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Abstract: The paper considers the solvability of some inverse problems for fractional differential
equations with a nonlocal biharmonic operator, which is introduced with the help of involutive
transformations in two space variables. The considered problems are solved using the Fourier method.
The properties of eigenfunctions and associated functions of the corresponding spectral problems are
studied. Theorems on the existence and uniqueness of solutions to the studied problems are proved.
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1. Introduction

In this paper, the solvability of some inverse problems for the fractional analogue
of a parabolic equation with a nonlocal biharmonic operator are studied. The nonlocal
biharmonic operator is defined with the help of involutive mappings given in the space
R2. An involutive mapping or an involution S is a mapping that has the property S2 = I,
where I is the identity mapping.

As is well known, studies of problems in which, along with solving the equation,
it is necessary to find the right side, the coefficient of the equation, or the initial and
boundary functions are called inverse problems of mathematical physics. Inverse problems
have numerous applications in modern science; they arise in the study of problems in
acoustics, astronomy, geophysics, seismology, medical tomography, and other areas (see,
for example, [1,2] and references therein).

Direct and inverse problems for fractional differential equations with involution were
studied in [3–10]. In these works, the problems of finding the solution and the right side of
the equation in the case of one spatial variable were considered. Inverse problems in the case
of two spatial variables for differential equations of fractional order were studied in [11–16].

As far as we know, the initial-boundary value problems for partial differential equa-
tions of fractional order with operators of the fourth and higher orders have been insuf-
ficiently studied. In this direction, we can note works [17–24] where, in particular, the
inverse problems were also studied.

The problems close to our studies were considered in the work of S. Kerbal et al. [25].
In this work, for a differential equation of a fractional order with a differential operator of the
fourth order in two spatial variables, an initial-boundary value problem is studied, where the
boundary conditions in the first variable are specified as Dirichlet-type conditions, and those
in the second variable are considered as nonlocal Samarsky–Ionkin-type conditions. Note
that the attention of researchers to the study of the problems of the Samarskii–Ionkin type
was initiated by the publication of N.I. Ionkin’s papers [26,27]. In contrast to classical
problems, in this problem, the corresponding spatial differential operator is non-self-adjoint,
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and, therefore, the system of eigenfunctions is incomplete. Consequently, problems arise in
studying the completeness and basis property of such systems. In [25], this problem was
studied for the fourth-order differential operators.

In this paper, we study two types of problems for a fractional-order differential equation
with a nonlocal biharmonic operator. In the first problem, boundary conditions of the
Dirichlet type are considered, and in the second problem, conditions of the type considered
in [25] are specified.

As we noted above, direct and inverse problems for equations with involutive trans-
formations were mainly studied for the second-order equations with one spatial variable.
For high-order equations, in particular for the fourth order, as well as for equations with
many space variables, such problems have not been previously studied. Similar problems
have been studied only for classical equations, i.e., for equations without involutive trans-
formations. The application of the Fourier method to the solution of such problems leads
to the study of spectral questions for high-order differential equations with involutive
transformations.

Previously, in [25], such questions were studied for a fourth-order equation without
involution. In our research, unlike [25], we consider the fourth-order equations with invo-
lutive transformations, and we use the completeness of systems of eigenfunctions, as well
as systems of eigenfunctions and associated functions for the fourth-order differential
operators with involution. Studying the properties of these systems, we use the Fourier
method to find solutions to the studied problems.

Let Ω = {(x, y, t) : 0 < x, y < 1, 0 < t < T, T > 0}. Let us introduce the notations

Ωxy = {(x, y) : 0 < x, y < 1}, Ωxt = {(x, t) : 0 < x < 1, 0 < t < T},

Ωyt = {(y, t) : 0 < y < 1, 0 < t < T}.

Let aj, j = 0, 1, 2, 3 be real numbers. We introduce the operator

L4v(x, y) ≡ a0∆2v(x, y) + a1∆2v(1− x, y) + a2∆2v(x, 1− y) + a3∆2v(1− x, 1− y).

where ∆2 =
(

∂2

∂x2 +
∂2

∂y2

)2
is a biharmonic operator. If a1 = a3 = 0, then instead of L4, we

will use the notation L2. We will call the operator L4 (L2) a nonlocal biharmonic operator.
Note that the properties and applications of nonlocal elliptic operators L4 are studied

in [28–30].
Let us formulate the problems that we will use further. Consider the following prob-

lems in the domain Ω.

Problem 1. Find a pair of functions {u(x, y, t), f (x, y)} such that the following conditions are
satisfied:

(1) Functions u(x, y, t) and f (x, y) are smooth: u(x, y, t) ∈ C(Ω̄), Dα
t u(x, y, t), L4u(x, y, t) ∈

C(Ω), and f (x, y) ∈ C(Ω̄);
(2) In the domain Ω, they satisfy the equation

Dα
t u(x, y, t) + L4u(x, y, t) = f (x, y), (x, y, t) ∈ Ω; (1)

(3) The following conditions are satisfied

u(x, y, 0) = ϕ(x, y), u(x, y, T) = ψ(x, y), (x, y) ∈ Ω̄xy, (2)

∂mu(x, y, t)
∂xm

∣∣∣∣
x=0

=
∂mu(x, y, t)

∂xm

∣∣∣∣
x=1

= 0, m = 0, 2, (y, t) ∈ Ω̄yt, (3)

∂mu(x, y, t)
∂ym

∣∣∣∣
y=0

=
∂mu(x, y, t)

∂ym

∣∣∣∣
y=1

= 0, m = 0, 2, (x, t) ∈ Ω̄xt, (4)
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Here, Dα
t u, α ∈ (0, 1] is the derivative of order α in the sense of Caputo, i.e.,

Dα
t u(t, x) =


1

Γ(1−α)

t∫
0
(t− τ)−αuτ(τ, x)dτ, 0 < α < 1

du(t,x)
dt , α = 1

.

Problem 2. Find a pair of functions {u(x, y, t), f (x, y)} such that the following conditions are
satisfied:

(1) Functions u(x, y, t) and f (x, y) are smooth: u(x, y, t) ∈ C(Ω̄), Dα
t u(x, y, t), L2u(x, y, t) ∈

C(Ω), and f (x, y) ∈ C(Ω̄);
(2) In the domain Ω, they satisfy the equation

Dα
t u(x, y, t) + L2u(x, y, t) = f (x, y), (x, y, t) ∈ Ω; (5)

(3) Conditions (1.2) are satisfied and

∂lu(x, y, t)
∂xl

∣∣∣∣∣
x=0

=
∂lu(x, y, t)

∂xl

∣∣∣∣∣
x=1

,
∂ku(x, y, t)

∂xk

∣∣∣∣∣
x=0

= 0, l = 0, 2, k = 1, 3, (y, t) ∈ Ω̄yt, (6)

∂ku(x, y, t)
∂yk

∣∣∣∣∣
y=0

=
∂ku(x, y, t)

∂yk

∣∣∣∣∣
y=1

= 0, k = 0, 2, (x, t) ∈ Ω̄xt, (7)

where ϕ(x, y) and ψ(x, y) are predefined functions.

Note that the boundary conditions of Problem 1 are Dirichlet-type conditions, and some
of the boundary conditions of Problem 2 are Samarskii–Ionkin-type conditions. In what
follows, we will show that the corresponding spatial differential operator in Problem 1 is
self-conjugate, whereas in Problem 2, it is non-self-conjugate. Consequently, the system of
eigenfunctions corresponding to Problem 2 is incomplete. Therefore, in Problem 2, in con-
trast to Problem 1, it is also necessary to study the completeness and basis properties of
such systems.

The results of this work are presented in the following order. In Section 2, the properties
of some biorthogonal systems related to the spectral issues of Problem 2 are described.
In Section 3, the known properties of the Mittag-Leffler type function, as well as a solution
to a one-dimensional differential equation of a fractional order are considered. Section 4 is
devoted to the study of the first inverse problem, where the main theorems on the existence
and uniqueness of the solution to the studied problem are given. Section 5 presents the
main theorem on the existence and uniqueness of a solution to Inverse Problem 2. The
conclusion is presented in Section 6.

2. Study of the Properties of a Biorthogonal System

Let

X0(x) = 1, X2n−1(x) = cos(2πnx), X2n(x) = x sin(2πnx), Yk(y) =
√

2 sin(kπy),

X̃0(x) = 2(1− x), X̃2n−1(x) = 4(1− x) cos(2πnx), X̃2n(x) = 4 sin(2πnx), n, k ∈ N.

Consider the following systems

Z0k(x, y) = Yk(y), Z(2n−1)k(x, y) = X(2n−1)(x)Yk(y), Z2nk(x, y)

= X2n(x)Yk(y), n, k ∈ N, (8)

W0k(x, y) = X̃0(x)Yk(y), W(2n−1)k(x, y) = X̃(2n−1)(x)Yk(y), W2nk(x, y)

= X̃2n(x)Yk(y), n, k ∈ N. (9)
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Let us consider some well-known properties of these systems. It was shown in [25]
that the functions Z0k(x, y), Z(2n−1)k(x, y) and Z2nk(x, y) satisfy the boundary conditions
(6) and (7), while the functions W0k(x, y), W(2n−1)k(x, y), W2nk(x, y) satisfy conjugate condi-
tions, i.e.,

∂kW(x, y)
∂xk

∣∣∣∣∣
x=0

= 0 , k = 0, 2,
∂lW(x, y)

∂xl

∣∣∣∣∣
x=0

=
∂lW(x, y)

∂xl

∣∣∣∣∣
x=1

, l = 1, 3, y ∈ [0, 1], (10)

∂kW(x, y)
∂yk

∣∣∣∣∣
y=0

=
∂kW(x, y)

∂yk

∣∣∣∣∣
y=1

= 0, k = 0, 2, y ∈ [0, 1]. (11)

In addition, the following assertions are proved (see also [27]).

Lemma 1. The systems of functions (8) and (9) are biorthogonal.

Lemma 2. The systems of functions (8) and (9) form a Riesz basis in L2
(
Ωxy

)
.

Systems (8) and (9) also have the following additional properties.

Lemma 3. The system of functions
{

Z0k, Z(2m−1)k, Z2mk

}
satisfies the following equalities

∆2Z0k(x, y) = (kπ)4Z0k(x, y),

∆2Z(2n−1)k(x, y) =
[
(2πn)2 + (kπ)2

]2
Z(2n−1)k(x, y),

∆2Z2nk(x, y) =
[
(2πn)2 + (kπ)2

]2
Z2nk(x, y)

− 4(2πn)
[
(2πn)2 + (kπ)2

]
Z(2n−1)k(x, y).

Proof. For the function Z0k(x, y), we have

∆2Z0k(x, y) =
(

∂4

∂x4 + 2
∂2

∂x2
∂2

∂y2 +
∂4

∂y4

)√
2 sin(kπy)

= (kπ)4
√

2 sin(kπy) = (kπ)4Z0k(x, y).

Similarly, for the function Z(2n−1)k(x, y), we obtain

∆2Z(2n−1)k(x, y) = X(IV)
(2n−1)(x)Yk(y) + 2X′′(2n−1)(x)Y′′k (y) + X(2n−1)(x)Y(IV)

k (y)

=
[
(2πn)4 + 2(2πn)2(kπ)2 + (kπ)4

]
X(2n−1)(x)Yk(y)

=
[
(2πn)2 + (kπ)2

]2
X(2n−1)(x)Yk(y) =

[
(2πn)2 + (kπ)2

]2
Z(2n−1)k(x, y).

Additionally, at last, for Z2nk(x, y), we obtain

∆2Z2nk(x, y) = X(IV)
2n (x)Yk(y) + 2X′′2n(x)Y′′k (y) + X2n(x)Y(IV)

k (y)

=
[
(2πn)2 + (kπ)2

]2
X2n(x)Yk(y)− 4(2πn)

[
(2πn)2 + (kπ)2

]
X2n−1(x)Yk(y)

=
[
(2πn)2 + (kπ)2

]2
Z2nk(x, y)− 4(2πn)

[
(2πn)2 + (kπ)2

]
Z(2n−1)k(x, y).

The lemma is proved.
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This lemma implies the following assertion.

Lemma 4. The system of functions
{

Z0k, Z(2m−1)k, Z2mk

}
satisfies the following equalities

L2Z0k(x, y) = θk,2(kπ)4Z0k(x, y), (12)

L2Z(2n−1)k(x, y) = θk,2

[
(2πn)2 + (kπ)2

]2
Z(2n−1)k(x, y), (13)

L2Z2nk(x, y) = θk,2

[
(2πn)2 + (kπ)2

]2
Z2nk(x, y)

− 4(2πn)θk,2

[
(2πn)2 + (kπ)2

]
Z(2n−1)k(x, y), (14)

where θk,2 = a0 + (−1)k+1a1.

Proof. As Yk(1− y) = (−1)k+1Yk(y) , from Lemma 3, it follows that

∆2Z0k(x, 1− y) = (−1)k+1(kπ)4Z0k(x, y),

∆2Z(2n−1)k(x, 1− y) = (−1)k+1
[
(2πn)2 + (kπ)2

]2
Z(2n−1)k(x, y),

∆2Z2nk(x, 1− y) = (−1)k+1
[
(2πn)2 + (kπ)2

]2
Z2nk(x, y)

−4(2πn)(−1)k+1
[
(2πn)2 + (kπ)2

]
Z(2n−1)k(x, y).

Hence, we obtain that equalities (12)–(14) are satisfied. The lemma is proved.

The following assertion is proved similarly.

Lemma 5. The system of functions
{

W0k, W(2m−1)k, W2mk

}
satisfies the following equalities

L2W0k(x, y) = θk,2(kπ)4W0k(x, y),

L2W(2n−1)k(x, y) = θk,2

[
(2πn)2 + (kπy)2

]2
W(2n−1)k(x, y)

− θk,24(2πn)
[
(2πn)2 + (kπy)2

]
W2nk(x, y),

L2W2nk(x, y) = θk,2

[
(2πn)2 + (kπ)2

]2
W2nk(x, y).

3. On Some Properties of the Mittag-Leffler Function

Consider a one-dimensional fractional differential equation of the type

Dα
t u(t) = λu(t) + f (t), (15)

where 0 < α ≤ 1, λ ∈ R, f (t) is a given function. As is known [31], the general solution to
Equation (15) is written as

u(t) = C · Eα(λtα) +

t∫
0

(t− τ)α−1Eα,α(λ(t− τ)α) f (τ)dτ.
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Here and further, the symbol C will denote an arbitrary positive constant whose value is
not important to us; Eα,β(z) is a function of the Mittag-Leffler type [32], which has the form

Eα,β(z) =
∞

∑
k=0

zk

Γ(α k + β)
, z, α, β ∈ C, Re(α) > 0. (16)

Further, we use the following properties and formulas of the Mittag-Leffler type
function E(z):

(1) Function Eα(−z) for z > 0, α ∈ [0, 1] is completely monotone [32];
(2) For α ∈ (0, 2), γ ≤ |argz| ≤ π, β ∈ R, γ ∈ (πα/2; min{π; πα}) satisfies the esti-

mate [32] ∣∣Eα,β(z)
∣∣ ≤ C

1 + |z| ; (17)

(3) The formula holds [32]:

Eα,µ(z) =
1

Γ(µ)
+ zEα,α+µ(z),

1
Γ(γ)

z∫
0

(z− t)γ−1Eα,β(λtα)tβ−1dt = zβ+γ−1Eα,β+γ(λzα). (18)

4. Uniqueness and Existence of a Solution to Problem 1

Let Xn(x) =
√

2 sin(nπx), Yk(y) =
√

2 sin(kπy), n, k ∈ N. Use the notation Vnk(x, y) =
Xn(x)Yk(y). From equality (1) and conditions (3) and (4), it follows that the system
{Vnk(x, y)}∞

n,k=1 are eigenfunctions of the problem

∆2v(x, y) = µ2v(x, y), (x, y) ∈ Ωx,y, (19)

∂mv(x, y)
∂xm

∣∣∣∣
x=0

=
∂mv(x, y)

∂xm

∣∣∣∣
x=1

= 0, m = 0, 2, 0 ≤ y ≤ 1, (20)

∂mv(x, y)
∂ym

∣∣∣∣
y=0

=
∂mv(x, y)

∂ym

∣∣∣∣
y=1

= 0, m = 0, 2, 0 ≤ x ≤ 1. (21)

The corresponding eigenvalues are µ2
n,k = π4[n2 + k2]2, n, k ∈ N.

As for the function Xn(x), Yk(y), the equalities

Xn(1− x) = (−1)n+1Xn(x), Yk(1− y) = (−1)k+1Yk(y),

are satisfied, then for Vnk(x, y), we obtain

L4Vnk(x, y) = θnk,4µ2
nkVnk(x, y), (22)

where
θnk,4 = a0 + (−1)n+1a1 + (−1)k+1a2 + (−1)n+ka3, n, k ∈ N. (23)

Indeed,

L4Vnk(x, y) = a0µ2
nkVnk(x, y) + (−1)n+1a1µ2

nkVnk(x, y) + (−1)k+1a2µ2
nkVnk(x, y)

+ (−1)n+ka3µ2
nkVnk(x, y) =

[
a0 + (−1)n+1a1 + (−1)k+1a2 + (−1)n+ka3

]
µ2

nkVnk(x, y)

= θnk,4µ2
nkVnk(x, y).
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Note that for θnk,4, the equalities are valid:

θ(2n−1)(2k−1),4 = a0 + a1 + a2 + a3, θ(2n−1)2k,4 = a0 + a1 − a2 − a3,

θ2n2k−1,4 = a0 − a1 + a2 − a3, θ2n2k,4 = a0 − a1 − a2 + a3.

In the case a2 = a3 = 0, we obtain θnk,2 ≡ θn,2 = a0 + (−1)n+1a1, and hence,

θ(2n−1),2 = a0 + a1, θ2n,2 = a0 − a1. (24)

Further, we will assume that θnk,4 > 0 for all n, k ∈ N. From equality (22) and conditions
(20) and (21), it follows that Vnk(x, y)and λnk = θnk,4µ2

nk are eigenfunctions and eigenvalues
of the spectral problem

L4v(x, y) = λv(x, y), (x, y) ∈ Ωxy (25)

with boundary conditions (20) and (21).
Consider the function

unk(t) =
∫

Ωxy

u(x, y, t)Vnk(x, y)dxdy, n, k ∈ N. (26)

Applying the operator Dα
t to equality (26), and taking into account Equation (1) , we

have

Dα
t unk(t) = 〈Dα

t u(x, y, t), Vnk(x, y)〉 = 〈−L4u(x, y, t) + f (x, y), Vnk(x, y)〉

= −θnk,4µnk〈u(x, y, t), Vnk(x, y)〉+ 〈 f (x, y), Vnk(x, y)〉 = −λnkunk(t) + fnk.

Moreover, from the boundary conditions (2), we obtain

unk(0) = ϕnk, unk(T) = ψnk, n, k ∈ N,

where

ϕnk =
∫

Ωxy

ϕ(x, y)Vnk(x, y)dxdy, ψnk =
∫

Ωxy

ψ(x, y)Vnk(x, y)dxdy, n, k ∈ N.

Thus, for the coefficients unk(t), n, k ∈ N, we obtain the following boundary value
problem

Dα
t unk(t) = −λnkunk(t) + fnk, (27)

unk(0) = ϕnk, unk(T) = ψnk. (28)

As we have already noted, the general solution to Equation (27) has the form

unk(t) = Cnk · Eα,1(−λnktα) +

t∫
0

(t− τ)α−1Eα,α
(
−λnk(t− τ)α) fnkdτ, n, k ∈ N,

where Cnk, n, k ∈ N are arbitrary constants. Taking into account that fnk = Const and
using property (18) of the function Eα,α

(
−λnk(t− τ)α) for the coefficients unk(t), we obtain

the representation

unk(t) = CnkEα,1(−λnktα) + fnktαEα,α+1(−λnktα).

Then, from the boundary conditions (28), we have

ϕnk = unk(0) = Cnk, ψnk = unk(T) = ϕnkEα,1(−λnkTα) + fnkTαEα,α+1(−λnkTα).
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Hence, we find

fnk =
ψnk − ϕnkEα,1(−λnkTα)

TαEα,α+1(−λnkTα)
.

From equality (18), it follows

TαEα,α+1(−λnkTα) = − 1
λnk

[Eα,1(−λnkTα)− 1].

Then,

unk(t) = ϕnkEα,1(−λnktα) +
fnk
λnk

[1− Eα,1(−λnktα)] (29)

and

fnk = λnk ϕnk +
λnk[ψnk − ϕnk]

1− Eα,1(−λnkTα)
. (30)

Substituting the obtained value of into (30), we obtain the final form of the functions

unk(t) = ϕnk +
1− Eα,1(−λnktα)

1− Eα,1(−λnkTα)
[ψnk − ϕnk]. (31)

Note that formulas (30) and (31) were obtained under the assumption that a solution to
Problem 1 exists. Moreover, if conditions (2) in Problem 1 are homogeneous, i.e., ϕ(x) ≡ 0
and ψ(x) ≡ 0, then unk(t) = 0, 0 ≤ t ≤ T, n, k = 1, 2, ... . Hence, for almost all 0 ≤ t ≤ T,
the condition ∫

Ωxy

u(x, y, t)Vnk(x, y)dxdy = 0

is satisfied. Then, due to completeness of the system Vnk(x, y), the equality u(x, y, t) = 0
holds for almost all 0 ≤ t ≤ T. By the condition of the problem, u(x, y, t) ∈ C(Ω̄), and
therefore, u(x, y, t) ≡ 0, (x, y, t) ∈ Ω̄. Similarly, we obtain f (x, y) ≡ 0, (x, y) ∈ Ω̄xy. Hence,
the solution to Problem 1 is unique. Let us formulate the main assertion for Problem 1.

Theorem 1. Let the coefficients aj, j = 0, 1, 2, 3 in Problem 1 be such that the conditions θnk,4 >
0, n, k ∈ N are satisfied, and for the functions ϕ(x, y) and ψ(x, y), the conditions are satisfied:

(1) ∂i+j ϕ

∂ix∂jy
, ∂i+jψ

∂ix∂jy
∈ C(Ω̄xy), i, j = 0, 5, i + j ≤ 6;

(2) ∂m ϕ
∂xm

∣∣∣
x=0

= ∂m ϕ
∂xm

∣∣∣
x=1

= 0, ∂mψ
∂xm

∣∣∣
x=0

= ∂mψ
∂xm

∣∣∣
x=1

= 0, m = 0, 2, 4, (y, t) ∈ Ω̄yt;

(3) ∂m ϕ
∂ym

∣∣∣
y=0

= ∂m ϕ
∂ym

∣∣∣
y=1

= 0, ∂mψ
∂ym

∣∣∣
y=0

= ∂mψ
∂ym

∣∣∣
y=1

= 0, m = 0, 2, 4, (x, t) ∈ Ω̄xt.

Then, the solution to Problem 1 exists, is unique, and is represented as a series

u(x, y, t) = ϕ(x, y +
∞

∑
n,k=1

1− Eα,1(−λnktα)

1− Eα,1(−λnkTα)
(ψnk − ϕnk)Vnk(x, y), (32)

f (x, y) = L4 ϕ(x, y) +
∞

∑
n,k=1

λnk(ψnk − ϕnk)

1− Eα,1(−λnkTα)
Vnk(x, y). (33)

Proof. By its construction, the sum of the series (32) and (33) formally satisfies all the
conditions of Problem 1. We only have to investigate the smoothness of the sum of these
series. Let us show that L4u(x, y, t) ∈ C(Ω̄). Acting by the operator L4 on (32) and taking
into account formula (22) , we have

L4u(x, y, t) = L4 ϕ(x, y) +
∞

∑
n,k=1

1− Eα,1(−λnktα)

1− Eα,1(−λnkTα)
· λnk(ψnk − ϕnk)Vnk(x, y). (34)
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Let us use the notation ∆nk = 1− Eα,1(−λnkTα). As Eα,1(0) = 1, λnk > 0, then there
is δ > 0 , such that |∆nk| ≥ δ > 0. Then, taking into account |Vnk(x, y)| ≤ 2, we obtain

|Lu(x, y, t)| ≤ |L4 ϕ(x, y)|+ C
∞

∑
n,k=1

λnk(|ϕnk|+ |ψnk|). (35)

Thus, the series
∞

∑
n,k=1

λnk(|ϕnk|+ |ψnk|) (36)

is a majorant, and convergence of the series (34) reduces to the study of convergence of
the series (36). Using the conditions imposed on the function ϕ(x) for the coefficients ϕnk,
we obtain

ϕnk = 2
1∫

0

 1∫
0

ϕ(x, y) sin nπxdx

 sin kπydy =
2

nπ

1∫
0

1∫
0

ϕx(x, y) cos nπx sin kπydxdy

= − 2

(nπ)2

1∫
0

1∫
0

∂2 ϕ

∂x2 sin nπx sin kπydxdy = − 2

(nπ)3

1∫
0

1∫
0

∂3 ϕ

∂x3 cos nπx sin kπydxdy

=
2

(nπ)4

1∫
0

1∫
0

∂4 ϕ

∂x4 sin nπx sin kπydxdy =
2

(nπ)5

1∫
0

1∫
0

∂5 ϕ

∂x5 cos nπx sin kπydxdy

=
2

kπ(nπ)5

1∫
0

1∫
0

∂6 ϕ

∂x5∂y
cos kπy cos nπxdxdy.

Thus, the equality is valid:

ϕnk =
2

kπ(nπ)5 ϕ
(5,1)
nk , ϕ

(5,1)
nk =

1∫
0

1∫
0

∂6 ϕ

∂x5∂y
cos nπx cos kπydxdy. (37)

Similarly, we obtain the equalities

ϕnk =
2

nπ(kπ)5 ϕ
(1,5)
nk , ϕ

(1,5)
nk =

1∫
0

1∫
0

∂6 ϕ

∂x∂y5 cos nπx cos kπydxdy, (38)

ϕnk =
2

(kπ)3(nπ)3 ϕ
(3,3)
nk , ϕ

(3,3)
nk =

1∫
0

1∫
0

∂6 ϕ

∂x3∂y3 cos nπx cos kπydxdy. (39)

Let us study the convergence of the series

∞

∑
n,k=1

(n4 + 2n2k2 + k4)(|ϕnk|+ |ψnk|). (40)

To do this, we first examine the convergence of the series
∞
∑

n,k=1
n4|ϕnk|.

Taking into account (37), applying the Cauchy–Schwarz and Bessel inequalities, we
obtain

∞

∑
n,k=1

n4|ϕnk| ≤
∞

∑
n,k=1

1
nk
|ϕ(5,1)

nk | ≤

√√√√ ∞

∑
n,k=1

1
n2k2

√√√√ ∞

∑
n,k=1

|ϕ(5,1)
nk |2 ≤ C

∥∥∥∥ ∂6 ϕ

∂x5∂y

∥∥∥∥
L2(Ωxy)

.
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Hence, we conclude that the series
∞
∑

n,k=1
n4|ϕnk| converges. Using conditions (38), we

similarly prove the convergence of the series
∞
∑

n,k=1
k4|ϕnk|.

Then, from equality (39), using the Cauchy–Schwarz and Bessel inequalities, we obtain

∞

∑
n,k=1

n2k2|ϕnk| ≤
∞

∑
n,k=1

1
nk
|ϕ(3,3)

nk | ≤ C
∥∥∥∥ ∂6 ϕ

∂x3∂y3

∥∥∥∥
L2(Ωxy)

,

i.e., the series
∞
∑

n,k=1
n2k2|ϕnk| converges. Hence, the series (40) also converges. Taking into

account the conditions imposed on ψ(x) in a similar way, we prove the convergence of
the series

∞

∑
n,k=1

n4|ψnk|,
∞

∑
n,k=1

k4|ψnk|,
∞

∑
n,k=1

n2k2|ψnk|.

Then, according to the Weierstrass theorem, the series (34) converges absolutely and
uniformly in the domain Ω, and its sum is a continuous function in this domain. Similarly,
it is proved that Dα

t u(x, y, t) ∈ C(Ω̄). Obviously, under the condition of the theorem, the
series (32) converges and u(x, y, t) ∈ C(Ω̄). Further, we will prove that f (x, y) ∈ C

(
Ω̄xy

)
.

From (33), taking into account that |Vnk(x, y)| ≤ 2, we obtain

| f (x, y)| ≤ |L4 ϕ(x, y)|+ C
∞

∑
n,k=1

λnk(|ϕnk|+ |ψnk|).

Hence, we obtain that the series (36) is also a majorant for the series (33), whose con-
vergence, under the conditions of the theorem, was proved above. Thus, series (33) con-
verges absolutely and uniformly in the domain Ω̄xy, i.e., f (x, y) ∈ C

(
Ω̄xy

)
. The theorem is

proved.

5. Uniqueness and Existence of a Solution to Problem 2

In this section, we will study Problem 2. We will seek the solution to the problem in
the form of series

u(x, y, t) =
∞

∑
k=0

u0k(t)Z0k(x, y)+
∞

∑
n,k=0

u(2n−1)k(t)Z(2n−1)k(x, y)

+
∞

∑
n,k=0

u2nk(t)Z2nk(x, y), (41)

f (x, y) =
∞

∑
k=1

f0 kZ0 k(x, y) +
∞

∑
n,k=1

f(2n−1) kZ2n−1 k(x, y) +
∞

∑
n,k=1

f2n kZ2n k(x, y). (42)

Here, u0 k(t), u2n−1 k(t), u2n k(t) are unknown functions, and f0k, f2n−1k, f2nk are un-
known constants.

Using Lemma 1 for the coefficients u0k(t), u(2n−1)k(t), u2nk(t), f0k, f2n−1k, f2nk from (41)
and (42), we obtain the following representations

u0k(t) =< u(x, y, t), W0k(x, y) >, u(2n−1)k(t) =< u(x, y, t), W(2n−1)k(x, y) >,

u2nk(t) =< u(x, y, t), W2nk(x, y) >, (43)

f0k =< f (x, y), W0k(x, y) >, f(2n−1)k =< f (x, y), W(2n−1)k(x, y) >,

f2nk =< f (x, y), W2nk(x, y) > (44)
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Then, using Equation (5) and Lemma 5 of the function W0k(x, y for the coefficients
u0k(t), we obtain

Dα
t u0k(t) =< Dα

t u(x, y, t), W0k(x, y) >=< −L2u(x, y, t) + f (x), W0k(x, y) >

= − < u(x, y, t), L2W0k(x, y) > + < f (x), W0k(x, y) >

= −θk,2(kπ)4 < u(x, y, t), W0k(x, y) > + f0k = −θk,2(kπ)4u0k(t) + f0k.

In addition, from the conditions (2), it follows that

u0k(0) =< u(x, y, 0), W0k(x, y) >=< ϕ(x, y), W0k(x, y) >= ϕ0k,

u0k(T) =< u(x, y, T), W0k(x, y) >=< ψ(x, y), W0k(x, y) >= ψ0k.

Thus, for the function u0k(t), we obtain the problem

Dα
t u0 k(t) + λ0ku0 k(t) = f0k, (45)

u0k(0) = ϕ0k, u0k(T) = ψ0k, (46)

where λ0k = θk,2(kπ)4.
Similarly, from Equation (5) and Lemma 5 for the coefficients u2nk(t), we obtain

Dαu2nk(t) + λ2nku2nk(t) = f2nk, (47)

u2nk(0) = ϕ2nk, u2nk(T) = ψ2nk, (48)

when λ2nk = θk,2

[
(2πn)2 + (kπ)2

]2
.

Further, using Equation (5) and Lemma 5 for the function u(2n−1)k(t), as in the case
for the coefficients u0k(t), u(2n−1)k(t), we obtain

Dαu(2n−1)k(t) + λ2nku(2n−1)k(t) = f(2n−1)k + λ̃2nku2nk(t), (49)

u(2n−1)k(0) = ϕ(2n−1)k, u(2n−1)k(T) = ψ(2n−1)k, (50)

where λ̃2nk = 4θk

[
(2πn)2 + (kπ)2

]
.

As follows from (15) and (16), the solution to Equation (45) that satisfies the first
condition from (46) is written as

u0k(t) = ϕ0kEα(−λ0ktα) +

t∫
0

(t− τ)α−1Eα,α(−λ0k(t− τ)α) f0kdτ.

Hence, taking into account f0k = Const and formula (18), we have

u0k(t) = ϕ0kEα(−λ0ktα) + f0ktαEα,α+1(−λ0ktα).

To find the coefficient f0k, we use the second condition from (46). From this condition
it follows that

ϕ0kEα(−λ0kTα) + f0kTαEα,α+1(−λ0kTα) = ψ0k.

Hence, we find

f0k =
1

TαEα,α+1(−λ0kTα)
(ψ0k − Eα(−λ0kTα)ϕ0k). (51)
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Substituting the obtained values of f0k into the expressions for u0k(t), we obtain

u0k(t) = ϕ0kEα(−λ0ktα) +
tαEα,α+1(−λ0ktα)

TαEα,α+1(−λ0kTα)
(ψ0k − ϕ0kEα(−λ0kTα)). (52)

Similarly, from (47) and (48), we find u2nk(t) and f2nk. The corresponding solution has
the form

u2nk(t) = ϕ2nkEα(−λ2nktα) +
tαEα,α+1(−λ2nktα)

TαEα,α+1(−λ2nkTα)
(ψ2nk − ϕ2nkEα(−λ2nkTα)), (53)

f2nk =
1

TαEα,α+1(−λ2nkTα)
(ψ2nk − Eα(−λ2nkTα)ϕ2nk). (54)

Consider Equation (49). The solution to the equation satisfying the second boundary
condition from (50) is

u(2n−1)k(t) = ϕ(2n−1)kEα(−λ2nktα)

+

t∫
0

(t− τ)α−1Eα,α(−λ2nk(t− τ)α)
(

2nπλ̃2nku2nk(τ) + f(2n−1)k

)
dτ.

Taking into account that f(2n−1)k = Const and formula (18), we simplify the last expression

u(2n−1)k(t) = ϕ(2n−1)kEα(−λ2nktα) + f(2n−1)ktαEα,α+1(−λ2nktα)

+ 2πnλ̃2nk

t∫
0

(t− τ)α−1Eα,α(−λ2nk(t− τ)α)u2nk(τ)dτ.

To find the coefficient f(2n−1)k, we use the second condition from (50). We have

ϕ(2n−1)kEα(−λ2nkTα) + f(2n−1)kTαEα,α+1(−λ2nkTα)

+ 2πnλ̃2nk

T∫
0

(T − τ)α−1Eα,α(−λ2nk(T − τ)α)u2nk(τ)dτ = ψ(2n−1)k.

Then, we obtain

f(2n−1)k =
1

TαEα,α+1(−λ2nkTα)
[ψ2n−1k − ϕ2n−1kEα(−λ2nkTα)

− 2πnλ̃2nk

T∫
0

(T − τ)α−1Eα,α(−λ2nk(T − τ)α)u2nk(τ)dτ

. (55)

Substituting f(2n−1)k into the expression for u(2n−1)k(t), we obtain

u(2n−1)k(t) = ϕ(2n−1)kEα(−λ2nktα) +
tαEα,α+1(−λ2nktα)

TαEα,α+1(−λ2nkTα)
[ψ2n−1k − ϕ2n−1kEα(−λ2nkTα)]

− tαEα,α+1(−λ2nktα)

TαEα,α+1(−λ2nkTα)
· 2πnλ̃2nk

T∫
0

(T − τ)α−1Eα,α(−λ2nk(T − τ)α)u2nk(τ)dτ

+ 2πnλ2nk

t∫
0

(t− τ)α−1Eα,α(−λ2nk(t− τ)α)u2nk(τ)dτ. (56)
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Further, using the first formula from equality (18), we represent the coefficients unk(t)
and fnk from equalities (51)–(56) as

u0k(t) =
Eα(−λ0ktα)− Eα(−λ0kTα)

1− Eα(−λ0kTα)
ϕ0k +

1− Eα(−λ0ktα)

1− Eα(−λ0kTα)
ψ0k, (57)

f0k =
λ0k

1− Eα(−λ0kTα)
(ψ0k − Eα(−λ0kTα)ϕ0k), (58)

u2nk(t) =
Eα(−λ2nktα)− Eα(−λ2nkTα)

1− Eα(−λ2nkTα)
ϕ2nk +

1− Eα(−λ2nktα)

1− Eα(−λ2nkTα)
ψ2nk, (59)

f2nk =
λ2nk

1− Eα(−λ2nkTα)
(ψ2nk − Eα(−λ2nkTα)ϕ2nk), (60)

u(2n−1)k(t) =
Eα(−λ2nktα)− Eα(−λ2nkTα)

1− Eα(−λ2nkTα)
ϕ(2n−1)k +

1− Eα(−λ2nktα)

1− Eα(−λ2nkTα)
ψ2n−1k

+
2πnλ̃2nk

(1− Eα(−λ2nkTα))2 (1− Eα(−λ2nkTα))Fnk(t)(ϕ2nk − ψ2nk)

− 2πnλ̃2nk

(1− Eα(−λ2nkTα))2 (1− Eα(−λ2nktα))Fnk(T)(ϕ2nk − ψ2nk), (61)

f(2n−1)k =
λ2nk

1− Eα(−λ2nkTα)
[ψ(2n−1)k − ϕ2n−1kEα(−λ2nkTα)]

− 2πnλ̃2nkFnk(T)

(1− Eα(−λ2nkTα))2 [ϕ2n−1k − ψ2nk]

− 2πnλ̃2nk
1− Eα(−λ2nkTα)

[ψ2nk − ϕ2n−1kEα(−λ2nkTα)] (62)

where

Fnk(t) =
t∫

0

(t− τ)α−1Eα,α(−λ2nk(t− τ)α)Eα(−λ2nkτα)dτ.

Thus, the solutions to the problem have the form (41) and (42), where the functions
u0 k(t), u2n−1 k(t), u2n k(t) and coefficients f0k, f2n−1k, f2nk are determined, respectively,
by formulas (57)–(62) .

Let us formulate the main assertion regarding Problem 2.

Theorem 2. Let coefficients a0 and a1 in Problem 2 be such that a0± a1 > 0 and functions ϕ(x, y)
and ψ(x, y) satisfy the conditions

(1) ∂i+j ϕ

∂ix∂jy
, ∂i+jψ

∂ix∂jy
∈ C(Ω̄xy), i, j = 0, 5, i + j ≤ 6;

(2) ∂i ϕ

∂ix

∣∣∣
x=0

= ∂i ϕ

∂ix

∣∣∣
x=1

, ∂iψ

∂ix

∣∣∣
x=0

= ∂iψ

∂ix

∣∣∣
x=1

, i = 0, 2, 4;

(3) ∂i ϕ

∂ix

∣∣∣
x=1

= 0, ∂iψ

∂ix

∣∣∣
x=1

= 0, i = 1, 3;

(4) ∂j ϕ

∂jy

∣∣∣
x=0,1

= 0, ∂jψ

∂jy

∣∣∣
x=0,1

= 0, j = 0, 2, 4.

Then, a solution to Problem 2 exists and is unique.
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Proof. The existence of a solution to the problem. Since system (8) forms the Riesz basis in
the space L2(Ωxy), the functions u(x, y, t) and f (x, y) can be represented in the form (41)
and (42), where the coefficients f0, f(2n−1)k, f2nk and functions u0(t), u(2n−1)k(t), u2nk(t) are
determined, respectively, by Formulas (57)–(62).

By construction, the functions u(x, y, t) and f (x, y) satisfy Equation (5) and condi-
tions (6) and (7). Let us show that L2u(x, y, t) ∈ C(Ω̄). Taking into account Lemma 4, acting
by the operator L2 on (41), we have

L2u(x, y, t) =
∞

∑
k=1

λ0ku0k(t)Z0k(x, y)+
∞

∑
n,k=1

λ2nku(2n−1)k(t)Z(2n−1)k(x, y)

+
∞

∑
n,k=0

u2nk(t)
(

λ2nkZ2nk(x, y)− (2πn)λ̃2nkZ(2n−1)k(x, y)
)

. (63)

Further, taking into account the following inequalities

|z0k(x, y)| ≤
√

2,
∣∣∣z(2n−1)k(x, y)

∣∣∣ ≤ √2, |z2nk|(x, y) ≤
√

2, (x, y) ∈ Ω̄xy,

we obtain

|L2u(x, y, t)| ≤ C

[
∞

∑
k=1

λ0k|u0k(t)|+
∞

∑
n,k=1

λ2nk

(
|u(2n−1)k(t)|+ |u2nk(t)|

)
. (64)

Now, let us estimate the functions u0k(t), u(2n−1)k(t), and u2nk(t). From (57), we obtain

|u0k(t)| ≤
∣∣∣∣Eα(−λ0ktα)− Eα(−λ0kTα)

1− Eα(−λ0kTα)
ϕ0k

∣∣∣∣+ ∣∣∣∣ 1− Eα(−λ0ktα)

1− Eα(−λ0kTα)
ψ0k

∣∣∣∣.
Hence, taking into account the estimate (17) and the complete monotonicity of the

Mittag-Leffler function, as well as the fact that Eα(0) = 1, λ0k > 0, we obtain

|u0k(t)| ≤ C(|ϕ0k|+ |ψ0k|). (65)

Similarly, from (59), we obtain

|u2nk(t)| ≤ C(|ϕ2nk|+ |ψ2nk|). (66)

Now, we will estimate u(2n−1)k(t). From (61), we obtain

|u(2n−1)k(t)| ≤ C
(
|ϕ(2n−1)k|+ |ψ2n−1k|

+|ψ2n−1k|+ 2πnλ̃2nk(|Fnk(t)|+ |Fnk(T)|)(|ϕ2nk|+ |ψ2nk|)
)
. (67)

Taking into account formulas (17) and (18), we estimate Fnk(t)

|Fnk(t)| ≤ C
t∫

0

(t− τ)α−1Eα(−λ2nkτα)dτ = CtαEα,α+1(−λ2nktα) ≤ C
λ2nk

;

hence,

|u(2n−1 k)(t)| ≤ C

(
|ϕ(2n−1) k|+ |ψ(2n−1) k|+

n

(2πn)2 + (kπ)2 (|ϕ2n k|+ |ψ2n k|)
)

.
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Then, (64) takes the form

|Lu(x, y, t)| ≤ C

(
∞

∑
k=1

λ0k(|ϕ0k|+ |ψ0k|)

+
∞

∑
n,k=1

λ2nk

((∣∣∣ϕ(2n−1)k

∣∣∣+ ∣∣∣ψ(2n−1)k

∣∣∣)+ (|ϕ2nk|+ |ψ2nk|)
))

.

Hence, we obtain that the series

∞

∑
k=1

k4(|ϕ0k|+ |ψ0k|)+

+
∞

∑
n,k=1

(
n4 + n2k2 + k4

)(∣∣∣ϕ(2n−1)k

∣∣∣+ ∣∣∣ψ(2n−1)k

∣∣∣+ |ϕ2nk|+ |ψ2nk|
)

(68)

is a majorant, and the convergence of the series (63) reduces to the study of the convergence
of the series (68).

Let us show the convergence of the series

∞

∑
k=1

k4(|ϕ0k|+ |ψ0k|). (69)

Integrating by parts the integral in the representation of the coefficients ϕ0k, taking
into account the conditions imposed on ϕ(x, y), we easily obtain the equality

ϕ0k =

1∫
0

1∫
0

ϕ(x, y)W0k(x, y)dxdy =

√
2

(kπ)5 ϕ5
0k, ϕ5

0k =

1∫
0

1∫
0

∂5 ϕ

∂y5 cos kπydxdy. (70)

Similarly, taking into account the conditions imposed on ψ(x, y), we obtain

ψ0k =

√
2

(kπ)5 ψ5
0k, ψ5

0k =

1∫
0

1∫
0

∂5ψ

∂y5 cos kπydxdy. (71)

Further, taking into account the relationship (70) and (71), and using the Cauchy–
Schwarz and Bessel inequalities, we have

∞

∑
k=1

k4(|ϕ0k|+ |ψ0k|) ≤
∞

∑
k=1

1
k

(∣∣∣ϕ5
0k

∣∣∣+ ∣∣∣ψ5
0k

∣∣∣) ≤ C

(∥∥∥∥∂5 ϕ

∂y5

∥∥∥∥
L2(Ωxy)

+

∥∥∥∥∂5ψ

∂y5

∥∥∥∥
L2(Ωxy)

)
,

i.e., the considered series converges. Let us prove the convergence of the series

∞

∑
n,k=1

n4
(∣∣∣ϕ(2n−1)k

∣∣∣+ ∣∣∣ψ(2n−1)k

∣∣∣+ |ϕ2nk|+ |ψ2nk|
)

. (72)

For coefficients ϕ2n k and ψ2n k, we obtain

ϕ2n k =

1∫
0

1∫
0

ϕ(x, y)W2n k(x, y)dxdy =
4
√

2

(2πn)5kπ
ϕ
(5,1)
2nk ,

ϕ
(5,1)
2nk =

1∫
0

1∫
0

∂6 ϕ

∂5x∂y
cos kπydy cos 2πnxdx, (73)
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ψ2nk =
4
√

2

(2πn)5kπ
ψ
(5,1)
2nk , ψ

(5,1)
2nk =

1∫
0

1∫
0

∂6ψ

∂5x∂y
cos 2πnx cos kπydxdy. (74)

Similarly, for ϕ(2n−1) k and ψ(2n−1) k, we obtain

ϕ(2n−1)k = −
4
√

2

(2πn)5πk
ϕ
(5,1)
(2n−1)k +

20
√

2

(2πn)6πk
ϕ̃
(5,1)
(2n−1)k, (75)

ϕ
(5,1)
(2n−1)k =

1∫
0

1∫
0

∂6 ϕ

∂x5∂y
(1− x) sin 2πnx cos πkydxdy,

ϕ̃
(5,1)
(2n−1)k =

1∫
0

1∫
0

∂6 ϕ

∂x5∂y
cos 2πnx cos πkydxdy, (76)

ψ(2n−1)k = −
4
√

2

(2πn)5πk
ψ
(5,1)
(2n−1)k +

20
√

2

(2πn)6πk
ψ̃
(5,1)
(2n−1)k, (77)

ψ
(5,1)
(2n−1)k =

1∫
0

1∫
0

∂6ψ

∂x5∂y
(1− x) sin 2πnx cos πkydxdy,

ψ̃
(5,1)
(2n−1)k =

1∫
0

1∫
0

∂6ψ

∂x5∂y
cos 2πnx cos πkydxdy. (78)

Further, taking into account the relation (73)–(79) and using the Cauchy–Schwarz and
Bessel inequality, we obtain

∞

∑
n,k=1

n4
(∣∣∣ϕ(2n−1)k

∣∣∣+ ∣∣∣ψ(2n−1)k

∣∣∣+ |ϕ2nk|+ |ψ2nk|
)

≤
∞

∑
n,k=1

1
nk

(∣∣∣ϕ(5,1)
(2n−1)k

∣∣∣+ ∣∣∣ψ(5,1)
(2n−1)k

∣∣∣+ ∣∣∣ϕ(5,1)
2nk

∣∣∣+ ∣∣∣ψ(5,1)
2nk

∣∣∣)
≤ C

(∥∥∥∥ ∂6 ϕ

∂x5∂y

∥∥∥∥
L2(Ωxy)

+

∥∥∥∥ ∂6ψ

∂x5∂y

∥∥∥∥
L2(Ωxy)

)
,

i.e., the considered series converges.
The convergence of the remaining series is proved similarly. Hence, the series (68)

majorizing the functional series (63) converges. Then, according to the Weierstrass theorem,
the series (63) converges absolutely and uniformly in the domain Ω , and its sum is a
continuous function in this domain. It is proved similarly that CDα

0tu(x, y, t) ∈ C(Ω̄),
and the condition f (x, y) ∈ C(Ωxy) follows from Equation (5) and from the fact that

CDα
0tu(x, y, t), L2u(x, y, t) ∈ C(Ω).

Uniqueness of the solution. Suppose the opposite. Let Problem 2 have two different
solutions {u1(x, y, t), g1(x, y)}, {u2(x, y, t), g2(x, y)} and

u(x, y, t) = u1(x, y, t)− u2(x, y, t), f (x, y) = f1(x, y)− f2(x, y).

Then, it is easy to check that (u(x, y, t), f (x, y)) satisfies the Equation (5), conditions (6)
and (7), and

u(x, y, 0) = 0, u(x, y, T) = 0, (x, y) ∈ Ω̄xy. (79)
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We will show that problems (5)–(7) and (79) have only a trivial solution. Let (u(x, y, t),
f (x, y)) be a solution of this problem. Taking into account that ϕ(x, y) = 0, ψ(x, y) = 0,
and Lemma 2, from the equalities (45), (46), (51), and (54), we obtain

ϕ0 k(t) = ψ0k = 0, ϕ(2n−1) k(t) = ψ(2n−1)k = 0, ϕ2n k(t) = ψ2nk = 0.

Then, from (61)–(66), it follows that

u0 k(t) = u(2n−1) k(t) = u2n k(t) = 0,

f0 k = f(2n−1) k = f2n k = 0.

Using these values in equalities (43) and (44) , we obtain that the functions u(x, y, t) and
f (x, y) are orthogonal to system (9), which is complete and forms a basis in L2(Ωxy).
Hence, almost everywhere, the equalities u(x, y, t) = 0 in Ω and f (x, y) = 0 in Ωxy are
correct. Since u(x, y, t) ∈ C(Ω̄) and f (x, y) ∈ C(Ω̄xy), we conclude that u(x, y, t) ≡ 0
and f (x, y) ≡ 0, respectively, in the domains Ω̄ and Ω̄xy, i.e., u1(x, y, t) ≡ u2(x, y, t) and
f1(x, y) ≡ f2(x, y). The theorem is proved.

6. Conclusions

In this paper, for some classes of fourth-order differential equations with involution,
we studied the solvability of inverse problems aimed at determining the right-hand side,
depending on the spatial variable. Two types of problems are considered: the first problem
with boundary conditions of the Dirichlet type and the second problem with conditions of
the Samarskii–Ionkin type. To study these problems, we applied the method of separation
of variables. When studying the first problem, we used the properties of eigenfunctions
of similar problems for the second-order operators. In the study of the second problem,
the properties of eigenfunctions and associated functions of spectral problems for the
second-order operators were used. Using the properties of these systems, we proved the
theorems on the existence and uniqueness of solutions to the studied problems.

The same method can be used to study similar problems for equations of a higher
order, as well as for equations with multiple involutions. Our further investigations will be
directed to the study of such problems.
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