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Abstract: The paper considers the solvability of some inverse problems for fractional differential
equations with a nonlocal biharmonic operator, which is introduced with the help of involutive
transformations in two space variables. The considered problems are solved using the Fourier method.
The properties of eigenfunctions and associated functions of the corresponding spectral problems are
studied. Theorems on the existence and uniqueness of solutions to the studied problems are proved.
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1. Introduction

In this paper, the solvability of some inverse problems for the fractional analogue
of a parabolic equation with a nonlocal biharmonic operator are studied. The nonlocal
biharmonic operator is defined with the help of involutive mappings given in the space
R2. An involutive mapping or an involution S is a mapping that has the property S? = I,
where [ is the identity mapping.

As is well known, studies of problems in which, along with solving the equation,
it is necessary to find the right side, the coefficient of the equation, or the initial and
boundary functions are called inverse problems of mathematical physics. Inverse problems
have numerous applications in modern science; they arise in the study of problems in
acoustics, astronomy, geophysics, seismology, medical tomography, and other areas (see,
for example, [1,2] and references therein).

Direct and inverse problems for fractional differential equations with involution were
studied in [3-10]. In these works, the problems of finding the solution and the right side of
the equation in the case of one spatial variable were considered. Inverse problems in the case
of two spatial variables for differential equations of fractional order were studied in [11-16].

As far as we know, the initial-boundary value problems for partial differential equa-
tions of fractional order with operators of the fourth and higher orders have been insuf-
ficiently studied. In this direction, we can note works [17-24] where, in particular, the
inverse problems were also studied.

The problems close to our studies were considered in the work of S. Kerbal et al. [25].
In this work, for a differential equation of a fractional order with a differential operator of the
fourth order in two spatial variables, an initial-boundary value problem is studied, where the
boundary conditions in the first variable are specified as Dirichlet-type conditions, and those
in the second variable are considered as nonlocal Samarsky-lIonkin-type conditions. Note
that the attention of researchers to the study of the problems of the Samarskii-lonkin type
was initiated by the publication of N.I. Ionkin’s papers [26,27]. In contrast to classical
problems, in this problem, the corresponding spatial differential operator is non-self-adjoint,
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and, therefore, the system of eigenfunctions is incomplete. Consequently, problems arise in
studying the completeness and basis property of such systems. In [25], this problem was
studied for the fourth-order differential operators.

In this paper, we study two types of problems for a fractional-order differential equation
with a nonlocal biharmonic operator. In the first problem, boundary conditions of the
Dirichlet type are considered, and in the second problem, conditions of the type considered
in [25] are specified.

As we noted above, direct and inverse problems for equations with involutive trans-
formations were mainly studied for the second-order equations with one spatial variable.
For high-order equations, in particular for the fourth order, as well as for equations with
many space variables, such problems have not been previously studied. Similar problems
have been studied only for classical equations, i.e., for equations without involutive trans-
formations. The application of the Fourier method to the solution of such problems leads
to the study of spectral questions for high-order differential equations with involutive
transformations.

Previously, in [25], such questions were studied for a fourth-order equation without
involution. In our research, unlike [25], we consider the fourth-order equations with invo-
lutive transformations, and we use the completeness of systems of eigenfunctions, as well
as systems of eigenfunctions and associated functions for the fourth-order differential
operators with involution. Studying the properties of these systems, we use the Fourier
method to find solutions to the studied problems.

Let Q= {(x,y,t):0<x,y<10<t<T,T>0}. Let us introduce the notations

Oy ={(x,y):0<x,y<1},Qn={(xt):0<x<1,0<t<T},

Qu={(y,t):0<y<1,0<t<T}

Leta;,j=0,1,2,3 be real numbers. We introduce the operator
Lyo(x,y) = agA*o(x,y) + a18%0(1 — x,y) + axA?v(x, 1 — y) + azA?0(1 — x,1 —y).

2
2 2\2 . . . :
where A% = —aaxz + —aa 5 | is a biharmonic operator. If a; = a3 = 0, then instead of Ly, we

will use the notation Ly. We will call the operator L4 (L) a nonlocal biharmonic operator.
Note that the properties and applications of nonlocal elliptic operators L, are studied
in [28-30].
Let us formulate the problems that we will use further. Consider the following prob-
lems in the domain Q).

Problem 1. Find a pair of functions {u(x,y,t), f(x,y)} such that the following conditions are
satisfied:

(1) Functions u(x,y,t) and f(x,y) are smooth: u(x,y,t) € C(Q), D¥u(x,y,t), Lyu(x,y,t) €
C(Q), and f(x,y) € C(Q);
(2)  In the domain (), they satisfy the equation

Dfu(x,y,t) + Lau(x,y,t) = f(x,y), (x,y,t) € O (1)

(3)  The following conditions are satisfied

u(x,y,0) = ¢(x,y),u(x,y,T) = p(x,y), (x,y) € Oy, )
Mu(x,y, )| _ Mulxy )| o ®
Tan |y |, =02t €O ¥
"u(x,y,t) 9"u(x,y,t) .
o T\ Jr ) —_ N I 7 :O,m:O,Z, x,t EQXI (4)
Wy ly=o Wy 0 t
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Here, Dfu, « € (0,1] is the derivative of order w in the sense of Caputo, i.e.,

t
_1 _ )

Syt x) = 4 TOD of (t—1) "uc(t,x)dr,0<a <1 .

du(t,

MEitX)’a =1

Problem 2. Find a pair of functions {u(x,y,t), f(x,y)} such that the following conditions are
satisfied:

(1) Functions u(x,y, t) and f(x,y) are smooth: u(x,y,t) € C(Q), Dfu(x,y,t), Lau(x,y,t) €
C(Q), and f(x,y) € C(Q);
(2)  In the domain Q), they satisfy the equation

Dfu(x,y,t) + Lou(x,y,t) = f(x,y), (x,y,t) € Q; (5)

(3) Conditions (1.2) are satisfied and

Sunpt)| _ Puenn| Py _
ox! - ox! x:1/ oxk L 0,1=0,2, ,3,(y,t) € " (6)
k k
Ty THELD] k=02, (1) € O, %
9y ay
y=0 y=1

where ¢(x,y) and P(x,y) are predefined functions.

Note that the boundary conditions of Problem 1 are Dirichlet-type conditions, and some
of the boundary conditions of Problem 2 are Samarskii-lonkin-type conditions. In what
follows, we will show that the corresponding spatial differential operator in Problem 1 is
self-conjugate, whereas in Problem 2, it is non-self-conjugate. Consequently, the system of
eigenfunctions corresponding to Problem 2 is incomplete. Therefore, in Problem 2, in con-
trast to Problem 1, it is also necessary to study the completeness and basis properties of
such systems.

The results of this work are presented in the following order. In Section 2, the properties
of some biorthogonal systems related to the spectral issues of Problem 2 are described.
In Section 3, the known properties of the Mittag-Leffler type function, as well as a solution
to a one-dimensional differential equation of a fractional order are considered. Section 4 is
devoted to the study of the first inverse problem, where the main theorems on the existence
and uniqueness of the solution to the studied problem are given. Section 5 presents the
main theorem on the existence and uniqueness of a solution to Inverse Problem 2. The
conclusion is presented in Section 6.

2. Study of the Properties of a Biorthogonal System
Let

Xo(x) =1, Xp,_1(x) = cos(27nx), Xo, (x) = xsin(27wnx), Yi(y) = V2sin(kmy),
Xo(x) =2(1 — x), X, 1(x) = 4(1 — x) cos(27tnx), Xo, (x) = 4sin(27tnx), n,k € N.

Consider the following systems

Zok(x,y) = Y (y), Zan-1k(x,¥) = X2n—1)(¥) Yk (¥), Zauk(x, y)
= Xon(x)Yk(y),m,k € N, (8)

Wok (%, y) = Xo (%) Ye(¥), Wian-1)x (%, ¥) = Xn—1) (%) Ye (), Wak (x, )
= XZW(x)Yk(y),n,k € N. (9)
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Let us consider some well-known properties of these systems. It was shown in [25]
that the functions Zoy(x, ¥), Z(2,—1)k(x, ¥) and Zy(x, y) satisfy the boundary conditions
(6) and (7), while the functions W (x,y), Wian—1)k(x, ), Wanr (%, y) satisfy conjugate condi-

tions, i.e.,
akW(x,y) alW(x,y) o'W (x y)
_— :Olk: /2/7 :7/ ,l:1, y ,1, l
oxk 0 ox! ox! sy €01, a0
x=0 x=0 x=1
k k
awi(’]:fy) — M =0,k=0,2y€[0,1]. (11)
9y dy
y=0 y=1

In addition, the following assertions are proved (see also [27]).
Lemma 1. The systems of functions (8) and (9) are biorthogonal.
Lemma 2. The systems of functions (8) and (9) form a Riesz basis in Ly (Qky).

Systems (8) and (9) also have the following additional properties.

Lemma 3. The system of functions {Zok/ Zom—1)ks Zka} satisfies the following equalities

N Zo(x,y) = (krt)* Zor(x,y),

A27 _ 2 212
n-viy) = [@n)* + (k7)*| Z i 1ex,y),

N Zay) = [0 + (k0] Za ()

— 4(27n) | 27n)? + (k70)*| Z g1y (5, 9).

Proof. For the function Zy(x,y), we have

A Zge(x,y) = a—4+2ia—2+a—4 V2sin(kry)
oY) = T 2o 52 T 3t y

= (km)*V2sin(kmry) = (k)*Zo(x,y).
Similarly, for the function Z,,_1)x(x, ¥), we obtain

NZ oy 1(x,y) = Xgﬁl) (0)Ye(y) +2X(, 1) ()Y () + X(2n-1) ™ )

= [@rn)* + 2(27m)? (k7)” + (k)| X ) (¥) Ve (9)

= (@) + (k] Xy (Vi) = [@n)? + (k)] Ziaaye().

Additionally, at last, for Z,x(x,y), we obtain
B2 Zoui(x,y) = X5, ()Y (y) + 25, ()Y () + Xau ()1 ()
2 2]? 2 2
= [@rn)? + (km)?| Xon (x)Yiy) — 4(27mm) [ (2700)” + (k)| X1 (%) Vi)

= [ + (k] Zaw(x, ) — 4(27m) [ @) + (k)2 Zig -1, 0).

The lemma is proved. [
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This lemma implies the following assertion.

Lemma 4. The system of functions {ZOk, Zom-1)ks Zka} satisfies the following equalities

LaZok (x,y) = O (k1) * Zoi (x, ), (12)
2 2]?
LoZ(u1)i(x¥) = 02| (270n)” + (k)| Z(u 1y 9), (13)

Lo Z00k(x,y) = Oz [ (270n)? + (k)2 Zawi(,9)
— 4(27m)62 | (270n)? + (k)| Zoy 1yelx,y), (14)
where 65 = ag + (—1)*1ay.
Proof. As Yi(1 —y) = (=1)*1Y,(y) , from Lemma 3, it follows that
N Zo(x,1 = y) = (=1 (krt)*Zok(x, ),
87311~ ) = (~)F [@n)? + (k)] Zganoaly),
N2 Za(x1 ~y) = (=1 @) + (k)] Zai(x,)

—4(27m) (1) (27n)? + (k7)*| Zin-1ye(x,y).
Hence, we obtain that equalities (12)-(14) are satisfied. The lemma is proved. O

The following assertion is proved similarly.
Lemma 5. The system of functions {Wok, Wam-1)k Wka} satisfies the following equalities

LoWor (%, ) = Ox 2 (k7t)* Wor (x, ),

2
LaWau-1i(%,) = Oka | 27n)* + (k7y)? | Wiz_aye(,y)

— B4 (27n) | (2700)? + (krey)? | Wa (x,9),

LaWauk(x,y) = 2 [ 27n)? + (k)] Wae ().

3. On Some Properties of the Mittag-Leffler Function
Consider a one-dimensional fractional differential equation of the type

Dfu(t) = Au(t) + f(¢), (15)

where 0 < « < 1,A € R, f(t) is a given function. As is known [31], the general solution to
Equation (15) is written as

() = C- Ex (M) + / (t = 7)* Eaa(A(t — 7)) f(1)dT.
0
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Here and further, the symbol C will denote an arbitrary positive constant whose value is
not important to us; E, 4(z) is a function of the Mittag-Leffler type [32], which has the form

=] k

z
Ep(z) = kg%) Tkt p) z,a,B € C, Re(a) > 0. (16)

Further, we use the following properties and formulas of the Mittag-Leffler type

function Ez):

(1) Function E,(—z) for z > 0, « € [0,1] is completely monotone [32];
(2) Fora € (0,2), v < largz| < m,B € R, v € (na/2; min{7; ma}) satisfies the esti-
mate [32]

‘Ea,ﬁ (Z)‘ <

; 17
112 (17)

(3) The formula holds [32]:

sz,y(Z) = 71_,(11) +ZE0(,0(+;1(Z)/

/ (z— )7 Egp(At*) P 1t = 2PHY1E, 50 (A7), (18)
O

4. Uniqueness and Existence of a Solution to Problem 1

Let X, (x) = v/2sin(nmx), Yy (y) = V2sin(kmy), n,k € N. Use the notation V. (x,y) =
X, (x)Yy(y). From equality (1) and conditions (3) and (4), it follows that the system
{ Vi (x, y) }; k=1 are eigenfunctions of the problem

20(x,y) = pPo(x,y), (%,y) € Qxy, (19)
m
My | _ (x,y) —0,m=020<y<1, (20)
ox™ x=0 ox™ x=1
m m
9o (f;y) _ 9 (’fny) —0,m=0,20<x<1. 1)
ay y=0 a]/ y=1
The corresponding eigenvalues are y2 , = 7w#[n? + k?] > nkeN.

As for the function X, (x), Yx(y), the equahtles

Xp(1— %) = (~1)" X (x), i1 — y) = (~DF i),

are satisfied, then for V,(x,y), we obtain

LyVi(x,y) = O a2 Vi (2, ), (22)

where
Opia = ao + (—1)"ag + (=1)"1ay + (—1)"**az,n,k € N. (23)

Indeed,
LV (x,9) = aoply Vi (%, y) + (=1)" a2, Vi (x, ) + (=1 appdy Vi (2, )
+ (=1)"Fazp2, Vo (x,y) = [110 + (1) May + (=) ay + (—1)n+kﬂ3} 12 Vo (2, 1)

= 9nk,4]/‘ik Vik (x/ }/) .
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Note that for 0, 4, the equalities are valid:
02n—1)(2k—1)4 = 40 + a1+ a2 + 43,02, _1)2x4 = 0 + a1 — a2 — az,
Oonok—1,4 = Ao — a1 + a2 — az, 0ppop 4 = Ao — a1 — a2 + az.
In the case a; = a3 = 0, we obtain 6,3, = 0,2 = ag + (—1)”“111, and hence,
0(2n—1)2 = a0 + a1, 6202 = a9 — a1. (24)

Further, we will assume that 6, 4 > 0 foralln,k € N.From equality (22) and conditions

(20) and (21), it follows that V,(x,y)and A, = 0,4 yflk are eigenfunctions and eigenvalues
of the spectral problem

Lyv(x,y) = Av(x,y), (x,y) € Quy (25)

with boundary conditions (20) and (21).
Consider the function

(1) = / u(x,y, )V (x,y)dxdy,n,k € N. (26)
Oy

Applying the operator D} to equality (26), and taking into account Equation (1) , we
have

Diup(t) = (Dfu(x,y, 1), Ve (x,y)) = (—=Lau(x,y,t) + f(x,y), Vi (x,y))
= _Gnk,4.unk<u(xr Y t)/ Vnk(x/ y)> + <f(xry)r Vnk(xry» = _/\nkunk(t) +fnk-
Moreover, from the boundary conditions (2), we obtain
unk(o) = Pnks unk(T) = Y, n,k €N,

where

Pk = / @, Y) Vi (x, y)dxdy, Yo = / $(x,y) Vi (x, y)dxdy,n, k € N.
Qxy Qxy

Thus, for the coefficients u,,(t), n,k € N, we obtain the following boundary value
problem

D?unk(t) = _Ankunk(t) +fnkr (27)

”nk(o) = Puk, ”nk(T) = Pnk- (28)

As we have already noted, the general solution to Equation (27) has the form

t
unk(t) = an . Ea,l(_)‘nkta) + / (t - T)ailEa,a(_)\nk(t - T)“>fnder Tl,k € N/
0

where Cyx,n,k € N are arbitrary constants. Taking into account that f,; = Const and
using property (18) of the function Ey o (— A (t — 7)) for the coefficients u,(t), we obtain
the representation

unk(t) = anEa,l(_)\nkta> +fnktaEa,tx+1(_/\nkta)'

Then, from the boundary conditions (28), we have

Puk = unk(()) = anr wnk = unk(T> = (Pnksz,l(_AnkTa) +fnkTaE1x,a+l(_)\nkT’X)'
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Hence, we find
f P = lpnk - (PnkEoc,l(_/\nkT“)
" T“Ea,a+1(_AnkT“)

From equality (18), it follows
1

T*Equs1(—AuT") = —/\le[Ea,l(—/\nkTa) —1].
Then,
Uk (t) = @ukEa1 (—Ankt®) + /{7:;[1 — Eq1(—=Aukt")] (29)
and
ok = Ak @i+ 7 )i"g}l"é( —_Af:%)' (30)

Substituting the obtained value of into (30), we obtain the final form of the functions

1—-E, 1(—/\nkta)
Uk (t) = @ur + 2 wk — Pkl 31
k(£) = @+ 7 Eur(— AT [k — @uk] (31)

Note that formulas (30) and (31) were obtained under the assumption that a solution to
Problem 1 exists. Moreover, if conditions (2) in Problem 1 are homogeneous, i.e., ¢(x) =0
and ¢(x) =0, then u,;(t) = 0,0 <t < T,n,k =1,2,.... Hence, for almostall 0 < t < T,
the condition

[ ey, Vi (x )y = 0
Oy

is satisfied. Then, due to completeness of the system V,x(x, ), the equality u(x,y,t) = 0
holds for almost all 0 < t < T. By the condition of the problem, u(x,y,t) € C(Q)), and
therefore, u(x,y,t) =0, (x,y,t) € Q). Similarly, we obtain f(x,y) =0, (x,y) € Qxy. Hence,
the solution to Problem 1 is unique. Let us formulate the main assertion for Problem 1.

Theorem 1. Let the coefficients aj,j=0,1,2,3in Problem 1 be such that the conditions 0, 4 >
0,1,k € N are satisfied, and for the functions ¢(x,y) and y(x,y), the conditions are satisfied:

dtip Aty = L. m=E . s .
(1) aixajy’ aixajy € C(QX]/>/ 1/] - 0/ 511 +] S 6/
om L oMy oy . . A
(2) 7mq) - r(re — Yy Jym - m _O/m_0/2/4/ /t EQ s
T N = T I r (v, 1) € Qe
am(P — B’”cp g M frng aml — = o
(3) oy ’yZO Y =1 ’ g =0 Yy =1 O,m 0, 2,4, (x, t) S th.

Then, the solution to Problem 1 exists, is unique, and is represented as a series

2 1-E, 1(*/\nkta)

7 /t = 7 + - nk — n Vn 7 4 32
M(X y ) ¢(x y ”/](2:1 1 _ Etxl(_)\nlex) (1P k (P k) k(x y) ( )
o )\nk(lpnk - q)nk)

x,y) = Lygp(x,y) + Vo (X, ). 33
f(xy) = Lag(x,y) nkzzll—Ea,l(_)\nkT“) K(xy) (33)

Proof. By its construction, the sum of the series (32) and (33) formally satisfies all the
conditions of Problem 1. We only have to investigate the smoothness of the sum of these
series. Let us show that Lyu(x,y,t) € C(Q)). Acting by the operator L4 on (32) and taking
into account formula (22) , we have

X 1 —E (=A™
Lyu(x,y,t) = Lag(x,y) + ) . E:’ll((—A::T“)) Ak (Yke = @) Vik (%, ). (34)
nk=1 ,
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Let us use the notation A, =1—E,1(—A;T%). As E,1(0) =1, A, > 0O, then there
is 6 > 0, such that |A,x| > ¢ > 0. Then, taking into account |V, (x,y)| < 2, we obtain

|Lu(x,y,t)\ < |L4q)(x/y)| +C Z /\nk(|(Pnk| + |17bnk|) (35)
nk=1

Thus, the series
Z Ank(|(/)nk| + |¢nk|) (36)
nk=1

is a majorant, and convergence of the series (34) reduces to the study of convergence of
the series (36). Using the conditions imposed on the function ¢(x) for the coefficients ¢,,
we obtain

nrt

1/1 11
Pk = 2/ (/ o(x,y smnnxdx) sinkmydy = i/ / ¢x(x,y) cos nrrx sin krrydxdy
0 00

QU

1 11
2 3
/a—q)sinnnxsinknydxdy: __2 3 //a—q)cosnnxsinkrcydxdy
0 (n7r) o0 7

Q

1.y 11 o
/ s sinnrrx sinkmydxdy = 2 = / / a—(g cos nrrx sin krrydxdy
0 dx (nn') 0 b X

11
6
= 2 5// 85(’) cos krry cos nrrxdxdy.
krt(nr) 5 b 0x°9dy

Thus, the equality is valid:

11
2 ’¢
P = m%k , (Pnk O// ox5ay cos nrx cos krrydxdy. (37)

(=)

Similarly, we obtain the equalities

11
2,09 / / g
= - , cos nrrx cos krrydxdy, 38
Pnk (ke )5 Prk nk /] 9xdy> yaxay (38)
—# /1/1 86 cos nrx cos krrydxd (39)
" G O~ [ [ acag o

Let us study the convergence of the series

Yo (2% + k) (|pur] + [ Y] (40)

nk=1

To do this, we first examine the convergence of the series Y 1#|@|.
nk=1
Taking into account (37), applying the Cauchy-Schwarz and Bessel inequalities, we
obtain

(e oo 1 (o) 1 [e] aé

4 (51) (512 4
Y rtlgul < ¥ el < | ¥ > le3 R < | .
nk=1 " nk=1 nk nk=1 n2k? nk=1 " axsay Ly (Qxy)
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[ee)
Hence, we conclude that the series Y. n*|¢,«| converges. Using conditions (38), we
n,k=1

similarly prove the convergence of the series Z k| @k
nk=1
Then, from equality (39), using the Cauchy-Schwarz and Bessel inequalities, we obtain

> Rlgu < ¥ e <] 5]
nk=1 nk= 11 0x ay Lz (Qxy)

[e9)
i.e., the series Y n?k?
nk=1
account the conditions imposed on §(x) in a similar way, we prove the convergence of

the series

|¢,x| converges. Hence, the series (40) also converges. Taking into

= 4 — 4 = 271.2
Z n |lpnk|/ Z k |1Pnk|/ Z nk ‘1Pnk|'
nk=1 n,k=1 nk=1

Then, according to the Weierstrass theorem, the series (34) converges absolutely and
uniformly in the domain ), and its sum is a continuous function in this domain. Similarly,
it is proved that Dfu(x,y,t) € C(Q)). Obviously, under the condition of the theorem, the
series (32) converges and u(x,y,t) € C(Q)). Further, we will prove that f(x,y) € C(Qyy).
From (33), taking into account that |V, (x, y)| < 2, we obtain

f)] < |Lag(x )| +C Y Au(l@nk] + [url)-
nk=1

Hence, we obtain that the series (36) is also a majorant for the series (33), whose con-
vergence, under the conditions of the theorem, was proved above. Thus, series (33) con-
verges absolutely and uniformly in the domain Oy, i.e., f(x,y) € C(Quy). The theorem is
proved. [

5. Uniqueness and Existence of a Solution to Problem 2

In this section, we will study Problem 2. We will seek the solution to the problem in
the form of series

(x,y,1) Z”Ok VZoe(x, )+ Y ton—1k(DZon—1)c(x,y)
n,k=0

+ Z uan Z2nk X, 3/) (41)

n,k=0
% y) =Y forZok(xy) + Y fon-1)kZon-1k(x,y) + 2 fonkZoani(xy).  (42)
k=1 n,k=1 n,k=1

Here, ugy(t), up,_1x(t), ta, k(t) are unknown functions, and for, fon_1x, fonk are un-
known constants.

Using Lemma 1 for the coefficients uok (), 42,1k (t), 42k (t), foks fan—1k, fonk from (41)
and (42), we obtain the following representations

ug(t) =< u(x,y,t), Wor (x,¥) >, 1) (t) =< u(x,y,t), Wan_1i(x,y) >
Man(t) =< u(x/yft)/WZHk(x/y) >, (43)

foe =< f(x,9), Wor(x,y) >, fon—1yx =< f(x,y), Wan-1k(x,y) >
fonk =< f(x,y), Wamk(x,y) > (44)
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Then, using Equation (5) and Lemma 5 of the function Wy (x, y for the coefficients
gk (t), we obtain

D ug(t) =< Dfu(x,y,t), Wor(x,y) >=< —Lou(x,y,t) + f(x), Wor(x, y) >
= — <u(x,y,t), LLWo(x,y) > + < f(x), Wor(x,y) >
= =2 (km)* <u(x,y,t), Wo (%, y) > +for = —0k2 (k) uor(t) + for-

In addition, from the conditions (2), it follows that

uge(0) =< u(x,y,0), Wok(x, y) >=< @(x,y), Wor(x,y) >= ok,

uge(T) =< u(x,y, T), Wor(x,y) >=<(x,y), Wor(x, ¥) >= o
Thus, for the function uy(t), we obtain the problem

Dfugk(t) + Aoktox(t) = fok, (45)

uok(0) = o, ok (T) = Pox, (46)

where Agp = 6o (k)4
Similarly, from Equation (5) and Lemma 5 for the coefficients 1, (t), we obtain

D*uppie(t) + Aoutionk(t) = fonk, (47)
Uk (0) = Qonk, ik (T) = Pouk, (48)

_ 2 212
when A = 6 [(znn) + (km) }
Further, using Equation (5) and Lemma 5 for the function U(p—1) «(t), as in the case
for the coefficients ug (), 12,1 (f), we obtain

D%u(a—1)(t) + Aznkttn—1)k(t) = fon—1)k + Aznktiznk (£), (49)

un-1)%(0) = 1)k Un-1k(T) = Pn-1)k (50)

where Ay, = 46; [(27m)2 + (kn)z].
As follows from (15) and (16), the solution to Equation (45) that satisfies the first
condition from (46) is written as

t
uok(t) = @okEa(—Aokt") + / (t = 1) Eqa(—Agk(t — T)") ford.
0
Hence, taking into account fo; = Const and formula (18), we have

uok(t) = @okEa(—Aokt™) + fort" Equr1(—Aokt").

To find the coefficient fy;, we use the second condition from (46). From this condition
it follows that

PokEa(—= Aok T") + fok T"Enut1 (= Aok T*) = Pox-

Hence, we find

1
= — E (—Apn T® . 51
Jor T Ep or1(— Aok TY) (Yo — Ea(—AokT") pok) (51)
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Substituting the obtained values of fj into the expressions for ug(t), we obtain

tt Etx,tx-i-l ( _AOktlx>

_ _ o

] (Yok — PokEa(—A0kTY)). (52)

Similarly, from (47) and (48), we find 15, (t) and f,x. The corresponding solution has
the form

t* Eoc,szrl (_)Lanta)
T« sz,a—l—l (_)\an sz)

uan<t) = (PanEa(_Aanta) + (lPan - (PanEw(_AanT“))r (53)

1
fonk = T Ey w1 (A T ($2nk — Ea(—A2ukT) @2k )- (54)

Consider Equation (49). The solution to the equation satisfying the second boundary
condition from (50) is

un-1)k(t) = @n—1)kEa(—A2urt”)
t
+ / (i’ . T)aflEa,u(—/\znk(t — T)’J‘) (2n7r;\2nku2nk(r) +f(2n—1)k)dT'
0
Taking into account that f(5,,_1)x = Const and formula (18), we simplify the last expression

Uon-1)k(t) = @n-1)kEa(=A2ukt™) + flan—1)ct" Enat1(—A2ukt®)

t
+ 27”1}\2?11( / (t - T)a_l Enn (_A2nk(t - T)a)Man(T)dT'
0
To find the coefficient f(5,_1);, we use the second condition from (50). We have

Pn—1)kEa(=A20kT*) + f2n—1)k T" Eqjat1 (= A2k T*)
T

+ 271 A g / (T = )" En (= Ak (T = T) e (T)dT = (20135
0

Then, we obtain

1
k= 1k — _qkEa(—=Agu T®
fn-1) T“Ea,aﬂ(*)\znkT“)[%n 1k — P2n—1kEa (= A2 T")
T

- 27”1}\2111( / (T_ T)a_lEa,a(_Aan(T B T)a)uZHk(T)dT . (55)
0

Substituting f(,,_1)x into the expression for u(5,_1),(t), we obtain

tleac,zx-&-l (*/\anta)

T’XEtx,zx-&-l (7/\2nkT’X)
T

27T A gy / (T =) Eqa (= Ao (T = 7)Y (T)dT

0

[Won—1k — P2n—1kEa (= A2 T")]

un-1k(t) = @n-1)kEa(—A2ut") +

_ t“Euc,oc+1 (7/\2nkttx)
T‘an,tx+1 (_/\anT“)

t
27k [ (=) Eua(—Aau(t = 7)Yk (D). (56)
0
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Further, using the first formula from equality (18), we represent the coefficients 1, (t)
and f,; from equalities (51)—(56) as

_ Ea(—Akt") — Ea(—AokT") 1 — Ex(—Aokt")
S S — Ep(— A T* 58
for = 1= Eu (=g T) (or — Ea(—=AokT") por), (58)
Eo(=Aont") = Ea(=A2ucT") 1 — Ea(=Aomt")
Ui (t) = + , 59
Zﬂk( ) 1 _ E[x(_/\anTa) 2nk 1 _ Elx(_AznkTa) lPan ( )
A
Jonk = 7 E“(in/liz T (2uk — Ea(=A2uk T") 920k), (60)
n
_ EIX(*)‘antw) - Ea(*)ﬂnkTa) 1-— Ea(*/\ant“)
M(Z}’l*l)k(t) - 1— EDL(_AanTﬂ‘) q’(anl)k + 1— Ea(_AZ;qkTIX) lpZn—lk
27nA
(1 E ( /\an T“))Z (1 - Ea(_)‘anT“))Fnk(t)((Pan - lPan)
— La\ 7 A\2nk
27t
- (1 E ( /\an T”‘))Z (1 - Evé(_/\anta))Fnk(T)(q)an - ¢2nk)/ (61)
— La\ ™ A\2nk
Aan

fen-1k = 7= (Aot TY) [Wn—1)k — P2n—1kEa (= A2k T")]

2711 A Fuk (T)
- [@2n—1k — P2nk]
(1 Ea(—AgT®)* " !
. 27T1’1;\2nk _ B "
1— Etx(_/\znkT’X) W’an (PanlkElX( /\anT )] (62)

where t
Fnk(t) = / (t - T)ailEa,a(_Aan(t - T)DC)Ea(_)‘anTQ)dT'
0

Thus, the solutions to the problem have the form (41) and (42), where the functions
ugr(t), upy_1x(t), u,k(t) and coefficients for, fon 1k, foux are determined, respectively,
by formulas (57)—(62) .

Let us formulate the main assertion regarding Problem 2.

Theorem 2. Let coefficients ay and ay in Problem 2 be such that ag £ aq > 0 and functions ¢(x,y)
and P(x,y) satisfy the conditions

ditip aitiy _ AU ‘
(1) aixajy/ a,'xa]'y c C(Qxy), l,] = 0,5/1 +] S 6/

do|  _ o dpl oy P .
@ Ixly=g  Ox|y=1’ Ox|y—g O« x:lll =024
o I _gi—1 1
(3) ajx =1 - Y aix x=1 - Oll - 1/ 3/
o aflp .
(4) £ =0, %% =0,/=0,2,4.
Iy lx=0,1 Iy |x=0,1 J

Then, a solution to Problem 2 exists and is unique.
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Proof. The existence of a solution to the problem. Since system (8) forms the Riesz basis in
the space Ly (Qyy), the functions u(x, y,t) and f(x,y) can be represented in the form (41)
and (42), where the coefficients fo, f(2,—1)k, fauk and functions u(t), 12,1k (), uonk () are
determined, respectively, by Formulas (57)—(62).

By construction, the functions u(x,y,t) and f(x,y) satisfy Equation (5) and condi-
tions (6) and (7). Let us show that Lou(x,y,t) € C(Q). Taking into account Lemma 4, acting
by the operator L, on (41), we have

Lyu(x,y,t) = Y Aoxttor (£) Zox (x, y) + Z Akt n—-1)k (1) Z2n-1)k (%, Y)
k=1 nk=1

+ ) ugmk(t <A2nkz2nk(x y) — (27-[”)7\2nkz(2n71)k(x/]/)>- (63)
n,k=0

Further, taking into account the following inequalities

206(x, )| < V2, [Zu-1i(6¥)| £ V2, okl (x,9) < V2, (x,9) € Oy,
we obtain
Lau(x,y, 1) < C| Y Aoluoe(®)l+ Y At (2 (8)] + 2 (D)) . (64)
k=1 nk=1

Now, let us estimate the functions gy (), 12,1y (t), and uz,(t). From (57), we obtain

Eo(—Aokt") — Ex(—AgkT) "
1— Eo(—AgeT®) 7O

|uok(£)| <

1 — Eq(—Aget®)
1= Eu(AgeT®) 7|

Hence, taking into account the estimate (17) and the complete monotonicity of the
Mittag-Leffler function, as well as the fact that E,(0) = 1, Ao, > 0, we obtain

luok ()] < C(|@ok| + [ox|)- (65)

Similarly, from (59), we obtain

[u2nk ()| < C(lp2nk| + [W2nk])- (66)

Now, we will estimate 15, _1)x(f). From (61), we obtain

1)) < C(I9n-1l + 9201l
Fpan-1k| + 270 A0 (|Far (1) + [Bar(T)) (| @20k] + [$202])) - (67)

Taking into account formulas (17) and (18), we estimate F, ()

|Fnk oc 1E0¢ AanTW)dT = CthEa,tx+1<_/\2nktlx) <

O\H-

hence,

5 ([ P20 k| + |4’2nk|)>-

[un 1)) < C [P@n—1)kl + [¥2n—1) k| + +
(2rtn)” + (k)
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Then, (64) takes the form

oo

|Lu(x,y,t)| < C( Aok (|9ok| + [$ok!)
=1

+ i Aan((‘ﬁo(anl)k’+‘¢(2n71)kD +<|§02nk+|4]2nk‘))>‘

nk=1
Hence, we obtain that the series

[0 9)

Y. k* (| pok] + [$ok])+

k=1

- i (n4 42 4 k4) (‘?(anl)k‘ + ‘1,0(2,1,1);{‘ + | @onk| + |1p2nk|) (68)

nk=1

is a majorant, and the convergence of the series (63) reduces to the study of the convergence
of the series (68).
Let us show the convergence of the series

Y- K4 (k] + [wox])- 69)
k=1

Integrating by parts the integral in the representation of the coefficients ¢, taking
into account the conditions imposed on ¢(x, y), we easily obtain the equality

11 \/i 11 85
Pok = //(P(x,]/)Wok(x, y)dxdy = Wq)gk, (pgk = //aing COSkT[]/dxdy. (70)
00 00

Similarly, taking into account the conditions imposed on §(x, ), we obtain

V2 [ oy
Yok = ngk' v = //a—fcosknydxdy. (71)
00

Further, taking into account the relationship (70) and (71), and using the Cauchy-
Schwarz and Bessel inequalities, we have
Lz(Qxy)>

i.e., the considered series converges. Let us prove the convergence of the series

¢
ay°

Y

ay°

3o+ o) < 3 (][] < c<

LZ(Qxy) ’

il T’Z4<‘(P(2n71)k‘ + ‘lp(zn,l)k‘ + [ @onk| + |¢2nk|). (72)

For coefficients ¢,, x and ¥, x, we obtain

11

Pon k = //cp(x,y)Wznk(x,y)dxdy =
00

42 (P(5,1)
(27tn)’knt 2nk 1

11

P

(PS{;) ://85x(§y cos krtydy cos 2rtnxdx,  (73)
00
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(27tn)°k

Similarly, for ¢, _1) y and §(5,,_1) x, we obtain

42 (51) 20+/2 _(5,1)

(27m) mk (2rn)o k| @Dk (27tn)®rrk Pan-1w

4v2 sy
Yonk = %nk ,IPZHk //BSxay cos 2rtnx cos krtydxdy. (74)
00

Pan-1)k = (75)

11

6

2n 1)k //8?c58y (1 — x) sin27tnx cos mwkydxdy,
00

11

- 9°

9”271 1)k / / 8x5(gy cos 2rtnx cos wkydxdy, (76)
00

A2 s L 20V2 s

, 77
(27‘[71) k| (2n=Dk (27tn) Ok T 2Dk @)

11
6
1/;(5'1) :// Iy (1 — x) sin27tnx cos rkydxdy,
00

11
)
= 2 kydxdy. (7
¢(2n 1k //8x58y cos 27tnx cos rtkydxdy.  (78)
00
Further, taking into account the relation (73)-(79) and using the Cauchy-Schwarz and
Bessel inequality, we obtain

e

kZZl n4<‘¢(2n71)k‘ + llp(anl)k’ + [@ank| + |¢2nk|)

g_: nlk(‘gozn 1)k ‘+‘4’2n 1)k ‘JF 95 ‘+‘lp2nk D

nk=1
L2 (Quy)
i.e., the considered series converges.

The convergence of the remaining series is proved similarly. Hence, the series (68)
majorizing the functional series (63) converges. Then, according to the Weierstrass theorem,
the series (63) converges absolutely and uniformly in the domain Q) , and its sum is a
continuous function in this domain. It is proved similarly that ¢Dg,u(x,y,t) € c(Q)),
and the condition f(x,y) € C(Qyy) follows from Equation (5) and from the fact that
cD§u(x,y,t), Lau(x,y,t) € C(Q).

Uniqueness of the solution. Suppose the opposite. Let Problem 2 have two different

solutions {uy(x,y,t),81(x,y)}, {u2(x,y,t),&2(x,y)} and
u(x,y,t) = ur(x,y,t) —uz(x,y,t), f(x,y) = fi(x,y) — fa(x,y).

Then, it is easy to check that (u(x,y,t), f(x,y)) satisfies the Equation (5), conditions (6)
and (7), and

IN

9
9x59y

2%y
9x59y

LZ(Qxy) ‘

u(x,y,0) =0,u(x,y,T) =0, (x,y) € Oxy. (79)
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We will show that problems (5)-(7) and (79) have only a trivial solution. Let (u(x,
f(x,y)) be a solution of this problem. Taking into account that ¢(x,y) = 0, ¥(x,y)
and Lemma 2, from the equalities (45), (46), (51), and (54), we obtain

yt),
= 0,

Pok(t) = Yok =0, @2n—1)k(t) = P2n—1)k = 0, P20k (t) = Ponk = 0.
Then, from (61)-(66), it follows that
ugk(t) = uu_1)k(t) = ugui(t) =0,

fok = fn-1)k = fank = 0.

Using these values in equalities (43) and (44) , we obtain that the functions u(x, y, t) and
f(x,y) are orthogonal to system (9), which is complete and forms a basis in Ly (Qyy).
Hence, almost everywhere, the equalities u(x,y,t) = 0in Q and f(x,y) = 0 in Oy, are
correct. Since u(x,y,t) € C(Q) and f(x,y) € C(Qyy), we conclude that u(x,y,t) = 0
and f(x,y) = 0, respectively, in the domains () and Qxy, ie, uyp(x,y,t) = ux(x,y,t) and
fi(x,y) = f2(x,y). The theorem is proved. [

6. Conclusions

In this paper, for some classes of fourth-order differential equations with involution,
we studied the solvability of inverse problems aimed at determining the right-hand side,
depending on the spatial variable. Two types of problems are considered: the first problem
with boundary conditions of the Dirichlet type and the second problem with conditions of
the Samarskii-lonkin type. To study these problems, we applied the method of separation
of variables. When studying the first problem, we used the properties of eigenfunctions
of similar problems for the second-order operators. In the study of the second problem,
the properties of eigenfunctions and associated functions of spectral problems for the
second-order operators were used. Using the properties of these systems, we proved the
theorems on the existence and uniqueness of solutions to the studied problems.

The same method can be used to study similar problems for equations of a higher
order, as well as for equations with multiple involutions. Our further investigations will be
directed to the study of such problems.

Author Contributions: M.M., B.K., M.K. and B.T. contributed equally to the conceptualization and
the formal analysis of the problem discussed in the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: The work was supported by a grant from the Ministry of Science and Education of the
Republic of Kazakhstan (grant no. AP09259074).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: All the data is present within the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

1. Isakov, V. Inverse Problems for Partial Differential Equations, 2nd ed.; Springer: New York, NY, USA, 2006; ISBN 0387253645.
2. Kravchenko, V.V. Direct and Inverse Sturm-Liouville Problems: A Method of Solution; Springer Nature: Berlin, Germany, 2020;

ISBN 978-3-030-47849-0.

3. Ahmad, B.; Alsaedi, A.; Kirane, M.; Tapdigoglu, R. An inverse problem for space and time fractional evolution equations with an
involution perturbation. Quaest. Math. 2017, 40, 151-160. [CrossRef]

4. Ahmad, A; Ali, M.; Malik, S.A. Inverse Problems for Diffusion Equation with Fractional Dzherbashian-Nersesian Operator. Fract.
Calc. Appl. Anal. 2021, 24, 1899-1918. [CrossRef]

5. Al-Salti, N.; Kirane, M.; Torebek, B.T. On a class of inverse problems for a heat equation with involution perturbation. Hacet. J.
Math. Stat. 2109, 48, 669-681. [CrossRef]


http://doi.org/10.2989/16073606.2017.1283370
http://dx.doi.org/10.1515/fca-2021-0082
http://dx.doi.org/10.15672/HJMS.2017.538

Fractal Fract. 2023, 7, 404 18 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Al-Salti, N.; Kerbal, S.; Kirane, M. Initial-boundary value problems for a time-fractional differential equation with involution
perturbation. Math. Model. Nat. Phenom. 2019, 14, 1-15. [CrossRef]

Kirane, M.; Samet, B.; Torebek, B. T. Determination of an unknown source term temperature distribution for the sub-diffusion
equation at the initial and final data. Electr. ]. Differ. Equ. 2017, 257, 1-13.

Kirane, M.; Sadybekov, M. A.; Sarsenbi, A. A. On an inverse problem of reconstructing a subdiffusion process from nonlocal data.
Math. Methods Appl. Sci. 2019, 42, 2043-2052. [CrossRef]

Mussirepova, E.; Sarsenbi, A.A.; Sarsenbi, A.A. The inverse problem for the heat equation with reflection of the argument and
with a complex coefficient. Bound. Value. Probl. 2022, 99, 1-13. [CrossRef]

Torebek, B.T.; Tapdigoglu, R. Some inverse problems for the nonlocal heat equation with Caputo fractional derivative. Math.
Methods Appl. Sci. 2017, 40, 6468—-6479. [CrossRef]

Brociek, R.; Wajda, A.; Stota, D. Inverse Problem for a Two-Dimensional Anomalous Diffusion Equation with a Fractional
Derivative of the Riemann-Liouville Type. Energies 2021, 14, 3082. [CrossRef]

Durdiev, D. K.; Rahmonov, A. A.; Bozorov, Z. R. A two-dimensional diffusion coefficient determination problem for the time-
fractional equation. Math. Methods Appl. Sci. 2021, 44, 10753-10761. [CrossRef]

Hajishafieiha, J.; Abbasbandy, S. Numerical solution of two-dimensional inverse time-fractional diffusion problem with non-local
boundary condition using a-polynomials. J. Appl. Math. Comput. 2022, 110, 1-21. [CrossRef]

Kirane, M.; Malik, S.A.; Al-Gwaiz, M.A. An inverse source problem for a two dimensional time fractional diffusion equation with
nonlocal boundary conditions. Math. Methods Appl. Sci. 2013, 39, 1056-1069. [CrossRef]

Malik, S.A.; Aziz, S. An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary
conditions. Comput. Math. Appl. 2017, 73, 2548-2560. [CrossRef]

Turmetov, B.K,; Kadirkulov, B.J. An Inverse Problem for a Parabolic Equation with Involution. Lobachevskii |. Math. 2021, 42,
3006-3015. [CrossRef]

Ahmad, A.; Baleanu, D. On two backward problems with Dzherbashian-Nersesian operator. AIMS Math. 2023, 8, 887-904.
[CrossRef]

Aziz, S.; Malik, S.A. Identification of an unknown source term for a time fractional fourth-order parabolic equation. Electr. ].
Differ. Equ. 2016, 293, 1-20.

Ashurov, R.; Muhiddinova, O. Inverse problem of determining the heat source density for the subdiffusion equation. Differ. Equ.
2020, 56, 1550-1563. [CrossRef]

Ashurov, R.; Fayziev, Y. On the Nonlocal Problems in Time for Time-Fractional Subdiffusion Equations. Fractal Fract. 2022, 6, 41.
[CrossRef]

Huntul, M.].; Abbas, M. An inverse problem of fourth-order partial differential equation with nonlocal integral condition. Adv.
Cont. Discr. Mod. 2022, 55, 1-27. [CrossRef]

Huntul, M.].; Tamsir, M.; Ahmadini, A. An inverse problem of determining the time-dependent potential in a higher-order
Boussinesq-Love equation from boundary data. Eng. Comput. 2021, 38, 3768-3784. [CrossRef]

Kirane, M.; Sarsenbi, A.A. Solvability of Mixed Problems for a Fourth-Order Equation with Involution and Fractional Derivative.
Fractal Fract. 2023, 7, 131. [CrossRef]

Yuldashev, T.K.; Kadirkulov, B.]. Inverse Problem for a Partial Differential Equation with Gerasimova-Caputo-Type Operator and
Degeneration. Fractal Fract. 2021, 5, 58. [CrossRef]

Kerbal, S.; Kadirkulov, B.J.; Kirane, M. Direct and Inverse Problems for a Samarskii-Ionkin Type Problem for a Two Dimensional
Fractional Parabolic Equation. Prog. Fract. Differ. Appl. 2018, 4, 147-160. [CrossRef]

Ionkin,N. I. The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary
condition. Differ. Uravn. 1977, 13, 294-304. (In Russian)

Ionkin, N.I; Morozova, V.A. The two-dimensional heat equation with nonlocal boundary conditions. Differ. Equ. 2000, 36, 982-987.
[CrossRef]

Turmetov, B.K.; Kadirkulov, B.]. On the Solvability of an Initial-Boundary Value Problem for a Fractional Heat Equation with
Involution. Lobachevskii |. Math. 2022, 43, 249-262. [CrossRef]

Turmetov, B.; Karachik, V.V. On eigenfunctions and eigenvalues of a nonlocal laplace operator with multiple involution. Symmetry
2021, 13, 1781. [CrossRef]

Turmetov, B.; Karachik, V.V.; Muratbekova, M.A. On a boundary value problem for the biharmonic equation with multiple
involutions. Mathematics 2021, 9, 2020. [CrossRef]

Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations, 1st ed.; Elsevier Science B.V.:
Amsterdam, The Netherlands, 2006; ISBNs 0444518320/9780444518323.

Gorenflo, R; Kilbas, A. A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications, Springer: Berlin,
Germany, 2014; ISBN 978-3-662-43929-6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1051/mmnp/2019014
http://dx.doi.org/10.1002/mma.5498
http://dx.doi.org/10.1186/s13661-022-01675-1
http://dx.doi.org/10.1002/mma.4468
http://dx.doi.org/10.3390/en14113082
http://dx.doi.org/10.1002/mma.7442
http://dx.doi.org/10.1007/s12190-022-01812-0
http://dx.doi.org/10.1002/mma.2661
http://dx.doi.org/10.1016/j.camwa.2017.03.019
http://dx.doi.org/10.1134/S1995080221120350
http://dx.doi.org/10.3934/math.2023043
http://dx.doi.org/10.1134/S00122661200120046
http://dx.doi.org/10.3390/fractalfract6010041
http://dx.doi.org/10.1186/s13662-022-03727-3
http://dx.doi.org/10.1108/EC-08-2020-0459
http://dx.doi.org/10.3390/fractalfract7020131
http://dx.doi.org/10.3390/fractalfract5020058
http://dx.doi.org/10.18576/pfda/040301
http://dx.doi.org/10.1007/BF02754498
http://dx.doi.org/10.1134/S1995080222040217
http://dx.doi.org/10.3390/sym13101781
http://dx.doi.org/10.3390/math9172020

	Introduction
	Study of the Properties of a Biorthogonal System
	On Some Properties of the Mittag-Leffler Function
	Uniqueness and Existence of a Solution to Problem 1
	Uniqueness and Existence of a Solution to Problem 2
	Conclusions 
	References

