
Citation: Adel, M.; Khader, M.M.;

Algelany, S. High-Dimensional

Chaotic Lorenz System: Numerical

Treatment Using Changhee

Polynomials of the Appell Type.

Fractal Fract. 2023, 7, 398. https://

doi.org/10.3390/fractalfract7050398

Academic Editors: Mokhtar Kirane,

Changpin Li and Yufeng Xu

Received: 10 April 2023

Revised: 5 May 2023

Accepted: 9 May 2023

Published: 13 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

High-Dimensional Chaotic Lorenz System: Numerical
Treatment Using Changhee Polynomials of the Appell Type
Mohamed Adel 1,2,* , Mohamed M. Khader 3,4 and Salman Algelany 1

1 Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina 42210, Saudi Arabia;
salman112v@gmail.com

2 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
3 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic

University (IMSIU), Riyadh 11566, Saudi Arabia; mmkhader@imamu.edu.sa
4 Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt
* Correspondence: adel@sci.cu.edu.eg or mohammedadel@cu.edu.eg

Abstract: Presenting and simulating the numerical treatment of the nine-dimensional fractional
chaotic Lorenz system is the goal of this work. The spectral collocation method (SCM), which
makes use of Changhee polynomials of the Appell type, is the suggested approximation technique
to achieve this goal. A rough formula for the Caputo fractional derivative is first derived, and it is
used to build the numerical strategy for the suggested model’s solution. This procedure creates a
system of algebraic equations from the model that was provided. We validate the effectiveness and
precision of the provided approach by evaluating the residual error function (REF). We compare the
results obtained with the fourth-order Runge–Kutta technique and other existing published work.
The outcomes demonstrate that the technique used is a simple and effective tool for simulating
such models.

Keywords: chaotic Lorenz model; Caputo fractional derivative; Appell-Changhee polynomials;
spectral collocation method; RK4
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1. Introduction

In 1963, chaotic behavior was discovered in differential equations representing mete-
orological phenomena [1], and chaos as a phenomenon was born. Since then, numerous
applications in science and engineering have given rise to nonlinear chaotic and hyper-
chaotic systems. The positive Lyapunov exponents of the system are inversely correlated
with the complexity of the chaotic behavior. A chaotic system essentially has one positive
Lyapunov exponent; however, hyperchaotic systems are believed to have more than one
positive Lyapunov exponent. When Rossler [2] discovered hyperchaotic behavior in dif-
ferential equations for simulating chemical reactions, he proposed the idea of hyperchaos.
Numerous chaotic and hyperchaotic systems developing in other disciplines have been
researched since these two findings [3]. In comparison to regular chaotic systems, hyper-
chaotic systems typically exhibit more complex dynamical behaviors. Strong sensitivity
to initial conditions and rapidly changing outcomes are traits of chaotic systems. Chaotic
dynamical systems are challenging to quantitatively investigate due to these properties.
Systems of ordinary differential equations (ODEs) displaying chaos have been solved
using a variety of direct numerical approaches. These techniques include the differential
transform method [4], power series method [5], barycentric Lagrange interpolation collo-
cation method [6], and differential quadrature method [7]. Unfortunately, the majority of
direct numerical approaches now in use converge slowly for these issues, which results in
erroneous approximations.
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The applications that can be modeled using the excellent tool known as fractional
analysis cannot be listed [8–10]. In the study of so-called biology, where the scaling power
law of fractional order consistently manifests as an empirical explanation of such complex
processes, fractional analysis has attracted growing attention [11–13]. The chaotic Lorenz
system is just one of these mathematical equations. The so-called fractional Lorenz model
was created by adding a modification to the Lorenz model. There are a good number
of research papers that studied such biological models; see, for example, [14]. With the
use of Appell-type Changhee polynomials, we construct an approximate formula for the
fractional derivative for the first time in this work. We then use this formula to solve
the fractional Lorenz model using the SCM. The SCM involves an approximation of the
solution by summing up basis functions and determining their coefficients by enforcing the
differential equation at a limited number of collocation points [15]. Among the variety of
base functions available for use in the SCM, the Appell-type Changhee polynomials (ACPs)
are a set of orthogonal polynomials that can serve as effective basis functions. Utilizing
the SCM with ACPs comes with the benefit of their remarkable convergence properties.
The accuracy of the solution is rapidly improved by increasing the number of collocation
points. Moreover, ACPs exhibit good stability properties, making them suitable for solving
differential equations that are stiff or have rapidly varying solutions. ACPs have the added
advantage of having a closed-form expression, which simplifies their computation and
manipulation. This feature can result in substantial computational savings, especially when
compared to other techniques that necessitate solving extensive systems of ODEs [15].

The main objectives of the present study are addressed by the following points:

1. We describe the proposed 9Dim chaotic Lorenz system using a theoretical and
numerical simulation.

2. Particular attention is given to using ACPs to provide a suitable formula for the
Caputo fractional (CF) derivative.

3. The recommended method and this approximation are used to convert the model into
a set of algebraic equations. Through the use of the Newton iteration method, this
system is numerically solved.

4. With alternative values for the parameter r and varied values for the fractional order
α, we provide a numerical simulation of the model under consideration using the
suggested methodology.

5. The REF is then introduced to calculate the solution’s error. Additionally, we com-
pared the solution produced by the suggested method with that produced by (RK4)
and other previously published research.

2. Preliminaries
2.1. Definitions in Fractional Calculus

Although there are several definitions for fractional-order integration and differentia-
tion, the Riemann–Liouville and Caputo fractional derivative definitions, which are given
here, are the most important ones. The theory of fractional calculus was developed by
using these definitions.

Definition 1. The function ψ(t)’s fractional integral of order ν ∈ R+ in the Riemann–Liouville
sense is defined as follows [16]:

Iνψ(t) =
1

Γ(ν)

∫ t

0
(t− τ)ν−1ψ(τ) dτ, t > 0,

where Γ(.) is the gamma function.

Its properties include:

Iν Iγψ(t) = Iν+γψ(t), ν, γ > 0,
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Iνtm =
Γ(m + 1)

Γ(m + ν + 1)
tm+ν,

and the linearity property:

Iν[c1 ψ1(t) + c2 ψ2(t)] = c1 Iν ψ1(t) + c2 Iν ψ2(t),

for some constants c1 and c2.

Definition 2. The function ψ(t)’s fractional derivative of order ν in the Riemann–Liouville sense
is given as follows [16]:

Dνψ(t) =
dm

dtm

(
Im−νψ(t)

)
, m− 1 < ν ≤ m, m ∈ N.

The Riemann–Liouville definition suffers from various limitations when simulating certain
real-world problems [17]. However, Caputo’s definition, which we use, as outlined in the following
definition, was created to deal with such concerns.

Definition 3. The Caputo fractional derivative of order ν of a function ψ(t) is given as follows [17]:

Dνψ(t) =
1

Γ(n− ν)

∫ t

0

ψ(n)(τ)

(t− τ)ν−n+1 dτ, n− 1 < ν < n, n ∈ N

such that:
DνC = 0, where C is a constant,

Dνtθ =
Γ(θ + 1)

Γ(θ + 1− ν)
tθ−ν, if θ ∈ N∪ {0}, and θ ≥ dνe, (1)

where dνe denotes the ceil function. Additionally, this operator Dν is linear:

Dν[c1 ψ1(t) + c2 ψ2(t)] = c1 Dν ψ1(t) + c2 Dν ψ2(t),

for some constants c1 and c2.

2.2. Some Concepts of Changhee Polynomials

If Chm(t) denotes Changhee polynomials and Chm = Chm(0) for Changhee numbers,
as we know, Chm(t) and Chm are defined using the generating function [18,19]:

2
z + 2

(1− z)t =
∞

∑
m=0

Chm(t)
zm

m!
.

where

Chm(t) =
∞

∑
`=0

S1(m, `)E`(t),

such that S1(m, `) and E`(t) are first-kind Sterling numbers and Euler polynomials, respec-
tively. Let Ch∗m(t) be the Appell-type Changhee polynomials that are given by [20]:

2
z + 2

etz =
∞

∑
m=0

Ch∗m(t)
zm

m!
.

The Appell-type Changhee polynomial of degree m is introduced by:

Ch∗m(t) =
m

∑
j=0

(
m
j

)
Ch∗m−j tj. (2)
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From Formula (2), one can easily obtain:

d
dt

Ch∗m(t) =
d
dt

m Ch∗m−1(t), (3)

and from (3), we have:

Ch∗m(t) =
∫ t

0
m Ch∗m−1(y)dy + Ch∗m.

Clearly, Ch∗0 = 1 and 2Ch∗m + m Ch∗m−1 = 0, ∀m ≥ 1.

Additionally, it can proven that:

∫ 1

0
Ch∗n(t)Ch∗m(t)dt =

m

∑
i=0

m−i

∑
k=0

( m
i

) (−1)m−i−1(m− i)
( m− i

k

)
Ch∗k (1)Ch∗i

(2(m− i)− k + 1)
( 2(m− i)− k

m− i

) . (4)

Consider the following set of ACPs {Ch∗i (t)}
m
i=1 ⊂ L2[0, 1], and let Ω = Span{Ch∗i (t)}

m
i=1

be an L2[0, 1] subspace with finite dimensions [20]. The function u(t) of L2[0, 1] provides a
good unique approximation in Ω. If u∗(t) is the unique approximation of u(t), we can use
the following error estimation:

‖u(t)− u∗(t)‖2 ≤ ‖u(t)− v(t)‖2, ∀ v(t) ∈ Ω.

Since Ω ⊂ L2[0, 1] and is closed, then according to [17], we can find that L2[0, 1] = Ω⊕
Ω⊥, where Ω⊥ denotes the orthogonal complement of Ω, so we have u(t) = v(t) + g(t)
and thus g(t) = u(t)− v(t), which also means that u(t)− u∗(t) ∈ Ω⊥. Then:

〈u(t)− u∗(t), v(t)〉 = 0, ∀ v(t) ∈ Ω, (5)

where 〈., .〉 denotes the inner product.

Since u∗(t) ∈ Ω, then it can be expressed as follows:

u(t) ≈ u∗(t) =
m

∑
i=1

ci Ch∗i (t) = CT Ch∗(t), (6)

where
C = [c1, c2, · · · , cm]

T , Ch∗(t) = [Ch∗1(t), Ch∗2(t), . . . , Ch∗m(t)]
T .

Let v(t) = Ch∗i (t); from (6) in (5), we have:〈
u(t)− CT Ch∗(t), Ch∗i (t)

〉
= 0. (7)

Additionally, from (6), we can see that:

〈u(t), Ch∗(t)〉 = CT〈Ch∗(t), Ch∗(t)〉 = CTA, (8)

where A = 〈Ch∗(t), Ch∗(t)〉 is an m×m matrix and defined by:

A =
∫ t

0
Ch∗(τ)Ch∗T(τ) dτ,

where A can be obtained by using (4). Then, the solution for (8) can be given as:

C = A−1〈u(t), Ch∗(t)〉.



Fractal Fract. 2023, 7, 398 5 of 16

3. Approximation of the Derivative Dν via ACPs

In this part, we present an approximate formula for Dν(u∗(t)) given in (6) through
the following theorem.

Theorem 1. The Caputo fractional derivative of order ν > 0 for u∗(t) given in (6) can be
estimated by:

Dν u∗(t) =
m

∑
i=dνe

i

∑
j=dνe

ci κi,j,ν tj−ν, (9)

such that

κi,j,ν =
(i!)Ch∗i−j

(i− j)! Γ(j + 1− ν)
.

where Ch∗i−j is the Changhee number.

Proof. Let Ch∗i (t) be an Appell-type Changhee polynomial of degree i, with i = 0, 1, . . . , m.
By using (1) and (2), we can obtain:

Dνu∗(t) =
m

∑
i=0

ci Dν Ch∗i (t) =
m

∑
i=dνe

i

∑
j=dνe

ci
(i!)Ch∗i−j

(j!)(i− j)!
Dνtj

=
m

∑
i=dνe

i

∑
j=dνe

ci
(i!)Ch∗i−j

(i− j)! Γ(j + 1− ν)
tj−ν

=
m

∑
i=dνe

i

∑
j=dνe

ci κi,j,ν tj−ν,

where κi,j,ν is given in (9), and this completes the proof.

4. Numerical Implementation

This section provides an overview of how the suggested approach for solving the 9D
Lorenz system will be put into practice. By utilizing a method similar to the well-known
3D Lorenz system, the 3D spatial Boussinesq–Oberbeck equations that control thermal
convection were expanded three times to obtain the 9D Lorenz system [6]. The system
comes from:

Dαφ1(t) = −σb1φ1 − σb2φ7 − φ2φ4 + b4φ2
4 + b3φ3φ5, (10)

Dαφ2(t) = −σφ2 − 0.5σφ9 + φ1φ4 − φ2φ5 + φ4φ5, (11)

Dαφ3(t) = −σb1φ3 + σb2φ8 + φ2φ4 − b4φ2
2 − b3φ1φ5, (12)

Dαφ4(t) = −σφ4 + 0.5σφ9 − φ2φ3 − φ2φ5 + φ4φ5, (13)

Dαφ5(t) = −σb5φ5 + 0.5φ2
2 − 0.5φ2

4, (14)

Dαφ6(t) = −b6φ6 + φ2φ9 − φ4φ9, (15)

Dαφ7(t) = −rφ1 − b1φ7 + 2φ5φ8 − φ4φ9, (16)

Dαφ8(t) = rφ3 − b1φ8 − 2φ5φ7 + φ2φ9, (17)
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Dαφ9(t) = −rφ2 + rφ4 − φ9 − 2φ2φ6 + 2φ4φ6 + φ4φ7 − φ2, (18)

where r is a parameter value (the reduced Rayleigh number) that classifies the system
as chaotic or hyperchaotic, σ is a constant, and the constant parameters bi, i = 1, 2, . . . , 6,
(measures of the geometry of the square cell) are defined by [21]:

b1 = 4
1 + a2

1 + 2a2 , b2 =
1 + 2a2

2(1 + a2)
, b3 = 2

1− a2

1 + a2 b4 =
a2

1 + a2 , b5 =
8a2

1 + 2a2 , b6 =
4

1 + 2a2 , (19)

where a denotes the wavenumber in the horizontal direction. We consider the following
initial conditions:

φq(0) = φ0
q , q = 1, 2, . . . , 9. (20)

Based on the memory effect of fractional derivatives, we may more precisely char-
acterize the influence of the spread of the solution in the future and history with the
model (10)–(20) in its fractional form. As is also known, fractional differential equations
(FDEs) are necessary to convert several chaotic models in order to effectively explain the
dynamics of chaotic systems. Although mathematical models with integer derivatives play
an important role and have significance in understanding the dynamics of chaotic systems,
they have some limitations, such as the fact that these systems lack memory or non-local
effects. FDEs are commonly utilized in the theory of complex systems, the investigation of
anomalous phenomena in nature, and in general, when considering the features of a curve
across a wide area. Last but not least, this type of model explains temporal delays, fractal
features, etc. See [6,21] for more information about this model.

Now, we implement the proposed method for solving the model (10)–(18) through the
following steps:

Let φk,m(t), k = 1, 2, · · · , 9, be the approximation of φk(t) in terms of ACPs as follows:

φk,m(t) =
m

∑
i=0

ak,i Ch∗i (t), k = 1, 2, · · · , 9. (21)

Using (9) and (21) in (10)–(18),

m

∑
i=dνe

i

∑
j=dνe

a1,i κi,j,ν tj−ν = −
(

N

∑
i=0

(σb1 a1,i + σb2 a7,i)Ch∗i (t)

)
−
(

N

∑
i=0

a2,i Ch∗i (t)

)
.

(
N

∑
i=0

a4,i Ch∗i (t)

)
+ b4

(
N

∑
i=0

a4,i Ch∗i (t)

)2

+ b3

(
N

∑
i=0

a3,i Ch∗i (t)

)(
N

∑
i=0

a4,i Ch∗i (t)

)
,

(22)

m

∑
i=dνe

i

∑
j=dνe

a2,i κi,j,ν tj−ν = −σ

(
N

∑
i=0

a2,i Ch∗i (t)

)
− 0.5σ

(
N

∑
i=0

a9,i Ch∗i (t)

)

+

(
N

∑
i=0

a1,i Ch∗i (t)

)(
N

∑
i=0

a4,i Ch∗i (t)

)
−
(

N

∑
i=0

(a2,i − a4,i)Ch∗i (t)

)(
N

∑
i=0

a5,i Ch∗i (t)

)
,

(23)

m

∑
i=dνe

i

∑
j=dνe

a3,i κi,j,ν tj−ν = −
(

N

∑
i=0

( σb1 a3,i − σb2 a8,i)Ch∗i (t)

)
+

(
N

∑
i=0

a2,i Ch∗i (t)

)
.

(
N

∑
i=0

a4,i Ch∗i (t)

)
− b4

(
N

∑
i=0

a2,i Ch∗i (t)

)2

− b3

(
N

∑
i=0

a1,i Ch∗i (t)

)(
N

∑
i=0

a5,i Ch∗i (t)

)
,

(24)
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m

∑
i=dνe

i

∑
j=dνe

a4,i κi,j,ν tj−ν = −
(

N

∑
i=0

(σ a4,i − 0.5σ a9,i)Ch∗i (t)

)
−
(

N

∑
i=0

(a3,i − a5,i)Ch∗i (t)

)
.

(
N

∑
i=0

a2,i Ch∗i (t)

)
+

(
N

∑
i=0

a4,i Ch∗i (t)

)(
N

∑
i=0

a5,i Ch∗i (t)

)
,

(25)

m

∑
i=dνe

i

∑
j=dνe

a5,i κi,j,ν tj−ν = −σb5

(
N

∑
i=0

a5,i Ch∗i (t)

)
+ 0.5

(
N

∑
i=0

a2,i Ch∗i (t)

)2

− 0.5

(
N

∑
i=0

a4,i Ch∗i (t)

)2

, (26)

m

∑
i=dνe

i

∑
j=dνe

a6,i κi,j,ν tj−ν = −b6

(
N

∑
i=0

a6,i Ch∗i (t)

)
+

(
N

∑
i=0

(a2,i − a4,i)Ch∗i (t)

)(
N

∑
i=0

a9,i Ch∗i (t)

)
, (27)

m

∑
i=dνe

i

∑
j=dνe

a7,i κi,j,ν tj−ν = −r

(
N

∑
i=0

a1,i Ch∗i (t)

)
− b1

(
N

∑
i=0

a7,i Ch∗i (t)

)

+ 2

(
N

∑
i=0

a5,i Ch∗i (t)

)(
N

∑
i=0

a8,i Ch∗i (t)

)
−
(

N

∑
i=0

a4,i Ch∗i (t)

)(
N

∑
i=0

a9,i Ch∗i (t)

)
,

(28)

m

∑
i=dνe

i

∑
j=dνe

a8,i κi,j,ν tj−ν = r

(
N

∑
i=0

a3,i Ch∗i (t)

)
− b1

(
N

∑
i=0

a8,i Ch∗i (t)

)

− 2

(
N

∑
i=0

a5,i Ch∗i (t)

)(
N

∑
i=0

a7,i Ch∗i (t)

)
+

(
N

∑
i=0

a2,i Ch∗i (t)

)(
N

∑
i=0

a9,i Ch∗i (t)

)
,

(29)

m

∑
i=dνe

i

∑
j=dνe

a9,i κi,j,ν tj−ν =

(
N

∑
i=0

(−r a1,i − b1 a7,i)Ch∗i (t)

)
− 2

(
N

∑
i=0

a2,i Ch∗i (t)

)
.

(
N

∑
i=0

a6,i Ch∗i (t)

)
+

(
N

∑
i=0

(2a6,i + a7,i)Ch∗i (t)

)(
N

∑
i=0

a4,i Ch∗i (t)

)
−
(

N

∑
i=0

a2,i Ch∗i (t)

)
.

(30)

By collocating (22)–(30) at m points ts =
s

m−1 + 1, s = 1, 2, · · · , m, it will be reduced
to an algebraic system with the coefficients ak,i, k = 1, 2, · · · , 9, i = 0, 2, · · · , m.

Substituting Equation (21) into (20) and using the fact that Ch∗i (0) = Ch∗i , the initial
conditions (20) will be converted to

m

∑
i=0

ak,i Ch∗i = φ0
k , k = 1, 2, · · · , 9. (31)

We solve the nonlinear system of Equations (22)–(31) for the unknowns ak,i,
k = 1, 2, . . . , 9, i = 0, 1, . . . , m by using the Newton iteration approach. This prompts us to
develop the approximate solution via substitution in the form of (21).

5. Numerical Simulation and Discussion
5.1. Graphical and Tabular Findings

We will verify the accuracy and quality of the obtained scheme. We address (10)–(20)
with various values of α, m, and the parameter value r. In all computations, we take
σ = 0.25 and a = 1/2 for computing the quantities bi, i = 1, 2, . . . , 6, from
Equation (19), and:

φ1,0 = φ3,0 = φ9,0 = 0.01, φ2,0 = φ4,0 = φ5,0 = φ6,0 = φ7,0 = φ8,0 = 0.0.
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Because Reiterer et al. [21] observed that when r > 43.3, the system exhibits hyper-
chaotic behavior and remains chaotic otherwise, in our work, we present both cases by
solving the model under study (10)–(20) for r ∈ [14.1, 15.1] and r = 55 in Figures 1–6.
Numerical simulation work was carried out with the help of the Mathematica software
(MATHEMATICS 11) package.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 1. The approximate solution φi(t), i = 1, 2, . . . , 9, against distinct values of α.
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The approximate solution with α = 1.0, 0.9, 0.8, 0.7, m = 6, and r = 14.1 is shown
in Figure 1a–i. Figure 2a–i presents the approximate solution with r = 14.1, 15.0, 55.0,
α = 0.95, and m = 7. In Figure 3a–i, we give a comparison between our numerical results
and those results obtained by the RK4 method at α = 1 with m = 6 and r = 14.1. The
REF [22] of the solution is shown in Figure 4a–i at α = 0.96 and r = 14.1 with m = 6, 10
in [0, 2]. Figures 5 and 6 present the phase projections on φ6 − φ7 and φ6 − φ9 with distinct
values of r, with m = 8 and α = 0.99.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 2. The approximate solution φi(t), i = 1, 2, . . . , 9, against distinct values of r.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 3. The solution φi(t), i = 1, 2, . . . , 9, using ACP and RK4 methods with α = 1.
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Figure 4. The REF of φi(t), i = 1, 2, . . . , 9, against distinct values of m.
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Figure 5. Phase portraits for the 9D attractor on the φ6 − φ7 plane for various values of r.
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Figure 6. Phase portraits for the 9D attractor on the φ6 − φ9 plane for various values of r.
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In addition, to strongly prove and confirm the effectiveness of the given method,
we present a comparison with a previously published work solving the same model by
using the SCM with the help of other orthogonal polynomials, named Gegenbauer wavelet
polynomials [23]. This comparison is presented in Tables 1 and 2 with different values of
the parameter r = 14.1 (for the chaotic case) and r = 55 (for the hyperchaotic case), with
α = 0.95 and m = 10 in each method, but with the same initial conditions and the same
parameters as in Figure 2. We computed the residual error function for each method to
show that our presented method with the ACPs is more accurate and computationally
effective in solving the given system.

Table 1. Values of the REF for the present method (first row) and the method in [23] (second row)
with r = 14.1.

t φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

0.0 2.52 × 10−7 4.02 × 10−6 6.85 × 10−7 2.29 × 10−8 3.90 × 10−7 0.82 × 10−7 0.73 × 10−6 5.68 × 10−7 4.85 × 10−7

0.0 3.65 × 10−6 5.96 × 10−5 4.65 × 10−6 0.85 × 10−7 5.97 × 10−5 9.65 × 10−6 4.05 × 10−5 6.90 × 10−6 5.02 × 10−6

0.2 4.55 × 10−8 3.62 × 10−7 3.95 × 10−6 3.35 × 10−6 1.25 × 10−7 7.50 × 10−8 1.90 × 10−8 7.30 × 10−7 0.60 × 10−7

0.2 5.01 × 10−7 1.50 × 10−6 2.38 × 10−5 1.95 × 10−5 7.65 × 10−6 6.05 × 10−6 5.62 × 10−6 6.95 × 10−6 6.02 × 10−6

0.4 6.26 × 10−6 0.05 × 10−6 1.05 × 10−8 4.50 × 10−7 8.98 × 10−6 5.66 × 10−7 7.58 × 10−8 4.28 × 10−7 3.95 × 10−7

0.4 7.95 × 10−5 7.99 × 10−5 3.95 × 10−7 6.65 × 10−5 0.05 × 10−5 3.80 × 10−6 6.95 × 10−6 3.98 × 10−6 7.65 × 10−6

0.6 7.28 × 10−7 7.98 × 10−7 5.26 × 10−7 7.28 × 10−7 8.96 × 10−8 2.58 × 10−6 5.29 × 10−7 2.24 × 10−8 4.96 × 10−7

0.6 6.65 × 10−6 6.29 × 10−6 7.95 × 10−6 8.32 × 10−7 8.85 × 10−6 0.29 × 10−5 8.95 × 10−5 2.24 × 10−7 8.53 × 10−5

0.8 4.95 × 10−7 6.68 × 10−7 5.02 × 10−5 7.95 × 10−7 9.95 × 10−6 8.02 × 10−8 4.05 × 10−7 3.03 × 10−8 1.95 × 10−7

0.8 3.75 × 10−6 5.50 × 10−6 4.32 × 10−4 5.26 × 10−6 0.25 × 10−6 7.95 × 10−7 6.50 × 10−6 4.74 × 10−7 3.62 × 10−6

1.0 1.65 × 10−7 2.32 × 10−8 0.29 × 10−7 3.26 × 10−8 1.65 × 10−7 4.00 × 10−7 4.00 × 10−6 5.65 × 10−7 6.85 × 10−8

1.0 2.01 × 10−6 3.85 × 10−7 3.96 × 10−6 2.95 × 10−7 2.75 × 10−5 3.90 × 10−6 2.80 × 10−5 4.85 × 10−5 3.96 × 10−7

Table 2. Values of the REF for the present method (first row) and the method in [23] (second row)
with r = 55.

t φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

0.0 3.95 × 10−6 4.02 × 10−5 0.85 × 10−7 1.78 × 10−7 5.42 × 10−6 9.01 × 10−7 4.32 × 10−5 2.85 × 10−6 3.85 × 10−7

0.0 6.65 × 10−5 6.82 × 10−4 7.33 × 10−5 0.75 × 10−6 2.65 × 10−4 4.50 × 10−6 3.65 × 10−5 1.85 × 10−5 2.99 × 10−6

0.2 5.85 × 10−7 5.85 × 10−6 1.65 × 10−5 0.26 × 10−5 8.96 × 10−6 4.85 × 10−7 3.65 × 10−7 6.95 × 10−6 1.68 × 10−6

0.2 4.65 × 10−6 1.95 × 10−6 2.95 × 10−4 5.65 × 10−5 9.00 × 10−5 7.65 × 10−5 0.75 × 10−6 4.32 × 10−6 2.09 × 10−5

0.4 5.11 × 10−6 3.95 × 10−5 3.65 × 10−7 9.95 × 10−6 0.85 × 10−5 1.01 × 10−7 4.32 × 10−7 0.75 × 10−5 1.00 × 10−5

0.4 0.02 × 10−5 9.26 × 10−4 6.96 × 10−6 2.85 × 10−4 1.95 × 10−5 0.85 × 10−6 7.98 × 10−5 6.98 × 10−5 4.35 × 10−5

0.6 2.02 × 10−7 3.98 × 10−6 4.25 × 10−6 5.85 × 10−7 6.65 × 10−5 1.50 × 10−6 0.95 × 10−6 2.28 × 10−7 3.66 × 10−7

0.6 1.12 × 10−6 2.54 × 10−5 0.29 × 10−5 5.58 × 10−6 1.74 × 10−4 7.00 × 10−5 6.62 × 10−4 5.85 × 10−6 4.97 × 10−5

0.8 3.32 × 10−7 3.75 × 10−6 4.85 × 10−5 5.78 × 10−5 0.12 × 10−6 1.85 × 10−7 6.50 × 10−7 6.52 × 10−6 4.29 × 10−6

0.8 4.85 × 10−6 4.95 × 10−6 3.95 × 10−4 7.96 × 10−5 3.96 × 10−5 5.22 × 10−5 1.52 × 10−6 4.85 × 10−6 0.85 × 10−5

1.0 3.85 × 10−6 4.68 × 10−5 1.24 × 10−7 8.98 × 10−7 5.85 × 10−6 2.05 × 10−7 3.65 × 10−5 8.98 × 10−6 6.65 × 10−7

1.0 5.01 × 10−5 2.96 × 10−4 3.95 × 10−5 4.36 × 10−6 3.29 × 10−4 0.55 × 10−6 0.01 × 10−5 8.85 × 10−5 2.01 × 10−6

5.2. Discussion and Recommendations

In this subsection, we present a detailed explanation of the scientific and applied
significance of the numerical results that we obtained in the previous subsection, in addition
to clarifying the extent to which these results are affected and their dependence on some
parameters affecting them, such as α, m, and r, along with listing some recommendations
related to the proposed method or the model itself. To show the importance of this scientific
paper and what it presents as a new work, we present these discussions through the
following points and items:

1. The proposed method is demonstrated in Figure 1 to be an effective way to solve the
proposed model in its fractional version in the Caputo sense.
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2. The results in Figure 2 show that the proposed technique is a reliable method to
simulate both chaotic and hyperchaotic behaviors and is consistent with the previous
study by Kouagou et al. [24].

3. In Figure 3, we can note that there is excellent agreement between our technique
and the RK4 method in this special case with the integer derivative α = 1, and this
indicates that the proposed method is suitable.

4. Through the results in Figure 4, we can increase the speed of the numerical computa-
tion by controlling the order of approximation m to improve the results as well as the
efficiency of the given scheme.

5. The obtained phase portraits in Figures 5 and 6 are consistent with those of Kouagou
et al. [24]. This demonstrates that this technique can manage high-dimensional
chaotic systems.

Finally, from the graphical and tabular findings, we can see that the method used
to solve the model under study in its fractional version using the Caputo operator is
computationally accurate and suitable for solving complex dynamical systems with chaotic
or hyperchaotic behavior. Additionally, we confirm that the numerical solution obtained
from the given method depends on the values of α, r, and m, as expected. Additionally, the
suggested strategy significantly boosts the method’s effectiveness and results.

6. Conclusions

As we know very well, most of the numerical techniques now in use converge slowly
for systems characterized by chaotic solutions, and this leads to inaccurate approximations.
Though many of those methods can be highly accurate, they are less accurate for these
kinds of models. As a result, we recommend the method described in this article. The
results and the method’s efficiency are both markedly enhanced by this process.

In this study, a numerical simulation was performed by finding the numerical solutions
for the nine-dimensional fractional Lorenz model for different values of α, m, and the
parameter r. To achieve this aim, we applied the SCM with ACPs. We first derive an
approximate formula for the fractional derivative and use it to obtain the numerical scheme
for solving the proposed model. This procedure creates a system of algebraic equations, and
this system is solved by the Newton iteration method. To evaluate the method and measure
its efficiency and accuracy, the residual error function was calculated, and a comparison
was made with the RK4 method. From this comparison, we can confirm that the presented
scheme is very suitable for the effective numerical study of this model. We can also control
and reduce the error by increasing m, which increases the number of terms in the series.
Additionally, we conclude that the Caputo operator used here is more suitable for describing
the proposed model through the presented numerical simulations. Finally, the graphical
and tabular findings show that the proposed technique is computationally accurate. We
intend to deal with this model in the future, but on a larger scale, by generalizing this
research to include additional types of polynomials or fractional derivatives.
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