the LADM to obtain numerical simulations in our investigation, but other
methods such as homotopy perturbation and differential transform can also be used to
visualize the rate of change in the spread of epidemics over time.

Figures 15–18 depicted the fractional changes (fixed fractional order) in daily SIVR
cases over a period of time in days, while Figure 19 showed the daily changes in SIVR
cases (varying fractional order). The ordinary plots of these SIVR cases were provided in
Figure 14.

From Figures 15–18, it was evident that from day 0 until day 30, the susceptible
count decreased and increased for α1 over time t, while the infected (α2 over time t) and
recovered population (α3 over time t) increased and decreases, respectively. In contrast, the
vaccinated cases (α4 over time t) decreased. These trends reflect the biological dynamics of
the SIVR model.

We presented a novel SIVR model that employs consistent depletion vaccination
strategies to control infections. The model was analyzed using necessary mathematical
theories and validated with numerical simulations. Our motivation for developing the
SIVR model stemmed from diseases such as rabies, Ebola, and diabetes, for which com-
partmental models, including susceptible, infected, vaccinated, and recovered cases, are
commonly used.

Initially, the model was formulated as an ordinary differential system. However, to
capture the fractional changes that occur in our SIVR pandemic cases, we reformulated it
as a fractional ordered system. Our analysis showed that consistent depletion vaccination
strategies were highly effective in reducing infections, and after a certain period of time,
the diseases decreased steadily and eventually vanished completely.

Based on our findings, we recommend using fractional modeling to capture the very
small changes (fractional models) in infectious disease dynamics that lead to larger changes
observed in ordinary differential models.

In the future, we plan to explore the immunity developed after COVID-19 infection,
as discussed in [44], by considering the SIR model without the susceptible population.
Additionally, we will investigate models that incorporate the dead population, as discussed
in [37,45], as well as other related methods [46].
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