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Abstract: A new fractional accumulation technique based on discrete sequence convolution trans-
form was developed. The accumulation system, whose unit impulse response is the accumulation
convolution sequence, was constructed; then, the order was extended to fractional orders. The frac-
tional accumulative convolution grey forecasting model GMr∗(1, 1) was established on the sequence
convolution. From the viewpoint of sequence convolution, we can better understand the mechanism
of accumulative generation. Real cases were used to verify the validity and effectiveness of the
fractional accumulative convolution method.
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1. Introduction

Due to the finite cognitive competence of human beings, the information obtained
from the investigated system is always incomplete and inaccurate. The incompleteness and
inaccuracy of information are absolute, while completeness and accuracy are relative [1].
Prof. Julong Deng proposed the grey system theory to solve undetermined problems, in
which the given information is lacking and the data for modelling are few.

In contrast to traditional statistical models, such as the Bayesian approach [2], maxi-
mum likelihood estimation [3], modern artificial neural network [4], and machine learning
methods [5], which usually need many samples, the grey model requires less data mod-
elling [1]. It makes full use of the limited data from a small sample and excavates more
useful information from the data. In the early stage, Deng pointed out that only four data
points were sufficient for GM(1, 1) modelling [6]. Yao et al. put forward the mathematical
proof indicating that small samples have greater accuracy than large samples [7]. Matrix
perturbation theory was introduced to analyse the grey model, suitable for modelling small
samples, by Wu, and Xu et al. [8,9]. Wang applied the grey power model to simulate small
oscillating samples [10]. Talafuse modelled a small sample on discrete reliability growth
with the grey model and achieved more accurate predictions than the traditional parametric
and non-parametric methods [11]. Ma proposed KGM(1, n) combined with kernel learning
to model the non-linearity of multi-input and single-output sequences and proved it to be
more stable and efficient than the machine learning models, such as least squares support
vector machines [12]. The grey model has been applied with high efficiency in modelling
small data samples in science and engineering technologies [13], energy resources [14],
traffic control [15], health care [16], economics [17], management [18], ecology [19], agricul-
ture [20], etc., and has achieved significant economic and social benefits [21–24].

The grey model employs a kind of sequence operator called accumulative generation
operator to act on the system behaviour sequence to provide intermediate data for the
grey model [25], distinguishing itself from other forecasting models that directly model
the original data series. The acting of the accumulative generation operator on the original
data sequence removes random fluctuation in the data, and the acted-upon sequence
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approximates to the quasi-exponential law. Many systems in economics, ecosystems,
etc., are general energy systems, and energy transfer follows the power law, which is the
foundation of grey modelling [26]. Prof. Sifeng Liu proposed the concept of the grey
sequence operator [27] and then considered the accumulative generation procedure as the
action of the sequence operator called the accumulative generation operator (AGO) [26].
The AGO can make the data sequence follow the power law, but the over-acting of the
AGO can also destroy the power law [21].

In nature, there are many systems with non-integral-order derivative effects; the
fractional-order derivative is a better way to describe this kind of system behaviour than
ordinary integral-order models. With the concept of “in between”, the fractional-order
derivative is the general extension of the normal integral-order derivative, applied in
many disciplines, such as fractional system analysis and control [28–30], energy resource
modelling and prediction [31,32], air pollution and environment protection [33,34], etc.

A higher-order operator is a natural concept indicating the repeated action of the
operator on the data sequence, i.e., the AGO acting m times on the data sequence leads
to the m-th-order AGO, where m is a positive integer [22]. Wu et al. considered the
accumulative generation operator a square matrix; then, the action of AGOs of different
orders was the same as the power of the square matrix [35]. From this viewpoint, the
explicit expression of the positive integral m-th-order AGO was derived; then, it could be
very quickly extended to fractional orders, i.e., the fractional-order accumulative operator
(FAO), establishing the fractional-order grey forecasting model (FGM) [35–38]. Due to
great improvement in forecasting precision, FAO and FGM have attracted a lot of attention
and have become hot topics in recent years. Xiao, and Mao et al. used matrix analysis to
explore the modelling mechanism and theoretical significance of fractional accumulation
grey models [39,40]. Soon, the order was extended to arbitrary real numbers by Meng, and
Zeng et al. [41–43]. Recently, Wu et al. unified the expression of AGOs; then, they extended
the order numbers to the widest field, i.e., the complex number order [44].

Although the AGO has been discussed for a long time and has been widely used in
many fields, little attention has been paid to its essence and mechanism. Wei, and Xie et
al. introduced the integral matching method to explain that the AGO is a discrete form
of the integral of the continuous function approximated by a piecewise constant in each
subinterval, and due to the approximated discrete form of the integral being cumulative
summation, the operator gained a new name, cumulative sum operator [45–47]. Chen
used convolution transformation to improve the accumulative generation procedure and
pointed out that convolution transformation could enhance the smoothness of the data
sequence, which could be used in grey modelling [48]. Lin et al. quantitatively studied
the mechanism and power of the AGO by applying spectrum analysis in the frequency
domain [49–52].

The paper proposes fractional accumulation with the discrete convolution transform
of finite sequences and aims to interpret its physical meaning from the perspective of signal
processing. The main contributions are listed as follows:

(1) The concept of discrete convolution transform is introduced in accumulative gen-
eration. In fact, the unit impulse response of the accumulative generation system
is found and is named accumulative generation convolution sequence. This is the
discretization of the AGO in the time domain.

(2) By extending the concept in (1) to the fractional-order accumulative generation
convolution sequence, the unit impulse response of the fractional-order accumulative
generation system is obtained. In fact, the discrete form of the fractional accumulation
operator (FAO) in the time domain is explicitly represented, which makes the physical
meaning of the FAO self-evident.

(3) The fractional-order accumulative generation convolution transform and its inversion
are mutually inverse. They do not impose any extra error on data transformation. The
inversion of the fractional-order accumulative generation convolution sequence can
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be calculated directly by assigning the minus fractional order, without demanding a
round number order (compare with [8] (p. 1780)).

(4) According to model fitting error, the fractional accumulation grey model can dynam-
ically adjust the order to model and predict the system behaviour data better.

Convolution transformation is a powerful tool in digital signal process [53]. In this
framework, a new viewpoint to understand the mechanism of AGO emerges. An AGO can
be understood as a linear time invariant system. Convolving an input sequence with the
unit impulse responsesequence yields an accumulated output sequence [54].

The remainder of the paper is organized as follows. The integral-order accumulative
convolution sequence is introduced and extended to arbitrary real numbers in Section 2.
The fractional accumulative convolution grey model is discussed in Section 3. Some real
cases are used to demonstrate the validity of the fractional accumulative convolution
transform in Section 4. Finally, Section 5 discusses the conclusions.

2. The Accumulative Generation with Discrete Convolution Transform

In this section, we start from the classical definition of the AGO, then introduce
the finite sequence convolution and construct the accumulative convolution sequence to
fulfil the accumulative generation procedure and the extend the accumulative convolution
sequenceto the integral- and fractional-order.

Definition 1. The accumulative generation operator (AGO) for a sequence {x(0)[n]}N−1
n=0 is as

follows [25]

AGO
(
x(0)[n]

)
= x(0)[0] + · · ·+ x(0)[n]= x(1)[n]. (1)

Here, {x(0)[n]}N−1
n=0 is a sequence with length N with the integral-index n varying

from 0 to N − 1 and x(0)[n] is one datum in the sequence. The superscript represents the
order of accumulation, e.g., x(0) is the zeroth-order accumulated sequence, i.e., the original
sequence; while x(1) represents the first-order accumulated sequence.

Applying the AGO m times leads to the integral-order accumulated sequence [21,26]

AGO
(

x(m−1)[n]
)
= x(m)[n], (2)

where m ∈ N (set of natural numbers).

Definition 2. Given two sequences with length N, {x[n]}N−1
n=0 and {y[n]}N−1

n=0 , then their discrete
convolution is [54]

x[n] ∗ y[n] =
n

∑
k=0

x[k] · y[n− k]. (3)

By Definition 2, the discrete convolution operation is commutative.

Definition 3. Set {δ[n]}N−1
n=0 to be the unit impulse sequence on the non-negative part of the time

axis, i.e., [55]

δ[n] =
{

1, n = 0,
0, n = 1, 2, · · · , N − 1.

(4)

By Definitions 2 and 3, the invariance of the unit impulse sequence in the convolution
operation is obtained, i.e., x[n] ∗ δ[n] does not change anything and is identically equal to
x[n]. Therefore, in the convolution operation, {δ[n]}N−1

n=0 is an identity element. Moreover,
for a positive integer m,

x[n] ∗ δ[n−m] = x[n−m]. (5)

Definition 4. Set {x[n]}N−1
n=0 and {y[n]}N−1

n=0 to be two sequences. If their convolution yields to
the unit impulse sequence, then they are mutually inverse, denoted by x[n] = y−1∗[n].
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Based on the above definitions, we arrived at Theorem (1) to represent the AGO in the
form of finite sequence convolution. Since the classical accumulative generation operator
AGO(·) is denoted in uppercase, the accumulative convolution sequence is denoted by
ago[n] in lowercase for distinction.

Theorem 1. For a sequence {x(0)[n]}N−1
n=0 , denote the first-order accumulated sequence obtained

by the AGO in (1) as {x(1)[n]}N−1
n=0 . Then it can be regenerated by convolution

x(0)[n] ∗ ago[n] = x(1)[n]. (6)

The {ago[n]}N−1
n=0 is called the accumulative convolution sequence, and is represented by

ago[n] = δ[0] + δ[1] + · · ·+ δ[n]= 1. (7)

Proof. From Definition 2 and Equation (5),

x(0)[n] ∗ (δ[0] + · · ·+ δ[n])

=x(0)[n] ∗ (δ[n− n] + · · ·+ δ[n− 0])

=x(0)[0] + · · ·+ x(0)[n] = x(1)[n].

which concludes the result.

Remark 1. The AGO(·) acts on a sequence, denoted with a pair of round brackets, i.e.,
AGO(x(0)[n]), which yields to the {x(1)[n]}N−1

n=0 ; while the accumulative convolution sequence
{ago[n]}N−1

n=0 is a data sequence by itself, in which a pair of square brackets indicates that ago[n] is
a datum. Convolution transforming the original sequence by the accumulative convolution sequence
also generates the first-order accumulated sequence, i.e., x(0)[n] ∗ ago[n] = x(1)[n], which plays
the same role of the AGO. To avoid confusion, the same name but in lower case “ago” denotes the
accumulative convolution sequence. Simply, AGO(·) is an operator; while ago[n] is a datum from
an accumulative convolution sequence. They are fundamentally different.

Definition 5. The convolution power is defined by a sequence {x[n]}N−1
n=0 convolving with itself

for k times, where k is a positive integer,

x[n] ∗ · · · ∗ x[n]︸ ︷︷ ︸
k

= xk∗[n]. (8)

For completeness of Definition 5 , the zeroth convolution power is set to be the identity
element, i.e.,

x0∗[n] = δ[n]. (9)

By (5),
δk∗[n− 1] = δ[n− k]. (10)

Comparing (7) and (10), the accumulative convolution sequence {ago[n]}N−1
n=0 can be repre-

sented by summation of the first n terms of the convolution power series

ago[n] =
n

∑
k=0

δk∗[n− 1]. (11)

Convolving δ[n]− δ[n− 1] with (11) yields the unit impulse sequence, i.e.,

ago[n] ∗ (δ[n]− δ[n− 1]) = δ[n]. (12)
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According to Definition 4, δ[n] − δ[n − 1] is the inverse accumulative convolution
sequence of ago[n]. It is denoted by ago−1∗[n] = δ[n]− δ[n− 1].

Based on (12), the first-order accumulative convolution sequence {ago[n]}N−1
n=0 is

extended to the integral-order, i.e., {agom∗[n]}N−1
n=0 , with m ∈ Z+ (set of positive integers),

agom∗[n] ∗ ago−m∗[n] = δ[n]. (13)

This leads to the definition of the positive integral-order accumulative convolution se-
quence. Using Newton’s generalized binomial theorem and the unit impulse sequence in
Definition 3,

agom∗[n] = (δ[n]− δ[n− 1])−m∗ =
∞

∑
k=0

(−1)k
(
−m

k

)
δk∗[n− 1], (14)

where
(
−m

k

)
is the extended combination number, given by

(
−m

k

)
=

(−m)(−m− 1) · · · (−m− k + 1)
k!

. (15)

According to (4) and (10), the m-th power of the accumulative convolution sequence
yields

agom∗[n] =
n

∑
k=0

(
k + m− 1

k

)
δ[n− k], (16)

For n = 0, (16) is always equal to 1, i.e., agom∗[0] = 1. For n = 1, 2 . . ., by (4), the unit
impulse is equal to zero when k 6= n, thus

agom∗[n] =
n

∑
k=0

(m + k− 1) · · ·m
k!

δ[n− k] =
n−1

∏
i=0

m + i
1 + i

.

Therefore, the positive-integral m-th power of the accumulative convolution sequence is

agom∗[n] =


1, n = 0,

n−1
∏
i=0

m+i
1+i , n ≥ 1.

(17)

For the negative-integral −m-th-order accumulative convolution sequence,

ago−m∗[n] = (δ[n]− δ[n− 1])m∗ =
m

∑
k=0

(−1)k
(

m
k

)
δk∗[n− 1]. (18)

For n = 0, (18) is also equal to 1, i.e., ago−m∗[0] = 1. For n ≥ 1,

ago−m∗[n] =
n

∑
k=0

(−1)k m · · · (m− k + 1)
k!

δ[n− k] =
m

∑
k=0

k−1

∏
i=0

−m + i
1 + i

δ[n− k].

If m ≥ n, k can reach n and δ[n− k] = δ[0] = 1 if and only if k = n. Thus,

ago−m∗[n] =
n−1

∏
i=0

−m + i
1 + i

.

Otherwise, if m < n, k is also less than n, which causes the unit impulse to equal zero. Thus

ago−m∗[n] =
n−1

∏
i=0

−m + i
1 + i

= 0.
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Therefore, the negative-integral −m-th power of the accumulative convolution sequence is

ago−m∗[n] =


1, n = 0,

n−1
∏
i=0

−m+i
1+i , n ≥ 1.

(19)

According to Equations (17) and (19), the following theorem unifies the integral m-th-
order accumulative convolution sequence.

Theorem 2. Let {ago[n]}N−1
n=0 be the accumulative convolution sequence, then the integral m-th-

order accumulative convolution sequence with m ∈ Z (set of integers) is unified, i.e.

agom∗[n] =


1, n = 0,

n−1
∏
i=0

m+i
1+i , n ≥ 1.

(20)

Next, the order of accumulative convolution sequence is extended to fractional orders.
Based on (13), for a positive real number r ∈ R+ (set of positive real numbers),

agor∗[n] ∗ ago−r∗[n] = δ[n]. (21)

Thus, the r-th power of the accumulative convolution sequence is

agor∗[n] =
(
δ[n]− δ[n− 1]

)−r∗.

Using Newton’s generalized binomial theorem and the definition of δ[n] in (4),

agor∗[n] =
∞

∑
k=0

(−1)k (−r) · · · (−r− k + 1)
k!

δk∗[n− 1] =
n

∑
k=0

(
k + r− 1

k

)
δ[n− k]. (22)

Similarly, (22) is always equal to 1 when n = 0, i.e., agor∗[0] = 1. For n = 1, 2, · · · ,

agor∗[n] =
n

∑
k=0

(r + k− 1) · · · r
k!

δ[n− k] =
n−1

∏
i=0

r + i
1 + i

.

Therefore, the positive real r-th power of the accumulative convolution sequence is

agor∗[n] =


1, n = 0,

n−1
∏
i=0

r+i
1+i , n ≥ 1.

(23)

For the negative real −r-th-order accumulative convolution sequence,

ago−r∗[n] =
(
δ[n]− δ[n− 1]

)r∗.

Using Newton’s generalized binomial theorem again,

ago−r∗[n] =
∞

∑
k=0

(−1)k
(

r
k

)
δk∗[n− 1] =

∞

∑
k=0

(−1)k r · · · (r− k + 1)
k!

δ[n− k].

By the definition of unit impulse in (4),

ago−r∗[n] =
n

∑
k=0

(
k− r− 1

k

)
δ[n− k]. (24)
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Thus, (24) is always equal to 1 for n = 0, i.e., ago−r∗[0] = 1. For n = 1, 2, · · · ,

ago−r∗[n] =
n

∑
k=0

(−r + k− 1) · · · (−r) · · · r
k!

δ[n− k] =
n−1

∏
i=0

−r + i
1 + i

.

Therefore, (24) becomes

ago−r∗[n] =


1, n = 0,

n−1
∏
i=0

−r+i
1+i , n ≥ 1.

(25)

According to Equations (23) and (25), a unified expression of the real number r-th-
order accumulative convolution sequence is obtained in the following theorem.

Theorem 3. Let {ago[n]}N−1
n=0 be the accumulative convolution sequence, then the real r-th-order

accumulative convolution sequence with r ∈ R (set of real numbers) is unified, i.e.,

agor∗[n] =


1, n = 0,

n−1
∏
i=0

r+i
1+i , n ≥ 1.

(26)

3. Grey Forecasting Model with Fractional Accumulative Convolution

The fractional accumulative convolution is introduced into GM(1, 1) in this section,
leading to a new grey model.

For a given sequence {x(0)[n]}N−1
n=0 and the accumulation order r, according to

Definition 2 and the Theorem 3, the accumulated sequence can be represented by the con-
volution transform with the r-th-order accumulative convolution sequence {agor∗[n]}N−1

n=0 .

Definition 6. Givenan original sequence {x(0)[n]}N−1
n=0 , and a real number r-th-order accumulative

convolution sequence {agor∗[n]}N−1
n=0 defined in (26), their discrete convolution yields the r-th-order

accumulated sequence {x(r)[n]}N−1
n=0 , i.e.,

x(0)[n] ∗ agor∗[n] = x(r)[n]. (27)

Suppose {x(r)[n]}N−1
n=0 be the equidistant sampling sequence from a differentiable

function x(r)(t), satisfying the first-order ordinary differential equation

dx(r)

dt
= c1x(r)(t) + c2. (28)

For a given sequence {x(r)[n]}N−1
n=0 , the coefficients c1 and c2 in (28) are determined. Both

sides of (28) are integrated on subinterval [n− 1, n],

x(r)[n]− x(r)[n− 1] =
∫ n

n−1

(
c1x(r)(t) + c2

)
dt. (29)

By the trapezoidal rule, a discrete form of (28) is obtained,

x(r)[n]− x(r)[n− 1] = 0.5c1
(
x(r)[n− 1] + x(r)[n]

)
+ c2. (30)

Remark 2. Equation (30) is the so-called fractional r-th-order accumulative convolution grey model,
denoting GMr∗(1, 1) with r ∈ R. The superscript r∗ represents the accumulative convolution
sequence with order r. When r = 1, it turns out to be the GM(1, 1)model .
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For n = 1, · · · , N − 1, (30) leads to a linear system

Ac = d, (31)

where

A =


0.5(x(r)[0] + x(r)[1]) 1
0.5(x(r)[1] + x(r)[2]) 1

...
...

0.5(x(r)[N − 2] + x(r)[N − 1]) 1

, d =


x(r)[1]− x(r)[0]
x(r)[2]− x(r)[1]

...
x(r)[N − 1]− x(r)[N − 2]

, c =
(

c1
c2

)
.

Linear system (31) contains N− 1 equations, but there are only two unknowns, c1 and c2. It
is an over-determined system when N − 1 > 2. Therefore, the solution of (31) in the sense
of least squares is equivalent to the solution of the normal equation

AT Ac = ATd, (32)

and the unknown coefficients can be estimated by

ĉ =
(

AT A
)−1 ATd. (33)

The ODE (28) can be solved by

x(t) =
(

x(0) +
c2

c1

)
ec1t − c2

c1
. (34)

Then the time response of GMr∗(1, 1) can be achieved by substituting coefficients obtained
from (33) into (34)

x̂(r)[n] =
(

x(r)[0] +
ĉ2

ĉ1

)
eĉ1n − ĉ2

ĉ1
. (35)

The timeresponse sequence from (35) can be convolved with the corresponding inverse
−r-th-order accumulative convolution sequence {ago−r∗[n]}N−1

n=0 to obtain the estimated
data sequence, i.e.,

ago(−r∗)[n] ∗ x̂(r)[n] = x̂(0)[n]. (36)

The mean absolute percentage error (MAPE) is employed here to indicate errors between
the estimated data x̂(0)[n] and original data x(0)[n], i.e.,

MAPE =
1

N − 1

N−1

∑
n=1

∣∣∣∣∣ x(0)[n]− x̂(0)[n]
x(0)[n]

∣∣∣∣∣× 100%. (37)

Finally, the modelling procedure for the fractional-order accumulative convolution
GMr∗(1, 1) model is described in Algorithm 1, and depends on Algorithm 2 for finite
sequence convolution based on Definition 2 and Algorithm 3 for the fractional accumulative
convolution sequence based on Theorem 3.
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Algorithm 1 Fractional-order accumulative convolution GMr∗(1, 1) model

1: Input: sequence {x(0)[n]}N−1
n=0 , and order r.

2: Get fractional-order accumulative convolution sequence {agor∗[n]}N−1
n=0 ← ago(N, r);

3: Get {x(r)[n]}N−1
n=0 ← conv({agor∗[n]}N−1

n=0 , {x(0)[n]}N−1
n=0 );

4: Get matrix A and load d of GM(1, 1) difference equations by (31);
5: Get coefficients by (33);
6: Get time response sequence by (35);
7: Get inverse accumulative convolution sequence {ago−r∗[n]}N−1

n=0 ← ago(N,−r);
8: Recover data, {x̂(0)[n]}N−1

n=0 ← conv({ago−r∗[n]}N−1
n=0 , {x̂(r)[n]}N−1

n=0 );
9: Get MAPE by (37).

10: Output: sequence {x̂(0)[n]}N−1
n=0 , and MAPE.

Algorithm 2 Finite sequence convolution

1: function {z[n]}N−1
n=0 = conv({x[n]}N−1

n=0 , {y[n]}N−1
n=0 )

2: for n = 0 : N − 1
3: z[n]← 0;
4: for k = 0 : n
5: z[n]← x[k] · y[n− k] + z[n];
6: end
7: end

Algorithm 3 Fractional-order accumulative convolution sequence

1: function {agor∗[n]}N−1
n=0 = ago(N, r)

2: for n = 0 : N − 1
3: agor∗[n]← 1;
4: for i = 0 : n− 1

5: agor∗[n]← r + i
1 + i

· agor∗[n];

6: end
7: end

4. Cases Study

Case 1 (Positive fractional accumulative convolution sequence). Set N = 8, generate
fractional-order accumulative convolution sequences {agor∗[n]}N−1

n=0 with different orders r = 1
2 ,

1,
√

2,
√

3, 2, e, 3, π. The fractional r-order accumulative convolution sequences are generated by
Algorithm 3, and displayed in Table 1 and Figure 1.

Table 1. Accumulative convolution sequences with fractional r-th order.

n
r 1

2
1

√
2

√
3 2 e 3 π

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 0.500 1.000 1.414 1.732 2.000 2.718 3.000 3.142
2 0.375 1.000 1.707 2.366 3.000 5.054 6.000 6.506
3 0.313 1.000 1.943 2.943 4.000 7.948 10.000 11.150
4 0.273 1.000 2.144 3.482 5.000 11.363 15.000 17.119
5 0.246 1.000 2.322 3.992 6.000 15.267 21.000 24.452
6 0.226 1.000 2.482 4.479 7.000 19.640 28.000 33.179
7 0.209 1.000 2.629 4.947 8.000 24.461 36.000 43.330
8 0.196 1.000 2.765 5.400 9.000 29.714 45.000 54.930
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Figure 1. Accumulative convolution sequences with fractional r-th order.

Case 2 (Inverse fractional accumulative convolution sequence). Set N = 8, generate the in-
verse−r-th-order accumulative convolution sequence {agor∗[n]}N−1

n=0 with different orders r = − 1
2 ,

−1, −
√

2, −
√

3, −2, −e, −3, −π. The inverse fractional −r-th-order accumulative convolution
sequences are generated by Algorithm 3, and displayed in Table 2 and Figure 2.

Table 2. Accumulative convolution sequences with inverse fractional −r-th order.

n
r −1

2
−1 −

√
2 −

√
3 −2 −e −3 −π

0 1.0000 1 1.0000 1.0000 1 1.0000 1 1.0000
1 −0.5000 −1 −1.4142 −1.7321 −2 −2.7183 −3 −3.1416
2 −0.1250 0 0.2929 0.6340 1 2.3354 3 3.3640
3 −0.0625 0 0.0572 0.0566 0 −0.5592 −1 −1.2801
4 −0.0391 0 0.0227 0.0179 0 −0.0394 0 0.0453
5 −0.0273 0 0.0117 0.0081 0 −0.0101 0 0.0078
6 −0.0205 0 0.0070 0.0044 0 −0.0038 0 0.0024
7 −0.0161 0 0.0046 0.0027 0 −0.0018 0 0.0010
8 −0.0131 0 0.0032 0.0018 0 −0.0010 0 0.0005

Figure 2. Accumulative convolution sequences with inverse fractional −r-th order.
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Case 3 (Mutually inverse relationships). Calculate the convolution of the r-th-order convolution
sequences in Case 1 and the inverse −r-th-order convolution sequences in Case 2 to verify their
mutually inverse relationship (21),

agor∗[n] ∗ ago−r∗[n] = δ[n],

with different orders r = 1
2 , 1,
√

2,
√

3, 2, e, 3, π. The convolution operations follow Algorithm 2
and the results are displayed in Figure 3.

Figure 3. Convolution results of agor∗[n] ∗ ago−r∗[n] with different r−th order. The first and third ∗
on the superscript represent the exponentiated convolution, and the second ∗ represents the convolu-
tion operation.

Case 4 (Lorenz system [56]). Consider a Lorenz map

L(x) =
{

1− 2|x|2, x ≤ 0,
−1 + 2x2, x > 0.

(38)

Using (38) as the iterative function, and starting from a random initial point x0 = −0.65, with
19 iterations, where 16 points checks the model’s coefficient estimation and 3 points check its
predictive power. Figure 4 is a cobweb-diagram of the iteration procedure, and the obtained sequence
is displayed in Figure 5, illustrating the chaotic characteristic of the sequence obtained from the
Lorenz iteration.

The Lorenz system was introduced by a meteorologist, Edward Lorenz, in 1963, de-
scribing the unpredictable chaotic motion of convection flow in the atmosphere surrounding
the Earth. The Lorenz system, with unstable topological structure, is sensitive to the initial
value condition. A small difference at the beginning leads to great unpredictable diversity
in the following, which is called “chaos”. Another system family with chaotic features is the
one-dimensional map. Guckenheimer and Williams studied the geometric and topological
structure of the Lorenz attractor which is a one-dimensional self-map. The chaotic features
can also be found in grey models. Tan re-established the context value of the grey model
leading to the logistic equation, which mapped the properties of chaos [57].Wang studied
the unbiased grey model with chaotic characteristics [58] which improved upon Deng’s
model. Zhang applied the grey model to simulate and predict data sequences from a
Lorenz chaotic system [56], achieving a predictive precision of over 90%. To make the
results comparable with Zhang’s work, the same Lorenz map configuration was used is set
as the one in [56].
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Due to the chaotic characteristics of the Lorenz iteration, two data transforms are
employed before grey modeling. Firstly, the absolute values of the Lorenz sequence
are taken, denoted by |x[n]| in Figure 6. Secondly, the sequence of absolute values by
convolution transform are accumulated, shown in Figure 7. Then the transformed data is
denoted as the input sequence x(0)[n] to the grey model.

Figure 4. Cobweb-diagram of 19 Lorenz iterations with the initial condition x0 = −0.65. One colour
represents one step of the iteration process.

Figure 5. The sequence obtained from the Lorenz iterations.
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Figure 6. Data transformation—absolute values of the Lorenz iteration sequence.

Figure 7. Data transformation—first-order accumulative absolute values by convolution. The first ∗
represents the convolution operation, and the second ∗ on the superscript represents the exponenti-
ated convolution.

Following Algorithm 1, three different GMr∗(1, 1) models are established with r = 1,
0.5 and 0.362. The fitted sequences of the different models are compared with the input
sequence in Table 3 and Figure 8. For r = 1, it turns out to be the GM(1, 1) model, and
its fitted values are the same as those in Zhang’s paper (Table 6 on p.1008 in [56]). In
fact, the in-sample simulation precision was 86% (MAPE in-sample = 13.9748%). This is
close to 90% but a little below. However, the out-of-sample predictive precision declinedto
78% (MAPE out-of-sample =22.0589%). The reason Zhang claimed the precision of the
GM(1, 1) model exceeded 90% is that he measured the error at a single datum (Table 6 on
p.1008 in [56]) , which is the local error when he predicted the Lorenz chaotic system; while
MAPE belongs to the global error which objectively measures the modelling precision
over the whole data sequence. The new fractional-order accumulative convolution grey
models are compared with Zhang’s model in Table 3. It can be seen that both grey models
with fractional accumulative convolution transform MAPEs are lower than the GM(1, 1)
model. Obviously, from Figure 8, two fractional accumulative convolution grey models
fitted original data better than ordinary grey model. The MAPE curve with respect to r in
Figure 9 demonstrates that r = 0.362 is the best fractional-order since the GM0.362∗(1, 1)
achieves the lowest MAPE in-sample, a precision over 97% (MAPE in-sample = 2.5166%),
and gives the best prediction out-of-sample, over 96% (MAPE out-of-sample = 3.5414%).
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Figure 8. Comparison of fitted results from different orders.

Figure 9. MAPE curve with respect to the accumulative convolution order r.

Table 3. Comparison of the fitted results from different order GMr∗(1,1) models.

n x(0)[n] GM(1, 1) GM0.5∗(1, 1) GM0.36∗(1, 1)

0 0.1550 0.1550 0.1550 0.1550
1 1.1069 2.2874 1.2752 1.1070
2 1.9194 2.5438 1.9276 1.7767
3 2.2394 2.8290 2.4809 2.3684
4 3.0346 3.1461 2.9973 2.9264
5 3.2991 3.4988 3.5005 3.4690
6 4.1591 3.8910 4.0029 4.0062
7 4.6386 4.3272 4.5122 4.5444
8 5.1788 4.8122 5.0339 5.0878
9 5.5951 5.3517 5.5721 5.6399

10 6.2485 5.9516 6.1304 6.2032
11 6.3946 6.6187 6.7118 6.7801
12 7.3519 7.3607 7.3193 7.3724
13 8.1848 8.1858 7.9556 7.9820
14 8.5722 9.1034 8.6234 8.6105
15 9.2721 10.1239 9.3253 9.2596

MAPE in-sample 13.9748% 3.4191% 2.5166%

16 9.2923 11.2587 10.0642 9.9308
17 10.2915 12.5208 10.8427 10.6256
18 11.2882 13.9244 11.6639 11.3454

MAPE out-of-sample 22.0589% 5.6635% 3.5414%
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Case 5. Consider time sequences of the electrocardiogram (ECG), which can be downloaded from
the MIT-BIH Database [59]. Four ECG sequences: “hr.207”, “hr.237”, “hr.11839” and “hr.7257”
are studied here. Sequences “hr.207” and “hr.237” contain 950 measured points of the transient
heart rate (unit: beats per minute); while sequences “hr.11839” and “hr.7257” contain 1800 points.
The time spacing between the measure points is 0.5 s.

Figure 10 shows the fitted results from the GMr∗(1, 1) model compared with the original ECG
sequence “hr.207”. Figure 11 represents the absolute percentage error (APE) of the fitting at each
sampling point. Furthermore, Figure 12 is the mean absolute percentage error (MAPE) of the fitting
in each sample block, containing 10 sampling points. Similarly, Figures 13–15 display the ECG
sequence for “hr.237”. Figures 16–18 display the ECG sequence for “hr.11839”. Figures 19–21
display the ECG sequence for “hr.7257”.

Figure 10. Comparison of the original sequence “hr.207” and the fitted results from the
GMr∗(1,1) model.

Figure 11. APE of the original sequence “hr.207” using the GMr∗(1,1) model.
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Figure 12. MAPE of the original sequence “hr.207” using the GMr∗(1,1) model.

Figure 13. Comparison of the original sequence “hr.237” and the fitted results from the
GMr∗(1,1) model.

Figure 14. APE of the original sequence “hr.237” using the GMr∗(1,1) model.
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Figure 15. APE of the original sequence “hr.237” using the GMr∗(1,1) model.

Figure 16. Comparison of the original sequence “hr.11839” and the fitted results from the
GMr∗(1,1) model.

Figure 17. APE of the original sequence “hr.11839” using the GMr∗(1,1) model.
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Figure 18. MAPE of the original sequence “hr.11839” using the GMr∗(1,1) model.

Figure 19. Comparison of the original sequence “hr.7257” and the fitted results from the
GMr∗(1,1) model.

Figure 20. APE of original sequence “hr.7257” by GMr∗(1,1) model.



Fractal Fract. 2023, 7, 402 19 of 21

Figure 21. MAPE of the original sequence “hr.7257” using the GMr∗(1,1) model.

5. Conclusions

The accumulation generation and its inversion are essential procedures in grey mod-
elling. They are implemented here in a new way—sequence convolution. The fractional-
order accumulative convolution sequence is constructed to fulfil the fractional-order ac-
cumulative generation procedure. Based on accumulative convolution, the fractional
accumulative convolution grey model is established. The main results of this paper are as
follows.

(i) The accumulative generation convolution sequence is constructed by the unit
impulse sequence in Theorem 1. The classical accumulative generation proce-
dure can be fulfilled by the sequence convolution, i.e., ago[n] ∗ x(0)[n] yields to
accumulated sequence, and its inverse, ago−1∗[n] ∗ x(1)[n] returns to the original
sequence. They are mutually inverse in the sense of convolution operation, i.e.,
ago[n] ∗ ago−1∗[n] = δ[n].

(ii) The fractional-order accumulative convolution sequence is constructed in
Theorem 3. With the convolution transform, agor∗[n] ∗ x(0)[n] yields to the frac-
tional accumulated sequence x(r)[n], and with the convolution transform of its
inverse sequence, ago−r∗[n] ∗ x(r)[n] recovers the data. Furthermore, the two
fractional-order accumulative convolution sequences are mutually inverse in the
convolution operation, agor∗[n] ∗ ago−r∗[n] = δ[n].

(iii) Under the fractional-order accumulative convolution transform, the new GMr∗(1, 1)
is established in Algorithm 1. The cases above verify and demonstrate the validity
and effectiveness of the new model.

Accumulative convolution transform and its inversion are new concepts for data
transformation. The success in the grey forecasting GMr∗(1, 1) model is one application of
the fractional-order accumulative convolution transformation. It could be found in more
extensive applications in other disciplines. Some possible research directions in the future
are listed as follows.

(i) Since the unit impulse response of the fractional-order accumulative system has
been obtained, the powerful tools in digital signal process could be used to analysis
the more impressive properties of the fractional-order accumulative system.

(ii) Fractional-order accumulative convolution transform is the discrete form of in-
tegration, and can be applied in fractional calculus and fractional differential
equations.
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